Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么训练自己的小说大纲模型

Answer

训练自己的小说大纲模型可以参考以下步骤:

步骤一:创建数据集

  1. 进入厚德云-模型训练-数据集,网址为:https://portal.houdeyun.cn/sd/dataset 。
  2. 在数据集一栏中,点击右上角创建数据集。
  3. 输入数据集名称。
  4. 可以上传包含图片+标签的 zip 文件,也可以只有图片没有打标文件(之后可在 c 站使用自动打标功能)。
  5. 也可以一张一张单独上传照片,但建议提前把图片和标签打包成 zip 上传。
  6. Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。
  7. 上传 zip 以后等待一段时间。
  8. 确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,可预览到数据集的图片以及对应的标签。

步骤二:Lora 训练

  1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。
  2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。
  3. 触发词可有可无,取决于数据集是否有触发词。
  4. 模型效果预览提示词则随机抽取一个数据集中的标签填入即可。
  5. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。
  6. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。
  7. 然后等待训练,会显示预览时间和进度条。训练完成的会显示出每一轮的预览图。
  8. 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。

步骤三:Lora 生图

  1. 点击预览模型中间的生图会自动跳转到这个页面。
  2. 模型上的数字代表模型强度,可以调节大小,正常默认为 0.8,建议在 0.6 - 1.0 之间调节。
  3. 也可以自己添加 lora 文件,点击后会显示训练过的所有 lora 的所有轮次。
  4. VAE 不需要替换。
  5. 正向提示词输入写的提示词,可以选择基于这个提示词一次性生成几张图。
  6. 选择生成图片的尺寸,横板、竖版、正方形。
  7. 采样器和调度器新手小白可以默认不换。
  8. 迭代步数可以按照需求在 20 - 30 之间调整。
  9. CFG 可以按照需求在 3.5 - 7.5 之间调整。
  10. 随机种子 - 1 代表随机生成图。
  11. 所有设置都好了以后,点击开始生态,生成的图会显示在右侧。
  12. 如果有哪次生成结果觉得很不错,想要微调或者高分辨率修复,可以点开那张图,往下滑,划到随机种子,复制下来,粘贴到随机种子这里,这样下次生成的图就会和这次的结果近似。
  13. 如果确认了一张很合适的种子和参数,想要高清放大,则点开高清修复,可以选择想放大的倍数。新手小白可以就默认这个算法,迭代步数也是建议在 20 - 30 之间,重回幅度根据需求调整,正常来说在 0.3 - 0.7 之间调整。

今日作业 按照比赛要求,收集六个主题中一个主题的素材并且训练出 lora 模型后提交 lora 模型与案例图像。提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd 。

另外,直接在 Comfy UI 中训练 LoRA 模型的步骤如下:

  1. 确保后面有一个空格。然后将 requirements_win.txt 文件拖到命令提示符中(如果在 Windows 上;否则,选择另一个文件 requirements.txt)。拖动文件将在命令提示符中复制其路径。
  2. 按 Enter 键,这将安装所有所需的依赖项,使其与 ComfyUI 兼容。请注意,如果为 Comfy 使用了虚拟环境,必须首先激活它。
  3. 教程:
    • 图像必须放在一个以[number]_[whatever]命名的文件夹中。那个数字很重要:LoRA 脚本使用它来创建一些步骤(称为优化步骤…但别问我是什么^^’)。它应该很小,比如 5。然后,下划线是必须的。
    • 对于 data_path,必须写入包含数据库文件夹的文件夹路径。例如:C:\database\5_myimages ,必须写 C:\database 。
    • 对于参数,在第一行,可以从 checkpoint 文件夹中选择任何模型。据说必须选择一个基本模型进行 LoRA 训练。但也可以尝试使用微调。
Content generated by AI large model, please carefully verify (powered by aily)

References

10-0基础训练大模型

进入厚德云-模型训练-数据集https://portal.houdeyun.cn/sd/dataset[heading2]步骤一·创建数据集[content]在数据集一栏中,点a击右上角创建数据集输入数据集名称这个zip文件可以是包含图片+标签txt,也可以只有图片没有打标文件(之后你可以在c站使用它的自动打标功能)你也可以一张一张单独上传照片,但还是建议提前把图片和标签打包成zip上传Zip文件里图片名称与标签文件应当匹配例如:图片名"1.png",对应的达标文件就叫"1.txt"。上传zip以后等待一段时间确认创建数据集返回到上一个页面,等待一段时间后就会上传成功,可以点击详情检查可以预览到数据集的图片以及对应的标签[heading2]步骤二· Lora训练[content]点击Flux,基础模型会默认是FLUX 1.0D版本选择数据集,点击右侧箭头,会跳出你所有上传过的数据集触发词可有可无,取决于你的数据集是否有触发词模型效果预览提示词则随机抽取一个你数据集里的标签填入即可训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数如果不知道如何设置,可以默认20重复次数和10轮训练轮数可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力然后就可以等待训练了,会显示预览时间和进度条训练完成的会显示出每一轮的预览图鼠标悬浮到你想要的轮次模型,中间会有个生图,点击会自动跳转到使用此lora生图的界面。点击下方的下载按钮则会自动下载到本地

10-0基础训练大模型

上图中,点击预览模型中间的生图会自动跳转到这个页面模型上的数字代表模型强度,可以调节大小,正常默认为0.8,建议在0.6-1.0之间调节当然,你也可以自己添加lora文件点击后会显示你训练过的所有lora的所有轮次VAE不需要替换正向提示词输入你写的提示词可以选择基于这个提示词一次性生成几张图选择生成图片的尺寸,横板、竖版、正方形采样器和调度器新手小白可以默认这个不换迭代步数可以按照需求在20-30之间调整CFG可以按照需求在3.5-7.5之间调整随机种子-1代表随机生成图所有设置都好了以后,点击开始生态,生成的图会显示在右侧如果有哪次生成结果你觉得很不错,想要微调或者高分辨率修复,可以点开那张图往下滑,划到随机种子,复制下来粘贴到i机种子这里,这样下次生成的图就会和这次的结果近似如果确认了一张很合适的种子和参数,想要搞清放大则点开高清修复,可以选择你想放大的倍数新手小白可以就默认这个算法迭代步数也是建议在20-30之间重回幅度根据需求调整,正常来说在0.3-0.7之间调整[heading1]今日作业[content]按照比赛要求,收集六个主题中一个主题的素材并且训练出lora模型后提交lora模型与案例图像提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd

直接在Comfy UI中训练LoRA模型

确保后面有一个空格。然后将requirements_win.txt文件拖到命令提示符中(如果你在Windows上;否则,我假设你应该选择另一个文件requirements.txt)。拖动文件将在命令提示符中复制其路径。按Enter键,这将安装所有所需的依赖项,使其与ComfyUI兼容。请注意,如果你为Comfy使用了虚拟环境,必须首先激活它。教程在使用自定义节点之前,有一些要注意的事项:你的图像必须放在一个以[number]_[whatever]命名的文件夹中。那个数字很重要:LoRA脚本使用它来创建一些步骤(称为优化步骤…但别问我是什么^^’)。它应该很小,比如5。然后,下划线是必须的。其余部分不重--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------p/对于data_path,你必须写入包含数据库文件夹的文件夹路径。因此,在这种情况下:C:\database\5_myimages你必须写C:\database至于终极问题:“斜杠还是反斜杠?”…不用担心!Python在这里需要斜杠,但节点会自动将所有反斜杠转换为斜杠。文件夹名称中的空格也不是问题。参数在第一行,你可以从checkpoint文件夹中选择任何模型。然而,据说你必须选择一个基本模型进行LoRA训练。这是为什么我不得而知。但你完全可以尝试使用微调,没有任何阻碍。但如果你想遵循规则,请确保在checkpoint文件夹中有一个基本模型!

Others are asking
Ai训练营课程大纲
以下是 AI 实训营的课程大纲: 第一期: |时间|主题|课程内容| |||| |01/07 20:00<br><br>必须了解的企业级 AI 应用开发知识点|阿里云百炼大模型平台全解析<br>企业级服务场景对号入座<br>百闻不如体验,实操方有感知| |01/08 20:00<br><br>更好用的文本知识库应用跟学,快速上手阿里云百炼|生态能力解析:手把手案例带做<br>服务场景透视:企业级案例应用<br>AI 机器人搭建:企业知识问答场景全覆盖| |01/09 20:00<br><br>更热门的多模态交互案例带练,实操掌握 AI 应用开发|阿里云百炼大模型多模态能力解析<br>商家运营场景&企业级解决方案分享<br>实践课堂:拍立得场景构建| 第二期: |时间|主题|课程内容| |||| |01/22 20:00<br>|0 基础入门篇:写代码像聊天一样简单<br>可以进入钉钉群获取更多文档:https://alidocs.dingtalk.com/i/nodes/yQod3RxJKGvvkP3rfj5Lgoy7Jkb4Mw9r?utm_scene=person_space|AI 编程的能力与边界<br>通义灵码上手指南<br>一句话 AI 编程小游戏展示| |01/23 20:00<br>|AI 编程实战篇:人人都能“福从天降”|0 基础带练“福从天降”小游戏<br>自然语言生成更多小游戏<br>如何在 Github 部署并生成在线链接| 此外,入门篇还包括多模态能力及相关内容介绍,如前两日课程回顾、多模态能力介绍、应用案例体验、学习资源与作业、未来合作与更新等。
2025-02-10
ppt大纲 的提示词
以下是关于 PPT 大纲提示词的相关内容: 1. 卓 sir 分享了其使用 GPT4 制作 PPT 大纲的经历。他指出自然交流体验舒适,且经过多次迭代完成了电商 PPT 大纲。还提到 WPS AI 能优化大纲、快速制作 PPT 并进行简单修改。 2. 熊猫 Jay 提供了超全的 AI 工具生成 PPT 的思路和使用指南,包括利用 AI 生成 PPT 大纲,给出了培训文档助手的核心提示词,并说明提示词可基于不同模型生成,也可参考基础提示词模版进行丰富。 3. 介绍了 Prompts 最佳实践,如 PPT 制作(电商领域)的相关示例,包括标题、作者、分类、说明等详细信息。
2025-02-05
我想为公司员工培训下AI基础入门使用技巧,帮我写一个课程大纲
以下是为您提供的公司员工 AI 基础入门使用技巧培训课程大纲: 一、AI 基本概念 1. 人工智能的定义和术语 2. 主要分支(机器学习、深度学习、自然语言处理等)及联系 3. 历史、当前应用和未来发展趋势 二、AI 学习资源与路径 1. 推荐的入门文章和学习资料 2. 为初学者设计的课程,如李宏毅老师的课程 3. 在线教育平台(Coursera、edX、Udacity)课程介绍 三、AI 应用领域与选择 1. 图像、音乐、视频等领域介绍 2. 根据兴趣选择特定模块深入学习的建议 四、提示词技巧 1. 提示词的重要性和作用 2. 掌握提示词的方法和技巧 五、实践操作 1. 理论知识的实践应用 2. 分享实践作品和经验 六、体验 AI 产品 1. 介绍常见的 AI 聊天机器人(ChatGPT、Kimi Chat、智谱、文心一言等) 2. 了解其工作原理和交互方式 七、AI 在企业中的应用 1. 对于企业管理者 AI 辅助决策 员工培训计划 流程优化 AI 伦理和政策 2. 对于教育工作者 AI 辅助教案设计 个性化学习路径 创新教学方法 AI 素养教育 希望这个课程大纲能满足您的需求,帮助员工更好地了解和应用 AI 基础知识。
2025-01-16
给我一份学习Ai的大纲
以下是一份学习 AI 的大纲: 一、基础概念 1. 了解人工智能的定义、发展历程和应用领域。 2. 熟悉常见的 AI 技术和术语,如 Transformer 和 Latent Diffusion 模型。 二、技术学习资源 1. 学习相关的数学知识,如线性代数、概率论、统计学等。 2. 掌握编程语言,如 Python。 3. 学习机器学习和深度学习的基本理论和算法。 三、大型语言模型(LLMs) 1. 了解 LLMs 的原理和架构。 2. 学习如何训练和优化 LLMs。 四、AI 市场分析 1. 研究 AI 市场的现状和趋势。 2. 了解 AI 产品和服务的商业应用。 五、实际应用 1. 确定研究课题主题,明确研究兴趣和目标。 2. 收集背景资料,使用学术搜索引擎和文献管理软件等 AI 工具。 3. 分析和总结信息,利用 AI 文本分析工具提取关键信息。 4. 生成大纲,使用 AI 写作助手规划课题结构。 5. 撰写文献综述,借助 AI 工具确保内容准确完整。 6. 构建方法论,根据研究需求采用 AI 建议的方法和技术。 7. 进行数据分析,运用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑,利用 AI 写作工具完成各部分内容,并检查语法和风格。 9. 生成参考文献,使用 AI 文献管理工具规范格式。 10. 审阅和修改,借助 AI 审阅工具检查逻辑性和一致性。 11. 提交前检查,使用 AI 抄袭检测工具确保原创性,并调整格式。 需要注意的是,在使用 AI 工具辅助学习和研究时,应保持批判性思维,不能完全依赖,要确保研究的质量和学术诚信。
2025-01-15
总结大纲的提示词
以下是对大纲提示词相关内容的总结: 1. 学校通用场景中,作为豆瓣书评人,需按特定格式输出书籍的重点内容,包括标题、作者、时间、问题、总结、观点、金句和案例等。 2. 在并行任务方面,有关于概念的文章大纲编写,包括用 XML 标签标记大纲、扩展大纲中的句子,并考虑读者年龄段。 3. 胡凯翔提出构建提示词的方法,包括充分描述任务、标注提示词不同部分、添加示例(可选)、描述踩坑点(可选),以构建 GPT 能听懂并执行的清晰明确命令。
2025-01-10
有没有一种可以根据我的教学大纲生成一个课程海报的工具
以下为您介绍几种可以根据教学大纲生成课程海报的工具及相关操作: 1. COZE 应用: 访问地址:https://www.coze.cn/s/iDsBwYLF/ 功能包括生成教案、趣味课堂、课后作业、教案 PPT、作业批改等。 教案 PPT 内容基于前面生成的教学大纲,可能需要手动进行少许内容修正。 下载 PPT 可能需要充值。 2. 在线生图定制主题海报: 操作步骤: 选择模型,如例图 4 选择儿童>皮克斯。 输入画面描述,按主体+氛围+视角+画质的顺序输入关键词,可使用自选关键词,并用括号强调关键词。 选择画面大小,制作主题海报可选择 9:16 的宣传海报比例和 17283072 的分辨率。 进行其他设置,增加作图数量可一次性生成多幅图片方便挑选。 优化海报可使用可画(https://www.canva.cn/?displaycomoption=true)在线编辑。 希望以上内容对您有所帮助。
2025-01-08
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大模型产品对比
以下是对一些大模型产品的对比介绍: 智谱清言:由智谱 AI 和清华大学推出,基础模型为 ChatGLM 大模型。2023 年 10 月 27 日,智谱 AI 于 2023 中国计算机大会(CNCC)上推出了全自研的第三代基座大模型 ChatGLM3 及相关系列产品。 模型特点:在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。更擅长专业能力,但代码能力有优化空间,知识百科稍显不足,是很有竞争力的大模型。 适合应用:场景广泛,可优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及长文本记忆相关场景,在较复杂推理应用上效果不错,也适用于广告文案、文学写作。 其他大模型产品: OpenAI 发布 GPT4 科大讯飞发布星火 1.0 及升级至星火 3.0 百度发布文心一言 1.0 及升级至 V3.5 清华开源 ChatGLM 360 发布 360 智脑 1.0 及升级至智脑 4.0 复旦开源 MOSS 元语开源 ChatYuan 阿里云发布通义千问 1.0 及开源 Qwen7B 商汤科技发布商量 1.0 及升级至商量 2.0、商量 3.0 昆仑万维发布天工 1.0 出门问问发布序列猴子 华为发布盘古 3.0 西湖心辰发布西湖大模型 云从科技发布从容大模型 理想汽车发布 MindGPT OPPO 发布 AndesGPT vivo 发布 BlueLM 小米发布大模型 MiLM 元象科技开源 XVERSE13B Google 发布多模态大模型 Gemini 上海人工智能实验室开源 InternLM20B 百川智能发布 Baichuan2—Turbo 关于大模型在营销方面的应用: 大模型在实体类产品的营销标语生成上表现较好,虚拟类产品相对欠佳。可能是因为大模型训练数据中实体类语料多,更能调用已有知识加工,而虚拟类产品非标准品,大模型认识不足。 情绪价值在营销领域有很多用武之地,除快消商品外,很多产品的营销需要反复沟通,虚拟产品对感性成交依赖更大,大模型在这方面仍有很大发展空间。
2025-02-18
我想创业,花多少钱,能够搭建一个视频领域的AI模型
在视频领域搭建 AI 模型的成本因多种因素而异。对于创业者或小公司来说,这个领域存在一定的挑战。 腾讯的混元 AI 视频模型目前只支持文生视频,且已开源免费。 在模型供应商方面,不同供应商的特点和成本有所不同: 智谱 GLM4V 是通用视觉类大模型,为拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,调用成本为 0.05 元/千 tokens。 阿里云百炼 qwenvlplus 也是通用视觉类大模型,是拍立得目前使用的模型,指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高,调用成本为 0.008 元/千 tokens,训练成本为 0.03 元/千 tokens。 阶跃星辰是通用视觉类大模型,响应速度快,支持视频理解,输入成本为 0.005 0.015 元/千 tokens,输出成本为 0.02 0.07 元/千 tokens。 百度 PaddlePaddle 是 OCR 垂直小模型,文本识别能力补齐增强,私有化部署有服务费,API 调用在 0.05 0.1 元/次。 此外,获取高质量数据的难度较高,大厂在该领域的护城河深厚。大公司在争取大模型 API 客户方面更具优势,且开源大模型的发展可能会影响创业公司的业务。去年为大客户定制一个大模型的最高订单额可达 1000 万元,而今年则快速降到了百万元级别乃至更低。
2025-02-18
你的底层大模型用的是哪个?
目前常见的大型语言模型多采用右侧只使用 Decoder 的 Decoderonly 架构,例如我们熟知的 ChatGPT 等。这些架构都是基于谷歌 2017 年发布的论文“attention is all you need”中提出的 Transformer 衍生而来,其中包括 Encoder 和 Decoder 两个结构。 大模型的特点在于: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 大模型之所以能有效生成高质量有意义的回答,关键在于“大”。例如 GPT1 的参数规模是 1.5 亿,GPT2 Medium 的参数规模是 3.5 亿,到 GPT3.5 时,参数规模达到惊人的 1750 亿,参数规模的增加实现了量变到质变的突破,“涌现”出惊人的“智能”。 大模型的预训练机制是指其“脑袋”里存储的知识都是预先学习好的,预训练需要花费相当多的时间和算力资源。在没有其他外部帮助的情况下,大模型所知道的知识信息总是不完备且滞后的。
2025-02-18
主流的LORA 训练工具是什么?
主流的 LORA 训练工具包括: 1. B 站 UP 主“朱尼酱”的赛博丹炉,其界面友好、美观,适合新手入门。 2. 训练器,支持 Kolors 开源模型。 3. Kolors+Refiner,由 AIKSK 开发的工作流应用。 4. Kolors可图大模型XL 精修工作流,由@AiARTiST 非人类开发。 5. kolors+SDXL 细节修复+instant+ipa,由@谷尘 DesignDog 开发。 6. kolors 一键设计中文海报,由亦诚视觉开发。 7. ,魔搭社区官方模型。 8. InstantIDKolors 专属模型,由 InstantX 开发。
2025-02-18
flux lora训练
以下是关于 Flux 的 Lora 模型训练的详细步骤: 模型准备: 1. 下载所需模型:t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意:不使用时存放位置不限,只要知晓路径即可。训练时建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 下载脚本: 1. 网盘链接: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 安装虚拟环境: 1. 下载完脚本并解压。 2. 在文件中找到 installcnqinglong.ps1 文件,右键选择“使用 PowerShell 运行”。 3. 新手在此点击“Y”,然后等待 1 2 小时的下载过程。下载完成后会提示是否下载 hunyuan 模型,选择“n”不用下载。 数据集准备: 1. 进入厚德云 模型训练 数据集:https://portal.houdeyun.cn/sd/dataset 2. 创建数据集:在数据集一栏中,点击右上角创建数据集,输入数据集名称。 可以上传包含图片 + 标签 txt 的 zip 文件,也可以上传只有图片的文件(之后可在 c 站使用自动打标功能),或者一张一张单独上传照片。建议提前将图片和标签打包成 zip 上传,Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 上传 zip 以后等待一段时间,确认创建数据集。返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,可预览到数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 4. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 5. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 6. 等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图。鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 数据集存放位置:.Flux_train_20.4\\train\\qinglong\\train 运行训练:约 1 2 小时即可训练完成。 验证和 lora 跑图:有 ComfyUI 基础的话,直接在原版工作流的模型后面,多加一个 LoraloaderModelOnly 的节点就可以,自行选择您的 Lora 和调节参数。
2025-02-17
LLM 训练推理模型有哪些
以下是一些常见的 LLM 训练推理模型: 1. FengshenbangLM: 地址: 简介:是 IDEA 研究院认知计算与自然语言研究中心主导的大模型开源体系,开源了姜子牙通用大模型 V1,是基于 LLaMa 的 130 亿参数的大规模预训练模型,具备翻译、编程、文本分类、信息抽取、摘要、文案生成、常识问答和数学计算等能力。除姜子牙系列模型之外,还开源了太乙、二郎神系列等模型。 2. BiLLa: 地址: 简介:开源了推理能力增强的中英双语 LLaMA 模型。较大提升 LLaMA 的中文理解能力,并尽可能减少对原始 LLaMA 英文能力的损伤;训练过程增加较多的任务型数据,利用 ChatGPT 生成解析,强化模型理解任务求解逻辑;全量参数更新,追求更好的生成效果。 3. Moss: 地址: 简介:支持中英双语和多种插件的开源对话语言模型,MOSS 基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。 此外,Andrej Karpathy 的相关介绍中提到了 LLM 训练的一些情况,如训练过程涉及大约 10TB 的文本,通常来源于互联网的抓取,需要大量的互联网资源和一个 GPU 集群,费用大约 200 万美元。Karpathy 的视频还详细介绍了 LLM 训练的全部过程,包括预训练、有监督微调和强化学习等。
2025-02-16
RVC声音模型训练
RVC 声音模型训练是将输入音频转换为训练的声音,即变声。它对训练素材量级要求较高,最少需要 20 分钟的素材才能达到理想效果,并且可以选择是否关联音高,以区分说话和唱歌两个不同场景。 在节目《马上封喉》中,负责马季老师语音生成部分的人员提到,AI 语音主要涉及 TTS(文本转语音)和 RVC 两项技术。此次的 AI 马季主要以 gptsovits 为主。 在 AI 春晚《西游不能停》的创作过程中,尝试了用 RVC 进行 vocal 变声的两种办法,但效果均不理想。第一种方法是训练声音模型后直接变声,存在变声后 AI 味儿太重、丢失原有强调的问题;第二种方法是训练声音模型,自己录 rap 后再变声,但需要在录音时尽量模仿还原出特点和感觉,这涉及到专业配音技巧,超出了能力范围。此外,八戒和沙僧声音的训练文件丢失,效果也不理想。
2025-02-13
如何用秘塔写小说
以下是关于用秘塔写小说的相关信息: 秘塔写作猫(https://xiezuocat.com/ )是一款 AI 写作伴侣。它能帮您推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写、一键修改,实时纠错的同时一并给出修改建议,智能分析文章的各类属性,用人工智能为您的文章正负情感、情绪强度和易读性打分。 此外,还有其他中文的内容仿写 AI 工具可供选择,如笔灵 AI 写作(https://ibiling.cn/ ),它是得力的智能写作助手,心得体会、公文写作、演讲稿、小说、论文等都能应对,支持一键改写/续写/扩写,智能锤炼打磨文字,使之更加符合您的需求。腾讯 Effidit 写作(https://effidit.qq.com/ )也是智能创作助手,由腾讯 AI Lab 开发,能提升写作者的写作效率和创作体验。更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-11
AI写小说提示词
以下是关于 AI 写小说提示词的相关内容: 用 coze 写起点爆款小说《夜无疆》时,重要差别在第三步,即用大模型草拟大纲,包括标题、主旨、世界观、主要角色、小说背景、情节概要等。 写小说本身的提示词相对简单,搜索是一个值得学习的思路,将搜索结果结构化方便大模型理解。 关于提示词编写及 AI 应用的探讨中,提到理性决策提示词的编写方法,包括收集信息、重新定义问题、运用 Mini Max Regret 方法等步骤。示例是隐性的需求说明书,添加示例可让大模型更懂需求,但 few short 可能影响模型性能。自用和他用的提示词在稳定性、经济性、可维护性等方面有较大区别,工业化提示词需稳定、经济且易维护。 从 Deepseek R1 提示词过渡到小说写作,探讨了小说写作方式,如精心设计与凭直觉写作并不冲突,好文字能引起生理和情绪共鸣,用 Deepseek 写小说要考虑引起共鸣和关注人类共性。 围绕模型应用和创作展开讨论,对比了 Deepseek 和 cloud 3.5 文风等,还提及模型结合,探讨了写小说的控制篇幅方法,计划在腾讯频道分享作品,交流提示词及过往创作经验,并期待未来 AI 发展。 AJ 分享了诸多内容,包括用 R1 重写共创日历文字用于淘宝文案等,探讨规避 AI 常用词汇的方法,介绍腾讯频道“Deepseek 小说家”活动规则,还提到 AI 切磋大会,2 月 23 日线下举行,以 Deepseek 为核心,分享案例等,鼓励大家多整活,展示脑洞,积极参与活动。
2025-02-11
deepseek 小说的资料在哪一页
以下是关于 DeepSeek 小说的相关资料所在位置: 此外,还有以下智能纪要中的相关内容: ,包括旧模型文学创作弊端与 Deepseek 使用建议等章节。 ,围绕如何用 deepseek 写小说展开。 ,介绍 Deepseek R1 大模型的特点与创作表现。 ,讲解 Deepseek re 提示词写法及相关理论探讨。 ,围绕 Deepseek REE 提示词展开讨论。 ,探讨 AI 辅助下的小说创作及对好文字、文学创作方式。
2025-02-11
请问抖音中的小说短视频通常用什么软件来做
抖音中的小说短视频通常可以使用以下软件和流程来制作: 制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 工具与网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。网址: 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址: 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。网址: 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址: 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址: 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址: 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址: 8. 故事 AI 绘图:小说转视频的 AI 工具。网址: 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-02-09
ai写小说的软件
以下是为您介绍的一些与 AI 写小说相关的内容: 1. 关于不同模型的文风特点:ChatGPT 在诞生之初自带奇怪文风,包括概括性描述、缺乏侧面描写、生硬叙述、死板结构和过度道德正确等。部分非 OpenAI 的模型也有类似情况,而 GPT 模型如今在文风上已有改观。同时,过度的道德说教与正面描述趋势会让读者厌烦,因为与人类生活脱节。 2. 将小说做成视频的流程: 小说内容分析:使用 AI 工具(如 ChatGPT)提取关键场景、角色和情节。 生成角色与场景描述:利用工具(如 Stable Diffusion 或 Midjourney)生成视觉描述。 图像生成:使用 AI 图像生成工具创建图像。 视频脚本制作:将关键点和图像组合成脚本。 音频制作:用 AI 配音工具(如 Adobe Firefly)转换语音并添加背景音效。 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)合成。 后期处理:进行剪辑、添加特效和转场。 审阅与调整:根据需要调整。 输出与分享:完成编辑后输出并分享。 3. 一些 AI 写小说的软件: Novel.ai:AI 写小说领域的头部应用,是典型的 LLM 产品。其功能复杂但使用模式简单,包括利用续写能力改造成交互式文本生成、渐进式生成小段、抽象出细分功能等。 Character.ai:大名鼎鼎的角色扮演类 AI 陪伴产品,服务游戏和二次元用户。使用简单,创建角色靠详细描述,开放用户角色 Prompt 可见。 筑梦岛:国内同类产品,玩法多样,如和角色聊天、捏角色等,捏角色本质是收集信息产生高质量角色 Prompt 的过程,并基于聊天模式有很多衍生玩法。
2025-02-08
擅长文字处理,主要是小说的AI有哪些,推荐一下
以下是一些擅长文字处理,尤其是小说创作的 AI 工具: 1. Novel.ai:AI 写小说领域的头部应用,是典型的 LLM 产品。其产品功能复杂但使用模式简单,包括利用续写能力将写作改造成交互式文本生成,渐进式生成小段并允许用户更改或继续生成,基于写作业务抽象出模型风格、写作方式、故事世界、记忆等细分功能。本质上还是构造 Prompt,交互式、渐进式的 Prompt 构建降低了使用门槛。 2. Character.ai:大名鼎鼎的角色扮演类 AI 陪伴产品,服务游戏和二次元用户。使用简单,选角色对话即可,创建也容易,角色的核心差异靠不同的详细描述,开放用户角色 Prompt 可见。 3. 筑梦岛:国内同类产品,玩法多样。和角色聊天、捏角色是共同主题,捏角色的产品化本质是收集信息产生高质量角色 Prompt 的过程,基于聊天模式有很多微创新的衍生玩法。 此外,还有一些中文的内容仿写 AI 工具: 1. 秘塔写作猫:https://xiezuocat.com/ 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 是智能写作助手,支持多种文体写作,如心得体会、公文、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 由腾讯 AI Lab 开发,是智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 (内容由 AI 大模型生成,请仔细甄别)
2025-02-07