Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

怎么训练自己的小说大纲模型

Answer

训练自己的小说大纲模型可以参考以下步骤:

步骤一:创建数据集

  1. 进入厚德云-模型训练-数据集,网址为:https://portal.houdeyun.cn/sd/dataset 。
  2. 在数据集一栏中,点击右上角创建数据集。
  3. 输入数据集名称。
  4. 可以上传包含图片+标签的 zip 文件,也可以只有图片没有打标文件(之后可在 c 站使用自动打标功能)。
  5. 也可以一张一张单独上传照片,但建议提前把图片和标签打包成 zip 上传。
  6. Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。
  7. 上传 zip 以后等待一段时间。
  8. 确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,可预览到数据集的图片以及对应的标签。

步骤二:Lora 训练

  1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。
  2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。
  3. 触发词可有可无,取决于数据集是否有触发词。
  4. 模型效果预览提示词则随机抽取一个数据集中的标签填入即可。
  5. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。
  6. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。
  7. 然后等待训练,会显示预览时间和进度条。训练完成的会显示出每一轮的预览图。
  8. 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。

步骤三:Lora 生图

  1. 点击预览模型中间的生图会自动跳转到这个页面。
  2. 模型上的数字代表模型强度,可以调节大小,正常默认为 0.8,建议在 0.6 - 1.0 之间调节。
  3. 也可以自己添加 lora 文件,点击后会显示训练过的所有 lora 的所有轮次。
  4. VAE 不需要替换。
  5. 正向提示词输入写的提示词,可以选择基于这个提示词一次性生成几张图。
  6. 选择生成图片的尺寸,横板、竖版、正方形。
  7. 采样器和调度器新手小白可以默认不换。
  8. 迭代步数可以按照需求在 20 - 30 之间调整。
  9. CFG 可以按照需求在 3.5 - 7.5 之间调整。
  10. 随机种子 - 1 代表随机生成图。
  11. 所有设置都好了以后,点击开始生态,生成的图会显示在右侧。
  12. 如果有哪次生成结果觉得很不错,想要微调或者高分辨率修复,可以点开那张图,往下滑,划到随机种子,复制下来,粘贴到随机种子这里,这样下次生成的图就会和这次的结果近似。
  13. 如果确认了一张很合适的种子和参数,想要高清放大,则点开高清修复,可以选择想放大的倍数。新手小白可以就默认这个算法,迭代步数也是建议在 20 - 30 之间,重回幅度根据需求调整,正常来说在 0.3 - 0.7 之间调整。

今日作业 按照比赛要求,收集六个主题中一个主题的素材并且训练出 lora 模型后提交 lora 模型与案例图像。提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd 。

另外,直接在 Comfy UI 中训练 LoRA 模型的步骤如下:

  1. 确保后面有一个空格。然后将 requirements_win.txt 文件拖到命令提示符中(如果在 Windows 上;否则,选择另一个文件 requirements.txt)。拖动文件将在命令提示符中复制其路径。
  2. 按 Enter 键,这将安装所有所需的依赖项,使其与 ComfyUI 兼容。请注意,如果为 Comfy 使用了虚拟环境,必须首先激活它。
  3. 教程:
    • 图像必须放在一个以[number]_[whatever]命名的文件夹中。那个数字很重要:LoRA 脚本使用它来创建一些步骤(称为优化步骤…但别问我是什么^^’)。它应该很小,比如 5。然后,下划线是必须的。
    • 对于 data_path,必须写入包含数据库文件夹的文件夹路径。例如:C:\database\5_myimages ,必须写 C:\database 。
    • 对于参数,在第一行,可以从 checkpoint 文件夹中选择任何模型。据说必须选择一个基本模型进行 LoRA 训练。但也可以尝试使用微调。
Content generated by AI large model, please carefully verify (powered by aily)

References

10-0基础训练大模型

进入厚德云-模型训练-数据集https://portal.houdeyun.cn/sd/dataset[heading2]步骤一·创建数据集[content]在数据集一栏中,点a击右上角创建数据集输入数据集名称这个zip文件可以是包含图片+标签txt,也可以只有图片没有打标文件(之后你可以在c站使用它的自动打标功能)你也可以一张一张单独上传照片,但还是建议提前把图片和标签打包成zip上传Zip文件里图片名称与标签文件应当匹配例如:图片名"1.png",对应的达标文件就叫"1.txt"。上传zip以后等待一段时间确认创建数据集返回到上一个页面,等待一段时间后就会上传成功,可以点击详情检查可以预览到数据集的图片以及对应的标签[heading2]步骤二· Lora训练[content]点击Flux,基础模型会默认是FLUX 1.0D版本选择数据集,点击右侧箭头,会跳出你所有上传过的数据集触发词可有可无,取决于你的数据集是否有触发词模型效果预览提示词则随机抽取一个你数据集里的标签填入即可训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数如果不知道如何设置,可以默认20重复次数和10轮训练轮数可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力然后就可以等待训练了,会显示预览时间和进度条训练完成的会显示出每一轮的预览图鼠标悬浮到你想要的轮次模型,中间会有个生图,点击会自动跳转到使用此lora生图的界面。点击下方的下载按钮则会自动下载到本地

10-0基础训练大模型

上图中,点击预览模型中间的生图会自动跳转到这个页面模型上的数字代表模型强度,可以调节大小,正常默认为0.8,建议在0.6-1.0之间调节当然,你也可以自己添加lora文件点击后会显示你训练过的所有lora的所有轮次VAE不需要替换正向提示词输入你写的提示词可以选择基于这个提示词一次性生成几张图选择生成图片的尺寸,横板、竖版、正方形采样器和调度器新手小白可以默认这个不换迭代步数可以按照需求在20-30之间调整CFG可以按照需求在3.5-7.5之间调整随机种子-1代表随机生成图所有设置都好了以后,点击开始生态,生成的图会显示在右侧如果有哪次生成结果你觉得很不错,想要微调或者高分辨率修复,可以点开那张图往下滑,划到随机种子,复制下来粘贴到i机种子这里,这样下次生成的图就会和这次的结果近似如果确认了一张很合适的种子和参数,想要搞清放大则点开高清修复,可以选择你想放大的倍数新手小白可以就默认这个算法迭代步数也是建议在20-30之间重回幅度根据需求调整,正常来说在0.3-0.7之间调整[heading1]今日作业[content]按照比赛要求,收集六个主题中一个主题的素材并且训练出lora模型后提交lora模型与案例图像提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd

直接在Comfy UI中训练LoRA模型

确保后面有一个空格。然后将requirements_win.txt文件拖到命令提示符中(如果你在Windows上;否则,我假设你应该选择另一个文件requirements.txt)。拖动文件将在命令提示符中复制其路径。按Enter键,这将安装所有所需的依赖项,使其与ComfyUI兼容。请注意,如果你为Comfy使用了虚拟环境,必须首先激活它。教程在使用自定义节点之前,有一些要注意的事项:你的图像必须放在一个以[number]_[whatever]命名的文件夹中。那个数字很重要:LoRA脚本使用它来创建一些步骤(称为优化步骤…但别问我是什么^^’)。它应该很小,比如5。然后,下划线是必须的。其余部分不重--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------p/对于data_path,你必须写入包含数据库文件夹的文件夹路径。因此,在这种情况下:C:\database\5_myimages你必须写C:\database至于终极问题:“斜杠还是反斜杠?”…不用担心!Python在这里需要斜杠,但节点会自动将所有反斜杠转换为斜杠。文件夹名称中的空格也不是问题。参数在第一行,你可以从checkpoint文件夹中选择任何模型。然而,据说你必须选择一个基本模型进行LoRA训练。这是为什么我不得而知。但你完全可以尝试使用微调,没有任何阻碍。但如果你想遵循规则,请确保在checkpoint文件夹中有一个基本模型!

Others are asking
大纲生成
利用 AI 生成课题大纲的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据,使用 AI 数据分析工具处理和解释。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:借助 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,进行最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,应保持批判性思维,确保研究质量和学术诚信。 在文章写作中,大纲编写是关键步骤,尤其是对于中长篇文章创作者。这个过程需要多次迭代和深思熟虑,将想法、创意和思路进行系统整理,是反复推敲和不断优化的过程。 采用多 Agent 模式较为合适,不同 Agent 可扮演不同角色,如负责资料搜集、创意构思、逻辑梳理等,协作带来更丰富视角和更深入思考。 大纲写作的流程规划:从捕捉初步想法(背景增强阶段,收集整合主题相关信息知识),到大纲生成(将背景信息转化为大纲草案,包括识别主要论点、安排结构、确定关键内容),生成后进行整合输出,若需修订则继续循环迭代,直至满意。
2024-12-09
给大纲自动生成ppt
以下是为您提供的根据大纲自动生成 PPT 的方法: 卓 sir 的方法: 先让 GPT4 生成 PPT 大纲,然后把大纲导入到 WPS 当中,启用 WPS AI 一键生成 PPT。 为让 PPT 更具灵动性和观感,让 chatPPT 添加一些动画,最后手动修改细节,如字体、事实性错误等。 制作过程中,最耗时的是让 GPT4 生成符合要求的大纲,共 3 小时,大纲环节就花了 2 小时。 因题目抽象,理解困难,借助 GPT4 明确题目意思,并确定主题为结合具体电商网站研究 5 种不同电商模式。 熊猫 Jay 的方法: Process ON: 网址:https://www.processon.com/ 输入大纲和要点: 导入大纲和要点:有手动复制(较耗时间)和导入方式(将大纲内容复制到本地 txt 文件,改后缀为.md,导入 Xmind 软件,再导入 Process ON)两种。 输入主题自动生成大纲和要求:新增思维导图,输入主题点击 AI 帮我创作。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版再点击下载。可某宝买一天会员。 闪击: 网址:国内网站,不需要魔法。地址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 选择模版,输入大纲和要点:由于闪击的语法和准备的大纲内容有偏差,可参考官方使用指南:https://zhuanlan.zhihu.com/p/607583650,将大纲转换成适配闪击的语法。 生成 PPT:点击文本转 PPT,在提示框中选择确定。 导出:有一些限制,PPT 需要会员才能导出。
2024-12-03
如何用AI生成PPT大纲
以下是使用 AI 生成 PPT 大纲的方法: 1. 可以先让 GPT4 生成 PPT 大纲,然后把大纲导入到 WPS 当中,启用 WPT AI 一键生成 PPT。为了让 PPT 更有灵动性和观感,可以让 chatPPT 添加一些动画,最后手动修改细节,比如字体、事实性错误等。其中,让 GPT4 生成符合要求的大纲可能比较耗时,需要明确主题和关键信息。 2. 利用熊猫 Jay 提供的思路: 输入关键信息生成大纲,关键信息的提示词可针对不同人群做受众分析。 利用 Process ON 网站生成: 输入大纲和要点,有导入大纲和要点、输入主题自动生成大纲和要求两种方式。 导入大纲和要点有手动复制和导入两种方式,手动复制较耗时间,导入方式需将大纲内容复制到本地 txt 文件并改为.md 后缀,再通过 Xmind 软件导入到 Process ON 中。 输入主题自动生成大纲和要求,新增思维导图,输入主题点击 AI 帮我创作即可。 选择模版并生成 PPT,点击下载,选择导入格式为 PPT 文件,选择模版后再点击下载。若喜欢用 Process ON 且没有会员,可在某宝买一天会员。
2024-11-29
AI 辅助课程大纲编写与优化
利用 AI 辅助课程大纲编写与优化可以按照以下步骤进行: 1. 确定课程大纲主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课程大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果课程大纲涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写课程大纲的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查课程大纲的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保课程大纲的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课程大纲编写与优化时,应保持批判性思维,并确保研究的质量和学术诚信。 此外,还可以参考以下思路: 调整结构:在大纲开头增加一个“快速选择指南”,帮助读者快速定位最适合自己的方法。 补充新信息、新观点:增加一个章节,比较不同 AI 模型在相关工作场景中的优劣。 对于教师,还可以借助 AI 作为教学助理来规划课程。AI 教学助理应先向老师介绍自己,询问教学科目以及面向的学生层次(高中、大学还是职业教育),以便更精准地提供建议。若老师有教学大纲,应认真研读并根据需求提出修改建议;若没有大纲,让老师尽可能详细描述课程内容。
2024-10-29
你是一名课程开发专家,现在要以“AI技术在课程设计中的应用“为题展开培训,课程对象是企业内部培训师,时长1天。 课程要解决以下问题: 1.用AI工具做需求数据统计 2.用AI工具设计课程题目 3.用AI工具设计课程大纲。4.用AI工具制作PPT5.用AI工具画配图。 要求如下: 1.需要到三级大纲。 2、结构完整。 格式如下: 一、(一级大纲) 1、(二级大纲) 1.1(三级大纲)
一、AI 技术在课程设计中的应用 1、AI 工具与需求数据统计 1.1 Chat Excel 处理数据 1.2 让 AI 辅助编写苹果系统右键“快速操作”实现一键视频压缩、加速 1.5x 1.3 让 AI 辅助编写苹果“自动操作”实现批量统计学生作业字数 2、AI 工具与课程题目设计 3、AI 工具与课程大纲设计 4、AI 工具与 PPT 制作 5、AI 工具与配图绘制 二、生成式人工智能在教学中的应用 1、生成式人工智能的基本原理 1.1 文生文 1.2 文生图 1.3 文生音频 1.4 文生视频 2、生成式人工智能的最少必要知识 2.1 生成式 AI 原理 2.2 能力范围 2.3 性能参数 3、人工智能的学习方式 3.1 监督学习 3.2 无监督学习 3.3 强化学习 4、生成式人工智能的应用案例 4.1 根据消费者购买行为偏好分组 4.2 手机相册里的人脸识别分类 4.3 根据房屋特征面积预测价格 4.4 垃圾短信检测分类 4.5 汽车自动驾驶或路径规划导航 4.6 高级游戏人机对弈 5、AI 与教育的关系 5.1 AI 辅助教师的一天 5.2 各大模型之间的使用差异 5.3 教师使用 AI 小技巧
2024-10-28
你是一名课程开发专家,现在要以“AI技术在课程设计中的应用“为题展开培训,课程对象是企业内部培训师,时长1天。 课程要解决以下问题: 1.用AI工具做需求数据统计 2.用AI工具设计课程题目 3.用AI工具设计课程大纲。4.用AI工具制作PPT5.用AI工具画配图。 要求如下: 需要到三级大纲。 2、结构完整。 格式如下: 一级大纲) 二级大纲) (三级大纲)
以下是以“AI 技术在课程设计中的应用”为题,为企业内部培训师设计的一天培训课程大纲: 一级大纲) AI 技术在课程设计中的应用概述 二级大纲) AI 技术的基本概念与分类 三级大纲) 监督学习 三级大纲) 无监督学习 三级大纲) 强化学习 三级大纲) 生成式 AI 二级大纲) AI 技术的应用领域与案例 三级大纲) 根据消费者购买行为偏好分组 三级大纲) 手机相册里的人脸识别分类 三级大纲) 根据房屋特征面积预测价格 三级大纲) 垃圾短信检测分类 三级大纲) 汽车自动驾驶或路径规划导航 三级大纲) 高级游戏人机对弈 一级大纲) AI 工具在课程设计中的具体应用 二级大纲) 用 AI 工具做需求数据统计 三级大纲) Chat Excel 处理 Excel 数据 三级大纲) 让 AI 辅助编写苹果系统右键“快速操作”实现一键视频压缩、加速 1.5x 三级大纲) 让 AI 辅助编写苹果“自动操作”实现批量统计学生作业字数 二级大纲) 用 AI 工具设计课程题目 三级大纲) 基于数据分析生成题目 三级大纲) 利用自然语言处理优化题目表述 二级大纲) 用 AI 工具设计课程大纲 三级大纲) 依据需求分析生成大纲框架 三级大纲) 完善大纲细节与逻辑 二级大纲) 用 AI 工具制作 PPT 三级大纲) 内容排版与布局设计 三级大纲) 图表与图片的生成与插入 二级大纲) 用 AI 工具画配图 三级大纲) 选择合适的 AI 绘画工具 三级大纲) 明确配图需求与风格 一级大纲) 相关法规与注意事项 二级大纲) 国家互联网信息办公室等七部门的相关规定 三级大纲) 《生成式人工智能服务管理暂行办法》的解读 一级大纲) 总结与交流 二级大纲) 课程设计实践经验分享 二级大纲) 问题答疑与交流互动
2024-10-28
ChatGPT如何训练需要的模型
ChatGPT 的训练模型主要包括以下几个方面: 1. 预训练(Pretrain)阶段:建立模型的能力上限,如确定模型各方面能力的天花板。此阶段跟 GPT3 的方法近似,例如采用 decoderonly 的网络架构,有特定的模型大小、输入窗口大小、单词本大小,见过大量的 tokens,使用大量的原始训练文本。 2. 监督微调(Supervised Finetune,SFT)阶段:让模型学会对话的形式展开,即知道如何按照对话的格式进行交流。 3. 强化学习从人类反馈(Reinforcement Learning from Human Feedback,RLHF)阶段:细分为奖励模型(RM)阶段和强化学习(RL)阶段,能激发模型具备多种能力,包括安全性、推理能力和稳定性等。 训练方式主要是通过材料学习,不断形成模型。其本质功能是“单字接龙”,通过自回归生成的方式,将生成的下一个词与之前的上文组合,不断重复生成任意长的下文。训练的目的不是记忆,而是学习提问和回答的通用规律,实现举一反三,即泛化。学习材料用于调整模型,得到通用模型,以处理未被数据库记忆的情况。ChatGPT 不是搜索引擎的升级版,搜索引擎无法给出未被数据库记忆的信息,而 ChatGPT 作为生成模型可以创造不存在的文本,但可能存在混淆记忆、无法直接查看和更新所学、高度依赖学习材料以及缺乏及时性和准确性等缺点。
2024-12-24
如何训练模型
训练模型的方法有多种,以下为您介绍几种常见的训练模型方式: 1. 用 SD 训练一套贴纸 LoRA 模型: 原始形象:MJ 初步产出符合设计想法的贴纸原始形象。 二次加工:完成贴纸的白色边线等细节加工。 处理素材:给训练集图片打 tag,修改 tag。 训练模型:将上述处理好的数据集做成训练集,进行训练。 2. 基于百川大模型训练虚拟专家: 选择 Baichuan27BChat 模型作为底模,配置模型本地路径,配置提示模板。 在 Train 页面里,选择 sft 训练方式,加载定义好的数据集 wechat 和 self_cognition。 学习率和训练轮次非常重要,根据自己的数据集大小和收敛情况来设置。 使用 FlashAttention2 可减少显存需求,加速训练速度。 显存小的朋友可以减少 batch size 和开启量化训练,内置的 QLora 训练方式非常好用。 需要用到 xformers 的依赖。 显存占用 20G 左右,耐心等待一段时间。 3. 使用编码器解码器架构构建诗歌生成器: 在训练模型之前,需要一个损失函数,由于本质上是一个多类分类问题,损失将是稀疏的分类交叉熵损失,配置从 logits 计算的损失。 有了损失后编译模型,将损失和优化器联系在一起。 选择训练的时期,一个时期是对数据集的完整传递,进行多次训练,并提供回调以确保在训练期间保存权重。 从实际的字符串中提取字符序列,使用 TensorFlow 的 TF 字符串 Unicode 拆分功能。 将字符序列转化为数字,使用 TF Keras 层中的 StringLookup 函数将每个字符映射到给定的 ID,也可使用同一层的 StringLookup 函数获得反向映射。 将处理后的数据作为神经网络的训练数据集,使用 TF Data Dataset API。
2024-12-24
我想找一个关于建筑三维模型渲染的ai网站
以下为一些关于建筑三维模型渲染的 AI 网站: 1. 3dfy.ai:这是一家专注于将稀疏数据转化为逼真三维世界的公司。其领导团队由计算成像领域资深专家组成,拥有近四十年综合专业知识。适用于数字内容创作者、艺术家、游戏开发者、动画制作人、教育和培训行业专业人士、医疗行业以及建筑和工程领域等。 2. HDAidMaster:云端工具,在建筑设计、室内设计和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 3. Maket.ai:主要面向住宅行业,在户型设计和室内软装设计方面有探索。 4. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入相关标准和规范。 5. Fast AI 人工智能审图平台:形成全自动智能审图流程,实现数据汇总与管理。 但需注意,每个工具都有其特定应用场景和功能,建议您根据自身具体需求选择合适的工具。
2024-12-24
在使用sys prompt时为什么要为模型定义角色
在使用系统提示词(sys prompt)为模型定义角色具有以下重要性: 1. 符合特定应用场景:通过定义角色,使模型的行为和输出更符合具体的应用需求,例如让模型作为历史顾问回答历史问题,或作为技术专家解决技术难题。 2. 明确任务和风格:不仅可以指定具体的人物角色,还能设定一种交流风格,如正式、幽默、友好等。 3. 引导模型行为和输出:为模型提供固定的模板,确保其输出与期望和工作流的需求保持一致。 4. 优化用户体验:ChatGPT 有默认的“一个乐于助人的助手”角色,可通过修改系统提示词来满足更个性化的需求。 然而,也有观点认为不需要过度依赖角色扮演类的提示词。关键是要非常具体地描述出模型所在的使用环境,提供足够详细的信息,以避免模型未按预期完成任务。提示词最重要的是表达清晰准确。
2024-12-24
目前AI大模型有多少个比较知名的
目前比较知名的 AI 大模型有: 北京企业机构: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海企业机构: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 大模型的特点和架构: 架构方面: encoderonly 模型通常适用于自然语言理解任务,例如分类和情感分析,最知名的代表模型是 BERT。 encoderdecoder 模型同时结合了 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 Google 的 T5。 decoderonly 模型更擅长自然语言生成任务,目前耳熟能详的 AI 助手基本都来自此类架构。 大模型的优势在于: 预训练数据非常大,往往来自于互联网上,包括论文、代码、公开网页等,最先进的大模型一般用 TB 级别的数据进行预训练。 参数非常多,Open 在 2020 年发布的 GPT3 就已经达到 170B 的参数。 大模型比较火的应用场景: 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 编程和代码辅助:代码自动补全、bug 修复和代码解释。 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,未来可能扩展到视频内容的生成。 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 医疗和健康咨询:提供初步的健康建议和医疗信息查询服务。 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 需要注意的是,随着大模型的普及,也需要关注其在隐私、安全和伦理方面的挑战。
2024-12-24
你好,你的大模型是什么
大模型是指输入大量语料,使计算机获得类似人类的“思考”能力,能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程可以用“上学参加工作”来类比: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在大模型中,Token 被视为模型处理和生成的文本单位,它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与大模型可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary)。 为了让计算机理解 Token 之间的联系,还需要把 Token 表示成稠密矩阵向量,这个过程称之为 embedding,常见的算法有: 基于统计:Word2Vec,通过上下文统计信息学习词向量;GloVe,基于词共现统计信息学习词向量。 基于深度网络:CNN,使用卷积网络获得图像或文本向量;RNN/LSTM,利用序列模型获得文本向量。 基于神经网络:BERT,基于 Transformer 和掩码语言建模(Masked LM)进行词向量预训练;Doc2Vec,使用神经网络获得文本序列的向量。 以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”,指的是用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。 此外,如果您想获取更多模型,大多数模型可以在 Civitai(C 站)https://civitai.com/ 下载。下载模型时的注意事项包括: 科学上网,需自行想办法。 点击右上角筛选按钮,找到所需模型类型,如 Checkpoint=大模型、LoRA=Lora 等。 看照片,感兴趣的点进去,点击右边“Download”下载保存到电脑本地。还可以点击左上角“Images”,查看别人做好的图片,找到喜欢的点进去,复制图片信息。 模型下载保存地址: 大模型:SD 根目录即存放 SD 的文件夹。 Lora、VAE 等也有相应的保存位置。 如果不知道下载的模型类型及应存放的文件夹,可以使用秋叶的模型解析工具 https://spell.novelai.dev/,将模型拖动到空白处,自动弹出模型信息,查看模型种类。
2024-12-23
ai训练
AI 的训练是指通过大数据训练出一个复杂的神经网络模型。这一过程需要使用大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练具有以下特点: 1. 需要较高的计算性能,以处理海量的数据。 2. 具有一定的通用性,以便完成各种各样的学习任务。 机器学习是人工智能的一个分支,其发展有着从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的脉络。机器学习是实现人工智能的途径之一,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 自然语言(NLP)是人工智能和语言学领域的分支学科,包括认知、理解、生成等部分。自然语言的认知和理解是让电脑把输入的语言变成有意义的符号和关系,然后根据目的再处理,自然语言生成系统则是把计算机数据转化为自然语言。 推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程,也称为预测或推断。
2024-12-22
你是Ai产品经理,我想使用训练一个智能体帮我改写新闻标题,请告诉我应该怎么做
训练一个智能体来改写新闻标题,您可以按照以下步骤进行: 1. 明确需求和目标:确定您希望智能体改写新闻标题的风格、重点和要求,例如更简洁、更吸引人、突出特定信息等。 2. 收集数据:收集大量的新闻标题样本,包括各种类型和主题的,以便智能体有足够的学习材料。 3. 选择合适的技术和框架:根据您的技术能力和需求,选择适合的人工智能框架和算法,例如自然语言处理相关的技术。 4. 数据预处理:对收集到的数据进行清洗、分词、标记等预处理操作,以便智能体能够更好地理解和学习。 5. 训练模型:使用预处理后的数据训练智能体,调整参数以优化训练效果。 6. 评估和优化:使用测试数据评估智能体的性能,根据评估结果对模型进行优化和改进。 7. 部署和应用:将训练好的智能体部署到实际应用中,并不断监测和改进其表现。 需要注意的是,训练智能体是一个复杂的过程,可能需要一定的技术知识和经验。
2024-12-19
怎么训练模型进行标题改写
训练模型进行标题改写可以参考以下方法: Sora 模型: 对于视频标题改写,首先训练一个能够为视频生成详细描述的视频标题生成器。可利用 CoCa 架构进行视频标题生成,如 VideoCoCa,通过取视频的多个帧并将每个帧输入到图像编码器,产生的帧令牌嵌入被展平并连接成一个长序列的视频表示,再由生成性池化器和对比性池化器处理,与对比损失和标题生成损失一起联合训练。构建视频标题生成器的其他替代方法包括 mPLUG2、GIT、FrozenBiLM 等。为确保用户提示与训练数据中的描述性标题格式一致,执行额外的提示扩展步骤,用 GPT4V 将用户输入扩展为详细的描述性提示。 对于语言指令跟随,通过开发一个能够生成长而详细标题的字幕器,然后用这些标题来训练模型。但收集用于训练此类字幕器的数据的过程未知,且可能需要大量劳动。 DALL·E 3 模型:通过用详细、描述性的标题重新标注现有图像来解决指令遵循问题。首先训练一个图像标题生成器,这是一个视觉语言模型,用于生成精确和描述性的图像标题。然后,使用标题生成器生成的描述性图像标题来微调文本到图像模型。具体来说,DALL·E 3 遵循对比标题生成器(CoCa)的方法,联合训练一个图像标题生成器,该生成器具有 CLIP 架构和一个语言模型目标。进一步在详细描述图像的主要对象、周围环境、背景、文本、风格和颜色方面进行微调后,图像标题生成器能够为图像生成详细的描述性标题。文本到图像模型的训练数据集是由图像标题生成器生成的重新标注数据集和真实人类编写的数据混合而成,通过上采样来解决实际用户提示与训练数据中的描述性图像描述之间的不匹配问题。 关于 Midjourney 的训练 prompt: The issue with DMs is that the powerful ones often consume hundreds of GPU days,and inference is quite expensive due to sequential evaluations.To enable DM training on limited computational resources without compromising their quality as well as flexibility,DMs are applied in the latent space of powerful pretrained autoencoders. Training a diffusion model on such a representation makes it possible to achieve an optimal point between complexity reduction and detail preservation,significantly improving visual fidelity.Introducing a cross attention layer to the model architecture turns the diffusion model into a powerful and flexible generator for generally conditioned inputs such as text and bounding boxes,enabling highresolution convolutionbased synthesis. Midjourney 会例行发布新的模型版本以提高效率、连贯性和质量。最新的模型是默认的,但可以使用 version 或 v 参数或通过 /settings 命令选择其他模型版本。不同的模型在不同类型的图像上表现出色。Midjourney V5 模型是最新和最先进的模型,于 2023 年 3 月 15 日发布。使用此模型,可在 prompt 末尾添加 v 5 参数,或使用 /settings 命令并选择 MJ Version 5。该模型具有很高的连贯性,擅长解释自然语言提示,分辨率更高,并支持诸如 tile 等高级功能。其新特点包括更广泛的风格范围、对提示更敏感、更高的图像质量、更详细的图像、细节更可能正确以及更少不需要的文本。
2024-12-19
怎么自己训练ai?
自己训练 AI 通常包括以下主要步骤: 1. 选择合适的部署方式: 本地环境部署。 云计算平台部署。 分布式部署。 模型压缩和量化。 公共云服务商部署。需根据自身的资源、安全和性能需求来选择。 2. 准备训练所需的数据和计算资源: 确保有足够覆盖目标应用场景的训练数据。 准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础: 可以使用开源的预训练模型如 BERT、GPT 等。 也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练: 根据具体应用场景对预训练模型进行微调训练。 优化模型结构和训练过程以提高性能。 5. 部署和调试模型: 将训练好的模型部署到生产环境。 对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护: 大模型涉及大量数据和隐私信息,要重视安全性和合规性。 总的来说,训练自己的 AI 需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。 在独立游戏开发中,如《玩具帝国》的人机 AI 采用 Unity 的 mlagent 进行训练,有以下经验: 选择自己开发 AI 是因为游戏是离线模式且对决策实时性和本地 AI 运行性能有要求,无法使用线上接口。 通过“即时奖励”和“预测奖励”进行长周期决策 AI 的训练,数学模型可调,可改变 AI 的决策倾向。 为让每次输入的向量等长,对观察的内容进行处理。 先训练掌握基本规则的底模,再在此基础上做分支训练得到适用于不同文明策略的模型。 为避免过拟合,在每个 Episode 前对初始条件进行随机,决策时对 AI 的可选项进行随机 Dropout。 关于判断一张图片是否为 AI 生成,目前已有不少网站通过对大量图片数据的抓取和分析来给出画作属性的判断可能性,例如 ILLUMINARTY 网站。但在测试中存在一些问题,如结构严谨的真实摄影作品可能被误判为 AI 作图,这是因为鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。
2024-12-16
目前AI写小说最好的软件或者网站是哪个
以下是一些在 AI 写小说方面表现较好的软件或网站: Novel.ai:AI 写小说领域的头部应用,是典型的 LLM 产品。其产品功能复杂但使用模式简单,利用 LLM 的续写能力将写作改造成交互式的文本生成,渐进式生成小段,用户可自由更改或继续生成下一段,还抽象出模型风格、写作方式、故事世界、记忆等细分功能,本质上还是构造 Prompt,交互式、渐进式的 Prompt 构建降低了使用门槛。 Character.ai:大名鼎鼎的角色扮演类 AI 陪伴产品,服务游戏和二次元用户。使用简单,选择角色对话即可,创建也不难,角色的核心差异靠不同的详细描述,还开放用户角色 Prompt 可见。 筑梦岛:国内同类产品,玩法多样。和角色聊天、捏角色是共同主题,捏角色的产品化本质是收集信息产生高质量角色 Prompt 的过程,基于聊天模式有很多衍生玩法。 此外,还有一些可将小说制作成视频的工具和网址: Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址:https://www.midjourney.com Adobe Firefly:Adobe 的 AI 创意工具,可生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/
2024-12-24
我如何利用AI软件写出好 的小说
以下是利用 AI 软件写好小说的一些方法: 1. 显式归纳与列出想要的文本特征:比如明确小说需要优秀的文风、细腻的文笔,具体描述如“几句话一换行”“以短句和对话为主,结构紧凑”“用词直白犀利”等,在调试过程中逐步增减描述,直至达到理想效果。 2. 通过 prompt 中的描述与词语映射到预训练数据中的特定类型的文本:直接指出想要的文本类型,如“充满张力的女性复仇文,可能会出现在晋江文学城或者起点中文网的古代言情分类中”。对于新的创作领域,可从熟悉的相关元素入手,如让模型写特殊格式的网络小说,并显式描述特征。 3. 往 prompt 里面塞例子:这是一种暴力但管用且流行的办法。 此外,要用 AI 创作出好的作品,首先要有足够的审美,知道“什么是好的,好在哪里”。同时,固定的故事结构写在 prompt 里可能不好使,因为会丧失多样性和惊喜。
2024-12-24
请给我推荐介绍 适合写网络小说的AI工具?
以下是一些适合写网络小说的 AI 工具及相关信息: 工具与网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。 网址: 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。 网址: 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。 网址: 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。 网址: 5. Clipfly:一站式 AI 视频生成和剪辑平台。 网址: 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。 网址: 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。 网址: 8. 故事 AI 绘图:小说转视频的 AI 工具。 网址: 将小说制作成视频的一般流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-12-21
最好用的小说写作AI
以下为您介绍一些关于小说写作 AI 的相关内容: 南瓜博士在人机协作小说创作中有着独特的体验。除了无名猫视角的作品,还尝试过多种方法,包括编写 agent flow 框架让 AI 自动写作和评判,但因无法认同 AI 的审美而放弃,最终选择在 GPT 页面上与 AI 协作,先让 AI 生成创意,自己进行判断挑选,写作时自己掌舵,最后给出改进意见让 AI 修改,认为小说创作中人有人的用处。 Stuart 分享了用 coze 写起点爆款小说《夜无疆》的工作流,能达到至少高中生文笔水平。工作流的核心节点包括:用 bing 搜索标题相关内容;用程序将搜索结果结构化(不熟悉程序可忽略或复制文中代码);用大模型草拟大纲,包括标题、主旨、世界观、主要角色、小说背景、情节概要;再用大模型写文章;输出文章内容。
2024-12-17
怎么能让AI生成5000字以上的小说或论文?
以下是让 AI 生成 5000 字以上小说或论文的一些方法和经验: 1. 丰富细化:先让 AI 写故事概要和角色背景介绍,并基于此按自己的审美略做修改。使用让 AI 以表格形式输出细节描述的技巧,这样有打破叙事习惯、便于局部调整、确保内容具体等好处。 2. 串联成文:把生成的表格依次复制粘贴,让 AI 照着写文章,过程中可能需要您给点建议。 3. 注意要求:比如某些小说大赛要求最终作品必须是 AI 直接输出的,不能有任何改动,且有字数限制。 4. 标题选择和评估:当文章接近目标字数时,与 AI 讨论标题选项并做整体评估,修改语法错误和表达不一致的地方。 例如,在将 1000 字的文章扩展到 5000 字的过程中,通过与 AI 持续互动,不仅能节省时间,还能提升文章的深度和广度。但也要认识到,人类创作者在利用 AI 工具时,要保持创造力和批判性思维。
2024-12-10
我想看关于使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节的实操
以下是关于使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节的实操: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 根据视频脚本生成短视频的 AI 工具有多种,例如: 1. :ChatGPT 可以生成视频小说脚本,而剪映则可以根据这些脚本自动分析出视频中需要的场景、角色、镜头等要素,并生成对应的素材和文本框架。这种方法可以快速实现从文字到画面的转化,节省大量时间和精力。 2. :在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. :这是一个 AI 视频生成器,允许用户轻松创建和编辑高质量视频,无需视频编辑或设计经验。用户可以提供文本描述,Pictory 将帮助生成相应的视频内容。 4. :提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划从开场到结尾的内容。 5. :这是一个 AI 视频创作工具,它能够将文本转化为风格化的视频内容,适用于多种应用场景。 6. :专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,能够帮助内容创作者、教育工作者、企业和个人快速生成吸引人的视频内容。 在游戏《神谕》中,ChatGPT 生成对话内容和剧情的能力表现如下: 对于故事线,ChatGPT 可以通过 System Prompt 介绍游戏的故事背景和小机器人的人设。结合游戏中发生的关键事件,通过文字传递给 ChatGPT,生成游戏中关键的故事情节介绍,最后以小机器人自述的形式呈现出来。具体实现过程中有几种选择: 1. 离线生成:将 ChatGPT 作为离线工具使用,生成一次性剧情文案,并保存到游戏中。缺点是文案一旦确定就固定下来了,略显单调。 2. 实时生成:每次都让 ChatGPT 自由发挥,在关键的节点,将历史上下文信息发送给 ChatGPT 来生成实时文案,优势是每次发挥都在既定主题基础上有所差异,有一定随机性。但是实际的缺点是,每次生成的延迟较大,会让游戏为了等待剧情文案,而产生明显的停顿感。 因此选择:每局对局开始前,会为游戏的关键节点一次性生成所有文案。这样,每次游戏都可以产生不同的文案,且游戏过程中就不会因为剧情体验到明显的停顿感。剧情的故事格式,由预定义的 json 来表达,每次 ChatGPT 只需要替换填充内容即可。 对于实时对话,与剧情类似,不过最大的难点是如何让小机器人区分出来,您是希望跟它聊天,还是在让它执行某些指令,甚至能否边聊天边执行指令。背后最大的挑战是 ChatGPT 要支持生成类似“多模态”的返回信息。这里的“多模态”是指在您对话的内容中,可以同时返回“对话”和“代码”,而且以某种限定的格式返回,从而方便程序解析出来。类似的 prompt 描述为:按照上述的 prompt,大概率 ChatGPT 能输出符合要求的内容格式。
2024-12-10