直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

在comyui中,使用flux1-dev模型24g显存够吗

回答

在 ComfyUI 中使用 Flux1-dev 模型,24G 显存是可以的,但建议内存尽量高于 32G 以避免意外情况的发生。如果您的显卡是 24G 或更高,右键 24G 那个 train_flux_24GLora 的文件。修改脚本路径和参数时,要注意底模路径、VAE 路径、数据集路径,还有下面的 clip 路径和 T5xxl 路径的正确填写。ae.safetensors 和 flux1-dev.safetensors 的下载地址为:https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main 。flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b ,百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW-03ei0g?pwd=ub9h 提取码:ub9h 。如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/flux-fp8/tree/main 。最后下载 dev 的工作流:dev 的官方原版 workflow.json ,或者使用官方原版的图片链接 https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI 把工作流或图片拖拽到其中即可。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

郑敏轩 :Flux的Lora模型训练

接下来,如果你的显卡是16G的,右键16G那个train_flux_16GLora的文件,如果你的显卡是24G或更高的,右键24G那个train_flux_24GLora的文件,(DB全参微调会对硬件要求更高一些,内存32G是不行的)不过即使是train_flux_24GLora的方式,也建议内存尽量想办法高于32G,避免意外情况的发生。刚没说完,右键用代码编辑器方式打开(图中右边红框的两种任意一种均可,没有可以下载一下)首先我们开头的绿色部分不用动理论上只改红色部分:底模路径、VAE路径、数据集路径,还有下面的clip路径和T5xxl路径:文章开头的4件套,如果你在一个文件夹里,更简单一些,不用分辨,路径填上去就行。如果不在一起,首先找到你的flux1-dev底模的文件,把他的路径复制过来,注意复制过来后还是一套双引号,有同学会多双引号或者漏双引号,以及路径错误,都会导致后面训练无法进行。注意检查,慎重。然后是ae的那个是VAE路径这里注意训练集的路径!是到train截止!里面虽然还有一层文件夹,但是到此为止!往下,在SD3训练相关参数那里,咱们4件套不是还有2位吗?路径在这里(g那个不用管,是SD3里面的)再次提醒检查格式,别漏了,错了这是最简单的少量修改方式,可以直接看下一段:数据集准备。建议随着深入以及经验丰富后再修改关于其他参数,温馨提醒修改其他深入参数的话自己最好最好备份管理。蓝色部分可改可不改,是备注名称。

工具教程:Flux

https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main我随后也准备一下百度网盘和夸克网盘。更新:(下面准备了夸克和百度的网盘链接,方便部分同学下载)flux相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608bflux相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW-03ei0g?pwd=ub9h提取码:ub9h如果GPU性能不足、显存不够,底模可以使用fp8的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/flux-fp8/tree/main最后我们再下载dev的工作流:[dev的官方原版workflow.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/KhTAbaxbconU6PxBfJkcAkt8nJc?allow_redirect=1)上面我把工作流复制上了,用上面这个就行。或者下面官方原版的图片链接,图片导入comfyUI就是工作流。https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png我们打开ComfyUI,把工作流或图片拖拽到ComfyUI里:

工具教程:Flux

https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main我随后也准备一下百度网盘和夸克网盘。更新:(下面准备了夸克和百度的网盘链接,方便部分同学下载)flux相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608bflux相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW-03ei0g?pwd=ub9h提取码:ub9h如果GPU性能不足、显存不够,底模可以使用fp8的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/flux-fp8/tree/main最后我们再下载dev的工作流:[dev的官方原版workflow.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/KhTAbaxbconU6PxBfJkcAkt8nJc?allow_redirect=1)上面我把工作流复制上了,用上面这个就行。或者下面官方原版的图片链接,图片导入comfyUI就是工作流。https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png我们打开ComfyUI,把工作流或图片拖拽到ComfyUI里:

其他人在问
在comyui中,使用flux1-dev模型需要多少显存
在 ComfyUI 中使用 flux1dev 模型所需的显存情况如下: 相关模型的下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 对于 GPU 性能不足、显存不够的情况,底模可以使用 fp8 的量化版模型,下载地址为:https://huggingface.co/Kijai/fluxfp8/tree/main 。 低显存方案(8G 以下):flux1devbnbnf4.safetensors ,放入 ComfyUI\\models\\checkpoints 文件夹内,下载链接为 https://huggingface.co/lllyasviel/flux1devbnbnf4/blob/main/flux1devbnbnf4.safetensors 。 此外,还提供了以下相关资源链接: BitsandBytes Guidelines and Flux :https://github.com/lllyasviel/stablediffusionwebuiforge/discussions/981 ComfyUI_bitsandbytes_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4
2024-11-12
2024年11月11日世界AI新闻有哪些
以下是 2024 年 11 月 1 日至 11 月 8 日的部分世界 AI 新闻: 11 月 1 日: 《》来自南乔,10 月 AI 行业大事件盘点包括多家公司的重要发布和创新,如 OpenAI 推出多项新功能,字节发布 AI 智能体耳机,以及各大模型的开源。趋势方面,强化学习被认为是推动 AGI 发展的关键技术,原生多模态模型逐渐成为研究热点。新兴应用如 AI 音乐创作、翻译和智能助手等受到关注,整体呈现出技术与应用的快速发展态势。 《》来自歸藏,10 月份美国 AI 聊天机器人市场报告显示,ChatGPT 仍是市场领导者,但份额逐渐下降。谷歌和微软在争夺第二的位置,Perplexity 和 ClaudeAI 则实现高速增长,正在从 ChatGPT 和 Gemini 手中蚕食市场份额。总体来看,专业 AI 工具的增长势头强劲,而初创公司的用户获取相对缓慢。 《》比尔・盖茨在采访中讨论了人工智能的革命性影响,认为 AI 将使每个人都能成为“超级个体”,改变人机交互方式。他强调 AI 将显著降低白领工作的成本,并逐渐影响蓝领市场。盖茨还提到他对全球健康和气候问题的关注,认为技术创新速度超出预期,未来 20 年将是充满希望的时期。他同时探讨了可再生能源的发展,尤其是核能和太阳能的潜力。 11 月 8 日: 《》由上海外国语大学图书馆发布,探讨了 AI 素养在数智时代的重要性和演变。报告指出,AI 素养不仅涉及技术知识,还包括态度、价值观和应对复杂需求的能力。随着 AI 技术的广泛应用,社会对 AI 素养的需求日益增长。 其它一些报告发布在: AIGCxChina 研究院、无界 AI:《》 《》(英文) 《》 请注意,这只是部分新闻,可能还有其他未涵盖的内容。
2024-11-11
联想异能者配置i5-12450八核,32GB内存,1TB固态硬盘,用于本地部署开源大模型可以部署哪些开源大模型
以下是一些您的联想异能者配置(i512450 八核,32GB 内存,1TB 固态硬盘)可部署的开源大模型及相关信息: ComfyUI 相比 WebUI 配置更低,系统资源占用更少,出图速度更快。ComfyUI 最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上的显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,所以最好把软件和模型部署在 SSD(固态硬盘)上。 截止 2024 年 5 月,主流的 AI 笔记本电脑主要是一些专门为人工智能和深度学习设计的高性能移动工作站。一些知名品牌包括微软第 11 代 Surface Pro、微星 Creator/Workstation 系列、技嘉 Aero/Aorus 系列、戴尔 Precision 移动工作站、惠普 ZBook 移动工作站、联想 ThinkPad P 系列。这些笔记本通常配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存(32GB 以上)和高速固态硬盘,还通常预装了 NVIDIA CUDA、cuDNN 等深度学习框架,以及各种 AI 开发工具。但这类高端 AI 笔记本价格相对较高,通常在 2000 美元以上。用户可根据自身需求和预算选择合适型号,并关注散热、续航等实际使用体验。 请注意,配置上不封顶,您可根据自己的需求和预算来选择。
2024-11-04
State of AI 2024 报告
以下是关于《State of AI 2024》报告的相关信息: 该报告由来自剑桥大学的 AI 风险投资公司 Air Street Capital 创始人兼 CEO Nathan Benaich 和来自牛津大学的 Air Street Capital 平台负责人 Alex Chalmers 共同发表。 报告主要围绕人工智能(AI)领域的最新进展、政治动态、安全挑战及未来预测几大方面进行说明。 报告中的关键要点包括:OpenAI 的 o1 模型在数学、科学和推理方面重新定义了 AI 的极限;中国的 AI 模型在面对制裁时表现出色;生成式 AI 的初创公司获得巨大收益,但可持续性仍存在问题。 报告每年 10 月份发布,对未来 12 个月有 10 大预测,例如某主权国家将向一家美国大型 AI 实验室投资超 100 亿美元并引发国家安全审查等。报告链接为:
2024-11-04
你能帮我找到这篇报告吗?他的名字是《InfoQ:中国AI Agent应用研究报告2024》
以下是为您找到的《InfoQ:中国 AI Agent 应用研究报告 2024》的链接:https://waytoagi.feishu.cn/record/Y45LrXJiwe4SgYc5tMZcVVtqn6b
2024-10-31
《2024大模型人才报告》
以下是与您查询的相关报告: 2024 年 9 月 10 日: 《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案。报告提出了一个系统化的可信应用框架,强调了专业性、可控性、真实性和安全性四个核心要素,并从数据质量、模型能力、推理过程、系统安全等方面提供了具体的技术实现建议。 《》 《》 《》 《》 2024 年 7 月 10 日: 极客邦科技通过《》报告深入探讨 AIGC 技术在企业中的应用,提供实战经验和趋势洞察。这份报告集合了多篇文章和案例,覆盖互联网产品、企业生产、医疗、教育等行业,展现大模型应用潜力。 《》 《》 《》 《》 2024 年 9 月 18 日: 《》探讨了 AI 技术,尤其是大模型技术对劳动力市场的影响。 《》探讨了 AI 技术在营销领域的应用现状和发展趋势。 《》 《》 您可以通过相应的链接获取更详细的内容。
2024-10-29
为什么2024年诺贝尔物理学奖颁发给了Hinton
2024 年诺贝尔物理学奖颁发给了 Hinton(杰弗里·埃弗里斯特·辛顿),原因是“以表彰他们利用人工神经网络进行机器学习的奠基性发现和发明”。 Hinton 出生于 1947 年 12 月 6 日的英国温布尔登。他的职业生涯丰富: 1970 年,获得剑桥大学实验心理学学士学位。 1976 年—1978 年,担任苏塞克斯大学认知科学研究项目研究员。 1978 年,获得爱丁堡大学人工智能学博士学位。 1978 年—1980 年,担任加州大学圣地亚哥分校认知科学系访问学者。 1980 年—1982 年,担任英国剑桥 MRC 应用心理学部科学管理人员。 1982 年—1987 年,历任卡内基梅隆大学计算机科学系助理教授、副教授。 1987 年—1998 年,担任多伦多大学计算机科学系教授。 1996 年,当选为加拿大皇家学会院士。 1998 年,当选为英国皇家学会院士。 1998 年—2001 年,担任伦敦大学学院盖茨比计算神经科学部创始主任。 2001 年—2014 年,担任多伦多大学计算机科学系教授。 2003 年,当选为认知科学学会会士。 2013 年—2016 年,担任谷歌杰出研究员。 2016 年—2023 年,担任谷歌副总裁兼工程研究员。 2023 年,从谷歌辞职。 2023 年,当选为美国国家科学院院士。 Hinton 是反向传播算法和对比散度算法的发明人之一,也是深度学习的积极推动者,被誉为“深度学习教父”。他曾花了小半个世纪的时间开发神经网络,让机器拥有了深度学习的能力。
2024-10-29