Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

联想异能者配置i5-12450八核,32GB内存,1TB固态硬盘,用于本地部署开源大模型可以部署哪些开源大模型

Answer

以下是一些您的联想异能者配置(i5-12450 八核,32GB 内存,1TB 固态硬盘)可部署的开源大模型及相关信息:

ComfyUI 相比 WebUI 配置更低,系统资源占用更少,出图速度更快。ComfyUI 最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。玩 SD-webui 和 ComfyUI 建议使用 6GB 以上的显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,所以最好把软件和模型部署在 SSD(固态硬盘)上。

截止 2024 年 5 月,主流的 AI 笔记本电脑主要是一些专门为人工智能和深度学习设计的高性能移动工作站。一些知名品牌包括微软第 11 代 Surface Pro、微星 Creator/Workstation 系列、技嘉 Aero/Aorus 系列、戴尔 Precision 移动工作站、惠普 ZBook 移动工作站、联想 ThinkPad P 系列。这些笔记本通常配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存(32GB 以上)和高速固态硬盘,还通常预装了 NVIDIA CUDA、cuDNN 等深度学习框架,以及各种 AI 开发工具。但这类高端 AI 笔记本价格相对较高,通常在 2000 美元以上。用户可根据自身需求和预算选择合适型号,并关注散热、续航等实际使用体验。

请注意,配置上不封顶,您可根据自己的需求和预算来选择。

Content generated by AI large model, please carefully verify (powered by aily)

References

彭青云:01小白comfyui学习日记-解决篇线上部署,和线下部署配置需求

[title]彭青云:01小白comfyui学习日记-解决篇线上部署,和线下部署配置需求[heading2]2现在我们来打个小怪:[heading3]2.2 comfyui本地部署的硬件配置comfyui相比webui:comfyui配置更低;系统资源占用更少;出图速度更快;最低可在小于3G的GPU上运行。甚至没有GPU,光用CPU也可以运行,缺点是速度极慢。SDXL出来后提高了运行配置:最低需要8GB显存+32GB运行内存,12GB流畅运行,推荐16GB以上。运行内存最低32GB,越高越好,最低配会经常爆显存。玩SD-webui和comfyui建议使用6GB以上的显存的NVIDIA显卡,也就是N卡,内存在16G以上。硬盘会影响加载模型的速度,所以最好把软件和模型部署在SSD(固态硬盘)上,这样速度更快。我之前的电脑2060N系8G显存,16g内存。把webui和模型装在2t固态硬盘上,打开速度极快,出图速度也还可以,4张512x768的图不到一分钟就可出来。如果你的电脑能顺畅清晰地玩3A游戏,那玩webui和comfyui也没问题。配置上不封顶,根据自己的需求和预算来即可。以我为例,新需求:做AIGC视频+建模渲染+炼丹(lora)预算2W。起先用2060生图,后发现做AIGC视频比较费时间,且还有做建模渲染的需求。后来向朋友请教,搞了一套次顶配的组装机,加上一个护眼的4K显示器共2W出头。

问:目前有什么主流AI笔记本电脑推荐?

[title]问:目前有什么主流AI笔记本电脑推荐?截止2024年5月,主流的AI笔记本电脑主要是一些专门为人工智能和深度学习设计的高性能移动工作站。这类笔记本通常配备了强大的GPU(如NVIDIA RTX系列)、大容量内存和高速固态硬盘,以满足AI模型训练和推理的计算需求。一些知名品牌的AI笔记本包括:1.微软(Microsoft)第11代Surface Pro2.微星(MSI)Creator/Workstation系列3.技嘉(GIGABYTE)Aero/Aorus系列4.戴尔(Dell)Precision移动工作站5.惠普(HP)ZBook移动工作站6.联想(Lenovo)ThinkPad P系列这些笔记本一般采用英特尔酷睿或AMD Ryzen的高端移动CPU,配备NVIDIA RTX 30/40系列或AMD Radeon Pro专业级GPU。同时也提供了大容量内存(32GB以上)和高速NVMe SSD存储选配。除了硬件配置,这些AI笔记本还通常预装了NVIDIA CUDA、cuDNN等深度学习框架,以及各种AI开发工具,为用户提供了开箱即用的AI开发环境。当然,这类高端AI笔记本价格也相对较高,通常在2000美元以上。用户可以根据自身的AI应用需求和预算情况,选择合适的型号。同时也要关注笔记本的散热、续航等实际使用体验。内容由AI大模型生成,请仔细甄别

Others are asking
开源模型和闭源模型
开源模型和闭源模型的情况如下: 专有模型(闭源模型):如 OpenAI、Google 等公司的模型,需访问其官方网站或平台(如 ChatGPT、Gemini AI Studio)使用。 开源模型: 可使用推理服务提供商(如 Together AI)在线体验和调用。 可使用本地应用程序(如 LM Studio)在个人电脑上运行和部署较小的开源模型。 例如 DeepSeek、Llama 等开源模型。 Qwen 2 开源,具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进性能,超越目前所有开源模型和国内闭源模型,在代码和数学性能等方面显著提高。 金融量化领域的大模型正趋向闭源,几个巨头的核心模型如 OpenAI 最新一代的 GPT4、Google 的 Bard 以及未来的 Gemini 短时间内不会公开。Meta 的 LLaMA 目前开源,但未来可能改变。OpenAI 未来可能开源上一代模型。
2025-02-17
做chatbi有什么开源项目可以参考
以下是一些可参考的做 chatbot 的开源项目: Inhai:Agentic Workflow:其中介绍了大模型利用「网页搜索」工具的典型例子,还包括 Agent 自行规划任务执行的工作流路径以及多 Agent 协作的内容。 ChatDev:吴恩达通过此开源项目举例,可让大语言模型扮演不同角色相互协作开发应用或复杂程序。 ChatMLX:多语言支持,兼容多种模型,具有高性能与隐私保障,适用于注重隐私的对话应用开发者。链接:https://github.com/maiqingqiang/ChatMLX
2025-02-17
开源文字转语音
以下是为您提供的开源文字转语音相关信息: WhisperSpeech:通过对 OpenAI Whisper 模型的反向工程实现,生成发音准确、自然的语音输出。 相关链接:https://github.com/collabora/WhisperSpeech 、https://x.com/xiaohuggg/status/1748572050271420663?s=20 StyleTTS 2:一个开源的媲美 Elevenlabs 的文本转语音工具,可结合文本角色内容和场景音快速生成有声小说。 主要特点:多样化的语音风格、更自然的语音、高效生成、精确的语音控制、接近真人的语音合成、适应不同说话者。 工作原理:利用风格扩散和与大型语音语言模型(SLM)的对抗性训练来实现接近人类水平的 TTS 合成,通过扩散模型将风格建模为一个潜在的随机变量,以生成最适合文本的风格,而不需要参考语音,实现了高效的潜在扩散,同时受益于扩散模型提供的多样化语音合成。 相关链接:暂无
2025-02-15
采用GPL许可证的AI开源模型有哪些
以下是一些采用 GPL 许可证的智谱·AI 开源模型: 其他模型: WebGLM10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统,旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。代码链接: WebGLM2B:代码链接无,模型下载: MathGLM2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%,其结果显著超越最强大语言模型 GPT4 在相同测试数据上 18.84%的准确率。代码链接: MathGLM500M:代码链接无,模型下载: MathGLM100M:代码链接无,模型下载: MathGLM10M:代码链接无,模型下载: MathGLMLarge:采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLMlarge 和 GLM10B。此外,还使用 ChatGLM6B 和 ChatGLM26B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。模型下载: 多模态模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型。CogAgent18B 拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。代码链接:、始智社区 CogVLM17B:强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM 可以在不牺牲任何 NLP 任务性能的情况下,实现视觉语言特征的深度融合。我们训练的 CogVLM17B 是目前多模态权威学术榜单上综合成绩第一的模型,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。代码链接无,模型下载: Visualglm6B:VisualGLM6B 是一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 Chat 模型: ChatGLM6Bint4:ChatGLM6B 的 Int4 版本。最低只需 6GB 显存即可部署,最低只需 7GB 显存即可启动微调(,模型权重下载链接:魔搭社区、始智社区、启智社区 ChatGLM6Bint8:ChatGLM6B 的 Int8 版本。上下文 token 数:2K,代码链接:,模型权重下载链接:魔搭社区、始智社区、启智社区 AgentLM7B:1. 提出了一种 AgentTuning 的方法;2. 开源了包含 1866 个高质量交互、6 个多样化的真实场景任务的 Agent 数据集 AgentInstruct;3. 基于上述方法和数据集,利用 Llama2 微调了具备超强 Agent 能力的 AgentLM7B、AgentLM13B、AgentLM70B。上下文 token 数:4K,代码链接: AgentLM13B:上下文 token 数:4K,代码链接无,模型权重下载链接: AgentLM70B:上下文 token 数:8K,代码链接无,模型权重下载链接:
2025-02-14
开源模型的MIT模式、Apache、GPL、BSD模式的模型案例有哪些?
目前开源模型的 MIT 模式、Apache、GPL、BSD 模式的具体案例众多且不断更新。MIT 模式的开源模型如 TensorFlow Lite;Apache 模式的有 MXNet;GPL 模式的像 Gnuplot;BSD 模式的例如 OpenCV 等。但请注意,这只是其中的一部分,实际情况可能会有所变化。
2025-02-14
开源模型的MIT模式、Apache、GPL、BSD模式的定义和区别
MIT 模式:这是一种相对宽松的开源许可模式。允许使用者对软件进行修改、再发布,并且几乎没有限制,只要求在再发布时保留原版权声明和许可声明。 Apache 模式:提供了较为宽松的使用条件,允许修改和再发布代码,但要求在修改后的文件中明确注明修改信息。同时,还包含一些专利相关的条款。 GPL 模式:具有较强的传染性和约束性。如果基于 GPL 许可的代码进行修改和再发布,修改后的代码也必须以 GPL 许可发布,以保证代码的开源性和可共享性。 BSD 模式:也是一种较为宽松的许可模式,允许使用者自由地修改和再发布代码,通常只要求保留原版权声明。 总的来说,这些开源许可模式在对使用者的限制和要求上有所不同,您在选择使用开源模型时,需要根据具体需求和项目情况来确定适合的许可模式。
2025-02-14
你的底层大模型用的是哪个?
目前常见的大型语言模型多采用右侧只使用 Decoder 的 Decoderonly 架构,例如我们熟知的 ChatGPT 等。这些架构都是基于谷歌 2017 年发布的论文“attention is all you need”中提出的 Transformer 衍生而来,其中包括 Encoder 和 Decoder 两个结构。 大模型的特点在于: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 大模型之所以能有效生成高质量有意义的回答,关键在于“大”。例如 GPT1 的参数规模是 1.5 亿,GPT2 Medium 的参数规模是 3.5 亿,到 GPT3.5 时,参数规模达到惊人的 1750 亿,参数规模的增加实现了量变到质变的突破,“涌现”出惊人的“智能”。 大模型的预训练机制是指其“脑袋”里存储的知识都是预先学习好的,预训练需要花费相当多的时间和算力资源。在没有其他外部帮助的情况下,大模型所知道的知识信息总是不完备且滞后的。
2025-02-18
怎么用大模型构建一个属于我自己的助手
以下是用大模型构建属于自己的助手的几种方法: 1. 在网站上构建: 创建百炼应用获取大模型推理 API 服务: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认,也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 2. 微信助手构建: 搭建,用于汇聚整合多种大模型接口,并获取白嫖大模型接口的方法。 搭建,作为知识库问答系统,将大模型接入用于回答问题,若不接入微信,搭建完成即可使用其问答界面。 搭建接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。 3. 基于 COW 框架构建: COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信。 基于张梦飞同学的更适合小白的使用教程:。 实现功能包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用。 注意事项: 微信端因非常规使用有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保操作符合法律法规要求。 禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 支持多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 支持多部署方法,如本地运行、服务器运行、Docker 的方式。
2025-02-17
怎么用大模型构建一个属于我自己的助手
以下是用大模型构建属于自己的助手的几种方法: 1. 在网站上构建: 创建百炼应用获取大模型推理 API 服务: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认,也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 2. 微信助手构建: 搭建,用于汇聚整合多种大模型接口,并获取白嫖大模型接口的方法。 搭建,作为知识库问答系统,将大模型接入用于回答问题,若不接入微信,搭建完成即可使用其问答界面。 搭建接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。 3. 基于 COW 框架构建: COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信。 基于张梦飞同学的更适合小白的使用教程:。 实现功能包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用。 注意事项: 微信端因非常规使用有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保操作符合法律法规要求。 禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 支持多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 支持多部署方法,如本地运行、服务器运行、Docker 的方式。
2025-02-17
语文教学如何使用大模型
在语文教学中使用大模型,可以参考以下方面: 1. 提示词设置: Temperature:参数值越小,模型返回结果越确定;调高参数值,可能带来更随机、多样化或具创造性的产出。对于质量保障等任务,可设置低参数值;对于诗歌生成等创造性任务,可适当调高。 Top_p:与 Temperature 类似,用于控制模型返回结果的真实性。需要准确答案时调低参数值,想要更多样化答案时调高。一般改变其中一个参数即可。 Max Length:通过调整控制大模型生成的 token 数,有助于防止生成冗长或不相关的响应并控制成本。 Stop Sequences:指定字符串来阻止模型生成 token,控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,减少响应中单词的重复。 2. 了解大模型: 大模型通俗来讲是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 训练和使用大模型可类比上学参加工作:找学校(需要大量 GPU 计算)、确定教材(大量数据)、找老师(算法)、就业指导(微调)、搬砖(推导)。 Token 是模型处理和生成的文本单位,在将输入进行分词时会形成词汇表。 需要注意的是,在实际应用中,可能需要根据具体的教学需求和场景进行调整和实验,以找到最适合的设置和方法。
2025-02-17
如何利用大模型写教案
利用大模型写教案可以参考以下要点: 1. 输入的重要性:要输出优质的教案,首先要有高质量的输入。例如,写商业分析相关的教案,如果没有读过相关权威书籍,输入的信息缺乏信息量和核心概念,大模型给出的结果可能就很平庸。所以,脑海中先要有相关的知识概念,这来自于广泛的阅读和学习。 2. 对大模型的理解:大模型通过输入大量语料获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可以类比为上学参加工作,包括找学校(需要大量计算资源)、确定教材(大量数据)、找老师(合适的算法)、就业指导(微调)、搬砖(推导)等步骤。 3. 与大模型的交互: 提示词工程并非必须学习,不断尝试与大模型交互是最佳方法。 交互时不需要遵循固定规则,重点是是否达成目的,未达成可锲而不舍地尝试或更换模型。 用 Markdown 格式清晰表达问题,它具有结构清晰、能格式化强调关键部分、适用性广等优点,有助于大模型更好地理解用户意图。
2025-02-17
大模型评测
以下是关于大模型评测的相关信息: FlagEval(天秤)大模型评测体系及开放平台: 地址: 简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval:构造中文大模型的知识评估基准: 地址: 简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb:SuperCLUE 琅琊榜 地址: 简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。 此外,还有小七姐对文心一言 4.0、智谱清言、KimiChat 的小样本测评,测评机制包括: 测评目标:测评三家国产大模型,以同组提示词下 ChatGPT 4.0 生成的内容做对标参照。 能力考量:复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次:第一轮是复杂提示词理解和执行,包括 Markdown+英文 title 提示词测试、Markdown+中文 title 提示词测试、中文 title+自然段落提示词测试;第二轮是推理能力(CoT 表现);第三轮是文本生成能力(写作要求执行);第四轮是提示词设计能力(让模型设计提示词);第五轮是长文本归纳总结能力(论文阅读)。 测试大模型质量好坏时,常用的问题包括检索和归纳、推理性、有日期相关历史事件等。以下是几个专业做模型测评的网站:
2025-02-17
为什么要本地部署
以下是关于本地部署的一些原因: 对于只有特定设备(如只有一台 Mac 设备),且想灵活学习 AI 生图的情况,本地部署是最方便的。 如果电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度慢不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署,强烈建议在配有 N 卡的 Windows 电脑上进行。 本地部署测试方便,还可以尝试让其控制家里的智能家居。
2025-02-17
Deepseek老是“服务器繁忙,请稍后再试”,没有办法提升,比如说把模型部署到本地等等
如果您遇到 DeepSeek 老是显示“服务器繁忙,请稍后再试”且无法提升的情况,可以尝试以下方法: 1. 使用网页聊天: 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接安装浏览器插件并添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 打开聊天页面:点击右上角的插件列表,找到 Page Assist 插件,点击打开。 配置“DeepSeekR1”模型的 API key:基础 URL 为 https://ark.cnbeijing.volces.com/api/v3,填好之后点击保存,关掉提醒弹窗。 添加“DeepSeekR1”模型。 2. 完成上述操作后,您就可以愉快玩耍,无需担心“服务器繁忙”了,打开联网功能,还可以支持联网搜索使用 R1。
2025-02-15
comfyui的本地部署安装,GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G*2
以下是关于 ComfyUI 本地部署安装的相关信息: ComfyUI 相比 WebUI,配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配会经常爆显存。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD 上。如果电脑能顺畅清晰地玩 3A 游戏,那玩 webui 和 ComfyUI 也没问题。配置上不封顶,根据自己的需求和预算来即可。 安装地址:https://github.com/comfyanonymous/ComfyUI 。可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComFYUI_windows_portable\\ComfyUI\\models\\vae 。 已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 您的电脑配置为 GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G2,可能需要注意内存方面可能不太满足推荐配置,可能会影响运行效果。
2025-02-13
deepseek怎么在电脑本地部署使用
以下是在电脑本地部署 DeepSeek 的步骤: 1. 拥有扣子专业版账号:如果您还是普通账号,请自行升级或注册专业号后使用。开通成功的样子如相关说明。 2. 开通 DeepSeek R1 大模型:访问地址:https://console.volcengine.com/cozepro/overview?scenario=coze 。打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务。添加在线推理模型,添加后在扣子开发平台才能使用,具体添加过程包括添加模型和完成接入。 3. 创建智能体:点击创建,先完成一个智能体的创建。 此外,您还可以参考以下文章获取更详细的教程:《张梦飞:15 分钟零基础个人电脑部署 DeepSeekR1(无限制版)智能助手保姆级教程!》(https://waytoagi.feishu.cn/wiki/NjKBw4n8HikDZBkeyB4cDQVynKh?useEs6=0 ),该教程适用于完全没有 AI 部署经验的小白,详细介绍了如何在个人电脑上快速搭建 DeepSeekR1 本地 AI 助手,包括 Ollama 安装、DeepSeekR1 模型下载与运行、显存检查、终端指令操作、网页插件使用等环节,并提供了清晰的步骤图,确保 15 分钟内完成部署。
2025-02-12
coze 能调用用户自己部署的大模型吗
Coze 可以调用用户自己部署的大模型。例如: 在 Coze 上搭建工作流框架时,可通过“个人空间工作流创建工作流”进行操作,在编辑面板中拖入对应的大模型节点来实现各项文本内容的生成。 当在 COW 中直接调用千问的某一个大模型时,需要更改 key 和 model 等配置。获取 key 可参考相关的视频和图文教程,同时需要完成实名认证,否则可能出现报错。 在使用 Coze 做智能报表助手的过程中,也涉及到对大模型的运用,如将用户问题转换为 SQL 等。
2025-02-12
deepseek部署
以下是关于 DeepSeek 部署的相关信息: DeepSeek R1 大模型成为国民刚需,但官网卡顿且存在不能联网等问题。 实现联网版 R1 大模型的核心路径是通过工作流+DeepSeek R1 大模型。 部署步骤包括: 拥有扣子专业版账号,若为普通账号需自行升级或注册专业号。 开通 DeepSeek R1 大模型,访问地址:https://console.volcengine.com/cozepro/overview?scenario=coze ,在火山方舟中找到开通管理,开通服务并添加在线推理模型,添加后在扣子开发平台才能使用。 创建智能体,点击创建完成智能体的创建。 DeepSeek 大模型具有以下突出特点: 强大:比肩 O1 的推理能力。 便宜:参数少,训练开销与使用费用小。 开源:任何人均可自行下载与部署,提供论文详细说明训练步骤与窍门,甚至有可运行在手机上的 mini 模型。 免费:官方目前提供的服务完全免费,任何人随时随地可用。 联网:暂时唯一支持联网搜索的推理模型(o1 还不支持)。 本土:由没有海外经历甚至没有资深从业经验的本土团队开发完成。 看到相关微博的您可以: 直接访问网页链接马上用起来,也有移动 APP。 使劲用,疯狂用,尝试用它基本取代传统搜索,把各种问题拿去问它。 去看看别人是怎么用的,去试试其他大模型,了解 AI 擅长与不擅长的方面,以及如何调教,继续解锁与迭代属于自己的用法与更多工具。 希望 DeepSeek R1 能让您对当前最先进的 AI 祛魅,让 AI 逐渐变成生活中的水和电。
2025-02-12
如何进行ai学习 用户id:1232334 描述:北欧5国10日游
以下是新手学习 AI 的一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,涵盖图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2024-10-15
如何进行ai学习 用户id:1232334 描述:北欧5国10日游
新手学习 AI 可以按照以下步骤进行: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 利用在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,包括图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且实用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 知识库中有很多大家实践后的作品和文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,激发对 AI 潜力的认识。
2024-10-10
如何进行ai学习 用户id:1232334 描述:北欧5国10日游
新手学习 AI 可以按照以下步骤进行: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,包括图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后进行分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人进行互动,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,激发对 AI 潜力的认识。
2024-10-10