直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我想在云服务器部署使用 dify 和 comfyui ,云服务器机器配置需要什么要求呢

回答

在云服务器部署使用 Diffy 和 ComfyUI ,云服务器机器配置要求如下:

  1. 系统:Windows 7 以上。
  2. 显卡要求:NVIDIA 独立显卡且显存至少 4G 起步。但 SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。
  3. 硬盘:留有足够的空间,最低 100G 起步(包括模型)。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD(固态硬盘)上。
  4. 内存:最低 32GB,越高越好,最低配会经常爆显存。

需要注意的是,ComfyUI 相比 WebUI 配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。如果您的电脑能顺畅清晰地玩 3A 游戏,那玩 WebUI 和 ComfyUI 通常也没问题。配置上不封顶,根据自己的需求和预算来选择即可。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

1、环境安装、ComfyUI本体安装 副本

1.系统:Windows7以上(就不要为难XP老师傅了)。2.显卡要求:NVDIA独立显卡且显存至少4G起步。3.硬盘留有足够的空间,最低100G起步(包括模型)。注:mac系统,AMD显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。

1、安装部署ComfyUI 副本

1.系统:Windows7以上(就不要为难XP老师傅了)。2.显卡要求:NVDIA独立显卡且显存至少4G起步。3.硬盘留有足够的空间,最低100G起步(包括模型)。4.注:mac系统,AMD显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。5.下载并更新Nvidia显卡驱动下载地址https://www.nvidia.cn/ geforce/drivers/[heading1]二、下载并安装所需要环境[content]依次下载并安装python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。1.安装Python https://www.python.org/downloads/release/python-3119/file:python-3.11.9-amd64.exe安装的时候选中“将Python添加到系统变量”1.安装VSCode https://code.visualstudio.com/Downloadfile:VSCodeUserSetup-x64-1.90.0.exe3、安装Git https://git-scm.com/download/winfile:3-Git-2.39.2-64-bit.exe4、安装CUDAhttps://developer.nvidia.com/cuda-12-2-0-download-archive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_networkfile:cuda_12.2.0_536.25_windows.exe

彭青云:01小白comfyui学习日记-解决篇线上部署,和线下部署配置需求

[title]彭青云:01小白comfyui学习日记-解决篇线上部署,和线下部署配置需求[heading2]2现在我们来打个小怪:[heading3]2.2 comfyui本地部署的硬件配置comfyui相比webui:comfyui配置更低;系统资源占用更少;出图速度更快;最低可在小于3G的GPU上运行。甚至没有GPU,光用CPU也可以运行,缺点是速度极慢。SDXL出来后提高了运行配置:最低需要8GB显存+32GB运行内存,12GB流畅运行,推荐16GB以上。运行内存最低32GB,越高越好,最低配会经常爆显存。玩SD-webui和comfyui建议使用6GB以上的显存的NVIDIA显卡,也就是N卡,内存在16G以上。硬盘会影响加载模型的速度,所以最好把软件和模型部署在SSD(固态硬盘)上,这样速度更快。我之前的电脑2060N系8G显存,16g内存。把webui和模型装在2t固态硬盘上,打开速度极快,出图速度也还可以,4张512x768的图不到一分钟就可出来。如果你的电脑能顺畅清晰地玩3A游戏,那玩webui和comfyui也没问题。配置上不封顶,根据自己的需求和预算来即可。以我为例,新需求:做AIGC视频+建模渲染+炼丹(lora)预算2W。起先用2060生图,后发现做AIGC视频比较费时间,且还有做建模渲染的需求。后来向朋友请教,搞了一套次顶配的组装机,加上一个护眼的4K显示器共2W出头。

其他人在问
comfyUI的工作流如何一键部署到云服务器
ComfyUI 是一个基于 Python 的用户界面库,用于构建和可视化机器学习工作流。要将 ComfyUI 的工作流部署到云服务器上,可以参考以下步骤: 1. 在本地安装 ComfyUI 库,并创建一个工作流。 2. 使用 ComfyUI 的部署工具,将工作流打包成一个 Docker 容器。 3. 将 Docker 容器上传到云服务器,并在服务器上运行容器。 4. 在云服务器上配置网络和安全设置,以确保工作流可以被外部访问。 5. 使用 ComfyUI 的 API 或前端界面,与部署在云服务器上的工作流进行交互。 具体的部署步骤可能因云服务器的类型和配置而有所不同。可以参考 ComfyUI 的文档和相关教程,以获取更详细的指导。
2024-05-19
怎么在云服务器中部署dify
若要在云服务器中部署 dify,你需要按照以下步骤进行操作: 1. 申请云服务器:按照丁先生的教程申请云服务器,注意要选择腾讯云服务器,而不是阿里云服务器。 2. 安装 Docker:可以选择在宝塔面板中安装或使用命令安装,具体方法请参考。 3. 部署 dify:参考以下内容进行部署:。
2024-04-21
dify教程
以下是关于 Dify 的相关教程: 接入企业微信: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 部署自己的 Dify 网站: Dify 有两种使用方式:云服务版本,直接在官网 dify.ai 上注册账号使用;部署社区版,开源,可商用,但不能作为多租户服务使用,对个人使用完全无限制。 部署前提条件:2 核 4G 云服务器一台 = 159 元。
2024-11-22
咱们有dify的好的实践教程或示例吗
以下是关于 Dify 的一些实践教程和相关信息: 接入企业微信: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 构建知识库的具体步骤: 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 配置索引方式:Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 Dify 介绍:Dify 是一个开源的大模型应用开发平台,它通过结合后端即服务和 LLMOps 的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式 AI 应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词 IDE,以及一个全面的 RAG Pipeline,用于文档处理和检索。此外,Dify 还允许用户定义 Agent 智能体,并通过 LLMOps 功能对应用程序的性能进行持续监控和优化。Dify 提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify 的设计理念注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实,无论是创业团队构建 MVP、企业集成 LLM 以增强现有应用的能力,还是技术爱好者探索 LLM 的潜力,Dify 都提供了相应的支持和工具。Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般地,如果是个人研究,推荐单独使用 Dify,如果是企业级落地项目推荐使用多种框架结合,效果更好。
2024-11-22
dify是啥
Dify 是一个开源的大模型应用开发平台。它融合了后端即服务和 LLMOps 的理念,为用户提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。 该平台具有以下特点和优势: 1. 强大的工作流构建工具。 2. 支持广泛的模型集成。 3. 提供功能丰富的提示词 IDE。 4. 具备全面的 RAG Pipeline,用于文档处理和检索。 5. 允许用户定义 Agent 智能体。 6. 通过 LLMOps 功能持续监控和优化应用程序性能。 Dify 提供云服务和本地部署选项,满足不同用户需求。其开源特性确保对数据的完全控制和快速产品迭代。设计理念注重简单性、克制和快速迭代,能帮助用户将 AI 应用创意快速转化为现实。对于个人研究,推荐单独使用;对于企业级落地项目,推荐多种框架结合,效果更佳。 Dify 官方手册:https://docs.dify.ai/v/zhhans
2024-11-15
还有没有类似语聚ai,扣子,Dify.A,腾讯元器、客悦等智能体创建平台
以下是为您介绍的一些类似语聚 AI、扣子、Dify.AI、腾讯元器、客悦等的智能体创建平台: 智能体是随着 ChatGPT 与 AI 概念爆火而出现的新名词,简单理解就是 AI 机器人小助手,类似移动互联网中的 APP 应用。目前有很多公司关注智能体在 AI 应用层的产品机会,比如在 C 端有社交方向的应用,用户注册后先捏一个自己的智能体,然后让其与他人的智能体聊天,两个智能体聊到一起后再真人介入;在 B 端,有帮助商家搭建智能体的机会。 国内有不少智能体开发平台,如字节的扣子,2 月 1 日字节正式推出其国内版,主要用于开发下一代 AI 聊天机器人。此外,还有 Dify.AI 等平台。像阿里的魔搭社区也属于此类平台。 扣子(Coze)是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot,完成后还可发布到各种社交平台和通讯软件上供用户交互聊天。创建智能体通常包括起名称、写介绍、使用 AI 创建头像等简单步骤。
2024-11-08
还有没有类似扣子、Dify.A类似的智能体创建平台?
以下为您介绍一些类似扣子、Dify.AI 的智能体创建平台: 腾讯元器:是一个智能体开发平台。 kimi:在智能体领域有所涉及。 需要注意的是,目前提示词攻击在业内是一个公开的秘密,国内外各大著名的 AI 厂商几乎无一幸免,其系统提示存在泄露的风险。
2024-11-08
dify使用教程
Dify 的使用教程如下: 使用方式: 云服务版本:直接在官网 dify.ai 上注册账号使用。 部署社区版:开源,可商用,但不能作为多租户服务使用,对个人使用无限制。 部署前提条件:2 核 4G 云服务器一台(约 159 元),腾讯云提供一键部署。 构建知识库的具体步骤: 准备数据:收集文本数据,包括文档、表格等格式,进行清洗、分段等预处理,确保数据质量。 创建数据集:在 Dify 中创建新数据集,上传准备好的数据,并编写良好描述。 配置索引方式:提供三种索引方式(高质量模式、经济模式和 Q&A 分段模式),根据需求选择。 集成至应用:将数据集集成到对话型应用中,在应用设置中配置数据集使用方式。 持续优化:收集用户反馈,优化和迭代知识库内容及索引方式,定期更新增加新内容。 特点: 开源的大模型应用开发平台,结合后端即服务和 LLMOps 理念。 提供直观界面快速构建和部署生产级别生成式 AI 应用。 具备强大工作流构建工具,支持广泛模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline,可定义 Agent 智能体,通过 LLMOps 功能持续监控和优化应用性能。 提供云服务和本地部署选项,满足不同用户需求,开源特性确保对数据完全控制和快速产品迭代。 设计理念注重简单性、克制和快速迭代,为个人研究、创业团队、企业等提供支持和工具。 官方手册:https://docs.dify.ai/v/zhhans 。一般来说,个人研究推荐单独使用 Dify,企业级落地项目推荐多种框架结合。
2024-11-07
COMFYui是什么
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其视为集成了 stable diffusion 功能的 substance designer,通过把 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和良好的可复现性。 其具有以下优劣势: 优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 ComfyUI 是一个开源的图形用户界面,用于生成 AI 图像,主要基于 Stable Diffusion 等扩散模型。其工作原理包括: 1. Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 2. Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在 ComfyUI 中,您可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 3. 扩散过程(Diffusion Process):噪声的生成和逐步还原。扩散过程表示的是从噪声生成图像的过程。在 ComfyUI 中,这通常通过调度器(Schedulers)控制,典型的调度器有 Normal、Karras 等,它们会根据不同的采样策略逐步将噪声还原为图像。您可以通过 ComfyUI 中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数:在生成图像时,扩散模型会进行多个去噪步。图中展示的 zT 代表不同时间步长下的潜在表示。在 ComfyUI 中,您可以通过控制步数来影响图像生成的精细度和质量。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 此外,开源项目作者 ailm 在 ComfyUI 上搭建了一个可以接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设,无限上下文,永久记忆,无缝联动 SD 绘图等功能,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改。
2024-11-25
COMFYui是什么
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其视为集成了 stable diffusion 功能的 substance designer,通过把 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和良好的可复现性。 其具有以下优劣势: 优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 ComfyUI 是一个开源的图形用户界面,用于生成 AI 图像,主要基于 Stable Diffusion 等扩散模型。其工作原理包括: 1. Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 2. Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在 ComfyUI 中,您可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 3. 扩散过程(Diffusion Process):噪声的生成和逐步还原。扩散过程表示从噪声生成图像的过程。在 ComfyUI 中,通常通过调度器(Schedulers)控制,典型的调度器有 Normal、Karras 等,它们会根据不同的采样策略逐步将噪声还原为图像。您可以通过 ComfyUI 中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数:在生成图像时,扩散模型会进行多个去噪步。 您可以从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可,官方链接:https://github.com/comfyanonymous/ComfyUI 。 此外,开源项目作者 ailm 在 ComfyUI 上搭建了一个可以接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设,无限上下文,永久记忆,无缝联动 SD 绘图等功能,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改。
2024-11-25
制作图片的AI工具,名字好像叫comfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出并分享,报错时能清晰定位错误。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势在于: 1. 操作门槛高,需要清晰的逻辑。 2. 生态不如 webui 丰富,但有针对其开发的有趣插件。 您可以从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装,官方链接为:https://github.com/comfyanonymous/ComfyUI 。 此外,有人认为如果 contornet 让 AI 绘画从玩具变成工具,那 ComfyUI 就是制作工具的工具。同时,藏师傅介绍了用 ComfyUI 三步制作任意公司周边图片的流程,整个流程分为获取 Logo 图片的描述、根据描述和生成意图生成图片提示词、将图片和提示词输入 ComfyUI 工作生成。
2024-11-23
你好,什么事comfyui LLM party
ComfyUI LLM Party 相关内容如下: 作为 ComfyUI 插件的开发者,主要目的是讲解 LLM(大语言模型)与 ComfyUI 结合的基础、进阶和高阶用法,个人将 ComfyUI 中 LLM 应用粗略分为四大类:文本方面(提示词扩写、润色、对话)、图像视觉方面(图像提示词反推、OCR、LoRA 训练集图像打标)、LLM Agent(工具调用、长期/短期记忆、本地/API 大语言模型调用、封装 ComfyUI 工作流等)、其他独立于这些之外的 LLM 节点或功能。 对于 ComfyUI 和 ComfyUI LLM Party 的下载: 如果是 AI 绘图工作者,对 ComfyUI 不陌生。若未接触过,可在 GitHub 上拉取项目,或在 B 站下载整合包,如秋叶大佬的绘世整合包或者只剩一瓶辣椒酱的铁锅炖整合包。 ComfyUI LLM Party 是以 ComfyUI 作为前端的节点库,用于 LLM 智能体以及 LLM 工作流的无代码开发,功能类似于 coze、dify、flowise 等,与 ComfyUI 生态下的绝大部分节点相辅相成,有着无缝接入 SD 图像流的特色。可通过以下方法安装: 方法一:在中搜索 comfyui_LLM_party,一键安装,然后重启 comfyui。 方法二:导航到 ComfyUI 根文件夹中的 custom_nodes 子文件夹,使用克隆此存储库 git clone https://github.com/heshengtao/comfyui_LLM_party.git 。
2024-11-22
ComfyUI的Windows下载包
以下是关于 ComfyUI 的 Windows 下载包的相关信息: 下载地址:https://github.com/comfyanonymous/ComfyUI ,您可以在此下载安装包,也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip 。 安装方法: 下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 目前安装 ComfyUI 有以下两种方法,您可以根据自己的需求选择: 本地安装: 命令行安装:普适性最强,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说可能有一定门槛。ComfyUI 的源码地址在 https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中,您也可以按照 Readme 文档进行操作。 安装包安装:安装比较简单,下载就能用。ComfyUI 的官方安装包下载地址是 https://github.com/comfyanonymous/ComfyUI/releases ,目前仅支持 Windows 系统,且显卡必须是 Nivida。下载最新的版本,解压就能使用。 云端安装:云端配置相对较高,生成图片的速度会更快,但是需要一定的费用。如果您想在云端安装,可以跳到。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 汉化安装方法:在网盘连接中下载汉化包,并解压。将文件夹拖入到 E:\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 目录下。启动 ComfyUI 界面,点击右侧的小齿轮。在弹出界面的底部就可以切换语言了,选择中文即可。点击下方的“切换语言”,就可以在中文和英文之间随意切换。需要 blender 插件和汉化包的朋友,可以关注公众号【白马与少年】,发送【ComfyUI】即可获取链接。
2024-11-22
ComfyUI 安装教程
以下是 ComfyUI 的安装教程: 1. 电脑硬件要求: 系统:Windows 7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统、AMD 显卡、低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并更新 Nvidia 显卡驱动下载地址:https://www.nvidia.cn/geforce/drivers/ 2. 下载并安装所需要环境(安装过 WebUI 的同学请忽略本步骤): 依次下载并安装 python、VSCode、Git,安装过程中一直点击勾选对应选项,一直下一步。 Python 版本 3.10 以上,下载地址: VSCode 下载地址: Git 下载地址: 安装 Python 时选中“将 Python 添加到系统变量”。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network ,下载文件:cuda_12.2.0_536.25_windows.exe 3. 安装 ComfyUI: 地址:https://github.com/comfyanonymous/ComfyUI 可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git 或者下载安装包 下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 4. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 5. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 6. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到你已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 7. 快捷键(未提及具体快捷键内容)
2024-11-17