直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

帮我找一下comfyui的配置方法

回答

以下是关于 ComfyUI 的配置方法:

  • 硬件配置:
    • 相比 WebUI,ComfyUI 配置更低,系统资源占用更少,出图速度更快。最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配会经常爆显存。玩 SD-webui 和 ComfyUI 建议使用 6GB 以上的显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD(固态硬盘)上。如果电脑能顺畅清晰地玩 3A 游戏,那玩 webui 和 ComfyUI 也没问题。配置上不封顶,根据自己的需求和预算来即可。
    • 系统:Windows7 以上。
    • 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。
    • 硬盘留有足够的空间,最低 100G 起步(包括模型)。
  • 环境安装:
    • 依次下载并安装 Python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。
    • 安装 Python:https://www.python.org/downloads/release/python-3119/ ,安装的时候选中“将 Python 添加到系统变量”。
    • 安装 VSCode:https://code.visualstudio.com/Download 。
    • 安装 Git:https://git-scm.com/download/win 。
    • 安装 CUDA:https://developer.nvidia.com/cuda-12-2-0-download-archive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

彭青云:01小白comfyui学习日记-解决篇线上部署,和线下部署配置需求

[title]彭青云:01小白comfyui学习日记-解决篇线上部署,和线下部署配置需求[heading2]2现在我们来打个小怪:[heading3]2.2 comfyui本地部署的硬件配置comfyui相比webui:comfyui配置更低;系统资源占用更少;出图速度更快;最低可在小于3G的GPU上运行。甚至没有GPU,光用CPU也可以运行,缺点是速度极慢。SDXL出来后提高了运行配置:最低需要8GB显存+32GB运行内存,12GB流畅运行,推荐16GB以上。运行内存最低32GB,越高越好,最低配会经常爆显存。玩SD-webui和comfyui建议使用6GB以上的显存的NVIDIA显卡,也就是N卡,内存在16G以上。硬盘会影响加载模型的速度,所以最好把软件和模型部署在SSD(固态硬盘)上,这样速度更快。我之前的电脑2060N系8G显存,16g内存。把webui和模型装在2t固态硬盘上,打开速度极快,出图速度也还可以,4张512x768的图不到一分钟就可出来。如果你的电脑能顺畅清晰地玩3A游戏,那玩webui和comfyui也没问题。配置上不封顶,根据自己的需求和预算来即可。以我为例,新需求:做AIGC视频+建模渲染+炼丹(lora)预算2W。起先用2060生图,后发现做AIGC视频比较费时间,且还有做建模渲染的需求。后来向朋友请教,搞了一套次顶配的组装机,加上一个护眼的4K显示器共2W出头。

1、安装部署ComfyUI 副本

1.系统:Windows7以上(就不要为难XP老师傅了)。2.显卡要求:NVDIA独立显卡且显存至少4G起步。3.硬盘留有足够的空间,最低100G起步(包括模型)。4.注:mac系统,AMD显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。5.下载并更新Nvidia显卡驱动下载地址https://www.nvidia.cn/ geforce/drivers/[heading1]二、下载并安装所需要环境[content]依次下载并安装python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。1.安装Python https://www.python.org/downloads/release/python-3119/file:python-3.11.9-amd64.exe安装的时候选中“将Python添加到系统变量”1.安装VSCode https://code.visualstudio.com/Downloadfile:VSCodeUserSetup-x64-1.90.0.exe3、安装Git https://git-scm.com/download/winfile:3-Git-2.39.2-64-bit.exe4、安装CUDAhttps://developer.nvidia.com/cuda-12-2-0-download-archive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_networkfile:cuda_12.2.0_536.25_windows.exe

彭青云:01小白comfyui学习日记-解决篇线上部署,和线下部署配置需求

[title]彭青云:01小白comfyui学习日记-解决篇线上部署,和线下部署配置需求[heading2]2现在我们来打个小怪:[heading3]2.2 comfyui本地部署的硬件配置自己配最大问题就是不懂里面的问道,怕被坑。品牌机水分大不划算,优点是有售后,有正版操作系统。花了个把月看评测,对比,后来找社区大神,终于拿下。以下配置单供参考。下篇分享comfyui的本地部署搭建工作流和生图,我遇到问题以及在搭建工作流,遇到哪些坑又是怎样克服顺利出图的,敬请期待。

其他人在问
怎么学习comfyui
以下是一些学习 ComfyUI 的途径和资源: 1. 官方文档:ComfyUI 官方文档提供了使用手册和安装指南,适合初学者和有经验的用户,可在获取相关信息。 2. 优设网:有一篇详细的 ComfyUI 入门教程,适合初学者,详细介绍了其特点、安装方法及生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到相关教程。 4. Bilibili:提供了一系列涵盖从新手入门到精通各个阶段的视频教程,可在找到。 此外,还有以下 ComfyUI 共学相关的内容: 1. ComfyUI 共学快闪:包括 Stuart 风格迁移、红泥小火炉基础课程、大雨换背景图等众多课程和讲解。 2. ComfyUI 共学 WaytoAGI 共学计划:有详细的日程安排,包括开场、第一课、第二课、第三课、第四课等的资料、时间、讲师及活动记录等,具体可查看相关链接。 内容由 AI 大模型生成,请仔细甄别。
2024-11-02
comfyui中deforum
ComfyUI 中的 Deforum 相关知识如下: 生图原理: Denoising UNet(去噪 UNet 结构):ComfyUI 底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。 Cross Attention(交叉注意力):在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件。在 ComfyUI 中通过“文本提示”和“条件输入”节点实现,其可视化界面可调整交叉注意力机制中的参数,如文本提示的权重,直接影响生成图像的内容。 Skip Connection(跳跃连接):是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转,可查看中间生成结果并通过跳跃连接调整特定尺度上的生成效果。 Switch(切换器):在图中代表去噪过程中不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型的参数节点或自定义网络结构节点,对不同阶段的噪声去除策略进行微调。 FizzleDorf 的 Deforum 指南: 这是 Automatic1111 Webui 中 Deforum 扩展的功能和设置的概述。如果在 Google Colab 中使用笔记本,可使用 。
2024-11-02
ComfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势为: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接为:https://github.com/comfyanonymous/ComfyUI 安装部署 ComfyUI 副本: 1. 电脑硬件要求: 系统:Windows7 以上(不要为难 XP 老师傅了)。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 下载并更新 Nvidia 显卡驱动下载地址 https://www.nvidia.cn/ geforce/drivers/ 2. 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode https://code.visualstudio.com/Download 。 安装 Git https://gitscm.com/download/win 。 安装 CUDA https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 3. 安装地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 4. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 5. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 6. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 截图示例(暂无) 延伸阅读:内容由 AI 大模型生成,请仔细甄别。
2024-10-29
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细信息: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境:依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2024-10-29
comfyui教程
以下是为您整理的 ComfyUI 教程相关内容: 全面的 ComfyUI 教程:https://www.comflowy.com/zhCN 超有意思的 ComfyUI 教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/ ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户,网站:https://www.comfyuidoc.com/zh/ 优设网:详细的 ComfyUI 入门教程,适合初学者,介绍特点、安装方法及生成图像等内容,地址:https://www.uisdc.com/comfyui3 知乎:有用户分享部署教程和使用说明,适合有一定基础并希望进一步了解的用户,地址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:一系列涵盖从新手入门到精通各个阶段的视频教程,地址:https://www.bilibili.com/video/BV14r4y1d7r8/ ComfyUI 基础教程部分: 掌握基础界面:熟悉基本界面和操作,包括 Comfyui 工作区介绍、基础节点介绍、KSampler 等。 KSampler: seed:随机种子,用于控制潜空间初始噪声,相同种子和 Prompt 可生成相同图片。 control_after_generate:设置每次生成完图片后 seed 数字的变化规则,有 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。 step:采样步数,一般步数越大效果越好,但与模型和采样器有关。 cfg:一般设置为 6 8 之间较好。 sampler_name:可设置采样器算法。 scheduler:控制每个步骤去噪过程,可选择不同调度算法。 denoise:表示增加的初始噪声,文生图一般默认设置成 1。 内容由 AI 大模型生成,请仔细甄别。
2024-10-21
我想在云服务器部署使用 dify 和 comfyui ,云服务器机器配置需要什么要求呢
在云服务器部署使用 Diffy 和 ComfyUI ,云服务器机器配置要求如下: 1. 系统:Windows 7 以上。 2. 显卡要求:NVIDIA 独立显卡且显存至少 4G 起步。但 SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 3. 硬盘:留有足够的空间,最低 100G 起步(包括模型)。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD(固态硬盘)上。 4. 内存:最低 32GB,越高越好,最低配会经常爆显存。 需要注意的是,ComfyUI 相比 WebUI 配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。如果您的电脑能顺畅清晰地玩 3A 游戏,那玩 WebUI 和 ComfyUI 通常也没问题。配置上不封顶,根据自己的需求和预算来选择即可。
2024-10-19
我需要什么配置的电脑才能比较顺畅地使用目前AI领域的大部分工具
要比较顺畅地使用目前 AI 领域的大部分工具,以下是一些电脑配置方面的建议: 笔记本电脑方面: 主流的 AI 笔记本电脑通常是专门为人工智能和深度学习设计的高性能移动工作站。 这类笔记本一般配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存(32GB 以上)和高速固态硬盘。 知名品牌包括微软(Microsoft)第 11 代 Surface Pro、微星(MSI)Creator/Workstation 系列、技嘉(GIGABYTE)Aero/Aorus 系列、戴尔(Dell)Precision 移动工作站、惠普(HP)ZBook 移动工作站、联想(Lenovo)ThinkPad P 系列。 通常采用英特尔酷睿或 AMD Ryzen 的高端移动 CPU,配备 NVIDIA RTX 30/40 系列或 AMD Radeon Pro 专业级 GPU。 同时也预装了 NVIDIA CUDA、cuDNN 等深度学习框架,以及各种 AI 开发工具。 但这类高端 AI 笔记本价格相对较高,通常在 2000 美元以上。用户可根据自身的 AI 应用需求和预算情况选择合适的型号,同时关注笔记本的散热、续航等实际使用体验。 另外,在硬件组装方面,如果是组装具身对话机器人,需要准备的工具包括: 一台电脑和一台 iPhone(安卓目前不支持)。 剪刀、钳子、小十字螺丝刀。 单面胶、双面胶。 优先推荐双头 TYPEC 数据线连接电脑和 arduino,其次是 USB TYPEC 数据线,多备几条,注意充电线不一定是数据线,要确保可传输数据。
2024-10-12
如何在coze中调用bot商店中未公开配置的bot?
在 Coze 中调用 bot 商店中未公开配置的 bot,您可以参考以下步骤: 1. 访问。 2. 在页面的搜索框中,输入您想要的 bot 名称,然后单击展示的相应 bot。 3. 您会被引导至该 bot 的编排页面,编排页面分为以下 4 个区域: 顶部区域:显示 bot 所用的大型语言模型。 人设与回复逻辑区域:设置 bot 的人物设定与回复逻辑。 技能区域:展示 bot 配置的功能,例如插件、工作流、开场白等。 预览与调试区域:展示与 bot 交互的运行结果。 4. 在预览与调试区域中发送一条消息,查看 bot 的回复效果。 此外,如果您想复制一个预置的 bot 在此基础上进行修改来创建自己的 bot,可以按照以下步骤操作: 1. 访问,单击目标 bot。 2. 在 bot 的编排页面右上角,单击创建副本。 3. 在弹出的对话框中,设置 bot 名称、选择 bot 的所属团队,然后单击确定。 4. 您可以在新打开的配置页面修改复制的 bot 配置。 在人设与回复逻辑区域,调整 bot 的角色特征和技能。您可以单击优化使用 AI 帮您优化 bot 的提示词,以便大模型更好的理解。 在技能区域,为 bot 配置插件、工作流、知识库等信息。 5. 在预览与调试区域,给 bot 发送消息,测试 bot 效果。 6. 当您完成调试后,可单击发布将 bot 发布到社交应用中,在应用中使用 bot。 另外,关于 API 授权,然后再点击右上角发布,这里会发现多了一个 Bot as API,意思就是自己定义的 API 发布取到了。勾选 Bot as API 并确定应用已经成功授权 Bot as API 。创建了一个机器人、这个机器人是画小二的(令牌),画小二下面有很多个应用,您想调用的是“画小二智能小助手(Bot ID)”。
2024-09-26
AI视频需要什么 电脑配置
制作 AI 视频通常需要以下方面的准备和配置: 1. 内容准备: 准备一段视频中播放的文字内容,例如产品介绍、课程讲解、游戏攻略等。可以自行创作,也可以利用 AI 生成。 2. 视频制作工具: 可以使用剪映 App 对视频进行简单处理,电脑端打开剪映 App 点击“开始创作”,选择顶部工具栏中的“文本”,并点击默认文本右下角的“+”号为视频添加文字内容轨道。 3. AI 换脸方面: 有多个 AI 产品可实现换脸效果,如开源免费的 facefusion。 本机解决方案需要 Python 环境、安装视频解码器等多个依赖软件,对 GPU 依赖较大,本地计算机若无 GPU 或 GPU 显存较小,执行速度缓慢,不推荐本地化安装。 云服务解决方案可利用云厂商如阿里云的 PAI 和 AutoDL 提供的大模型运行环境和计算能力,但会产生一定费用。例如选择 AutoDL,在算力市场中选取能接受价格且 GPU 配置更高的算力设备,并通过模型镜像启动 GPU 服务器。
2024-09-24
stable diffusion可以用macbook 13来运行吗?配置够吗
Stable Diffusion(简称“SD”)的运行对电脑配置有一定要求。对于 Windows 系统: 显卡:必须是 NVIDIA(俗称 N 卡)。 专用 GPU 内存:4GB 勉强可以跑动 SD,出图时间较长;6GB 出一张图时间为 20 50 秒,大部分功能可用;8GB 5 20 秒出一张图,所有功能基本开放。 电脑运行内存:8GB 以上。 电脑系统:Win10 或者 Win11。 对于 Mac 系统,可以查看以下视频进行一键安装:https://www.bilibili.com/video/BV1Kh4y1W7Vg/?spm_id_from=333.788&vd_source=6f836e2ab17b1bdb4fc5ea98f38df761 但具体 MacBook 13 是否能运行及配置是否足够,还需根据上述标准进行对照检查。
2024-09-16
蛟龙16pro配置(处理器R7-7745HX,显卡RTX4060 8G,硬盘512GPCIE4.0SSD)可以用于审计人员本地化部署大模型用于数据分析工作吗
蛟龙 16pro 的配置(处理器 R77745HX,显卡 RTX4060 8G,硬盘 512G PCIE4.0 SSD)对于审计人员本地化部署大模型用于数据分析工作来说,可能存在一定的局限性。 处理器 R77745HX 具有一定的计算能力,但在处理大规模数据和复杂的模型运算时,其性能可能不够强劲。 显卡 RTX4060 8G 对于一些较为复杂的图形处理和计算任务能够提供一定的支持,但对于大规模的深度学习模型训练和数据分析,可能会显得不足。 512G 的 PCIE4.0 SSD 硬盘容量相对较小,在存储大量数据时可能会很快耗尽空间。 综上所述,该配置在一定程度上可以用于简单的数据分析任务,但对于较为复杂和大规模的大模型本地化部署及数据分析工作,可能需要更强大的硬件配置,例如更高性能的处理器、更大容量和更高性能的显卡,以及更大的存储空间。
2024-09-14
论文查重、去重的方法有
以下是一些常用的 AIGC 论文查重、去重的网站和工具及它们的功能和使用方法: 1. Turnitin 功能:广泛使用的学术剽窃检测工具,最近增加了检测 AI 生成内容的功能。 使用方法:用户上传论文,系统自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape 功能:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。 使用方法:输入文本或上传文档,系统扫描网络以查找相似或重复的内容。 3. Grammarly 功能:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。 使用方法:将文本粘贴到 Grammarly 的编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck 功能:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。 使用方法:上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. 功能:专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。 使用方法:上传文档或输入文本,系统提供详细报告,包括可能的 AI 生成内容。
2024-10-30
AI可以本地帮助剪辑视频吗,具体的操作方法是什么
AI 可以在本地帮助剪辑视频,以下是一些可能的操作方法: 1. 小说转视频的制作流程: 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 2. 实战制作视频内容: 准备内容:先准备一段视频中播放的内容文字。内容可以是产品介绍、课程讲解、游戏攻略等任何您希望推广,让大家了解的文字。当然,也可以利用 AI 来生成这段文字。 制作视频:使用剪映 App 来对视频进行简单的处理。电脑端打开剪映 App,点击“开始创作”。进入创作页面后,选择顶部工具栏中的“文本”,并点击默认文本右下角的“+”号,为视频添加一个文字内容的轨道。添加完成后,在界面的右侧将准备好的文字内容替换默认文本内容。 3. 生成带有文本提示和图像的视频:在 Adobe 的的 Advanced 部分,您可以使用 Seed 选项添加种子编号(https://helpx.adobe.com/firefly/generatevideo/generatevideoclips/generatevideofaq.htmlwhatisaseed),以帮助启动流程并控制 AI 创建的内容的随机性。如果使用相同的种子、提示和控制设置,则可以重新生成类似的视频剪辑。然后选择 Generate(生成)。
2024-10-26
LLM是什么,有什么方法能够调优
LLM 即大型语言模型(Large Language Model)。以下是一些调优 LLM 的方法: 1. 改进提示:在上下文中提供基本事实,例如相关文章段落或维基百科条目,以减少模型生成虚构文本的可能性。通过降低概率参数并指示模型在不知道答案时承认(例如,“我不知道”)来配置模型以生成更少样式的响应。在提示中提供问题和答案的组合示例,其中可能知道和不知道的问题和答案。 2. 微调:采用在通用数据集上预训练的模型,复制这个模型,然后以这些学习到的权重为起点,在新的特定领域数据集上重新训练模型。但由于 LLM 规模较大,更新每个权重可能需要很长时间的训练工作,且计算成本较高,所以微调大型语言模型可能不是最佳选择。 3. 参数有效调优:这是一种创新的调优方法,旨在通过仅训练一部分参数来减少微调 LLM 的挑战。这些参数可能是现有模型参数的子集,也可以是一组全新的参数,例如向模型添加一些额外的层或额外的嵌入到提示。参数有效调整非常适合拥有“适度”数量训练数据的场景,例如数百或数千个训练示例。训练数据应以文本到文本格式构建为受监督的训练数据集,数据中的每条记录或行都应包含输入文本(即提示)。 此外,研究发现 GPT4 等 LLM 在一些简单的代数问题上存在表现局限性,例如随着 L 的增加,模型更容易犯计算错误,90%的错误是由于在合并相似项时跳过了步骤。这启发了是否有有效方法训练或微调 LLM 以实现更准确计算能力的研究问题。同时,LLM 在计数方面也存在困难,不仅在转换器架构中难以实现,而且数据集中计数示例的稀缺性也加剧了这个问题。
2024-10-24
mat1 and mat2 shapes cannot be multiplied的错误原因与解决方法
很抱歉,目前知识库中没有关于“mat1 and mat2 shapes cannot be multiplied”错误原因与解决方法的相关内容。但通常这种错误可能是由于矩阵的维度不匹配导致的。您可以检查矩阵 mat1 和 mat2 的形状,确保它们满足乘法运算的规则。例如,如果是二维矩阵相乘,第一个矩阵的列数应该等于第二个矩阵的行数。解决方法可能包括重新调整矩阵的形状,或者检查数据处理和运算的逻辑,确保矩阵的维度在进行乘法运算时是正确匹配的。
2024-10-22
Florence节点和模型下载方法
Florence 节点和模型的下载方法如下: 节点下载: 方法一:从节点管理器中安装(注意结尾是 V2.6int4 的那个)。 方法二:在秋叶包中安装(注意结尾是 V2.6int4 的那个)。 方法三:直接下载下面文件解压,复制 ComfyUI_MiniCPMV2_6int4 文件夹到您的“\\ComfyUI\\custom_nodes”目录下。注意 ComfyUI_MiniCPMV2_6int4 文件夹里面直接就是多个文件不能再包文件夹了。 夸克网盘:链接:https://pan.quark.cn/s/bc35e6c7e8a6 百度网盘:链接:https://pan.baidu.com/s/1sq9e2dcZsLGMDNNpmuYp6Q?pwd=jdei 提取码:jdei 模型下载: 模型下载地址(解压后大小 5.55G,压缩包大小 4.85G): 夸克网盘:链接:https://pan.quark.cn/s/98c953d1ec8b 百度网盘:链接:https://pan.baidu.com/s/1y4wYyLn511al4LDEkIGEsA?pwd=bred 提取码:bred 此外,Joy_caption 相关模型下载: 从 https://huggingface.co/unsloth/MetaLlama3.18Bbnb4bit 下载并放到 Models/LLM/MetaLlama3.18Bbnb4bit 文件夹内。 必须手动下载: https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 ,存放文件夹:models/Joy_caption 。 MiniCPMv2_6 提示生成器 + CogFlorence: https://huggingface.co/pzc163/MiniCPMv2_6promptgenerator https://huggingface.co/thwri/CogFlorence2.2Large TheMisto.ai 的 MistoLine 版相关: 节点: MistoControlNetFluxdev ,在您的 \\ComfyUI\\custom_nodes 文件夹里面右键终端命令行,复制相关代码即可下载,或者通过以下网盘下载: 夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6 百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc 提取码:lpvc 模型: 夸克网盘:链接:https://pan.quark.cn/s/5551e813db21 百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq 提取码:zhfq 处理:将模型放到您的 ComfyUI\\models\\TheMisto_model 文件夹中,并导入官方工作流 。
2024-10-22
科学问题二:XXX(小标题) 问题挑战:如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性?如何利用从少量样本中提取到的变化信息来预测未见数据的表现? XXX XXX(问题挑战一的方法) XXX)问题挑战二的方法) 请将XXX补充完整,重点在预测,如何刻画和利用数据分布的“变化性”
以下是为您补充完整的内容: 对于如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性,以及如何利用从少量样本中提取到的变化信息来预测未见数据的表现,我们可以参考以下方法: 在准备 LLM 数据方面,对于制作 LLM 微调数据集,首先获取文本格式非结构式和网络式结构式的数据。对于 QA 数据集,主要依靠已有的大语言模型生成,根据不同文本设定不同的提示词以获取尽可能多且信息量丰富的 QA。先对文件中的文本进行切割,将每一大部分放进一个约 200 字的 txt 文件里,然后设定提示词模板。例如对于公司产品手册,模板可以是:“你是一个聪明的 xxx 公司的 xxx 产品的产品经理。给你一段 xxxxx 有限公司 xx 产品相关的文本,你必须依据文本想出十个不同的问题和这十个问题对应的答案。你想出的问题可以被用来测试公司内部 xxx 职员的专业能力。你想出的问题可以是使用公司产品的用户会想到的问题。你想出的问题和答案必须和所给文本相关。你回答得答案必须可以让使用产品的用户理解。当你想出问题和答案后,你必须用以下格式回复:```
2024-10-21
介绍一下视觉算法产品,以及该方向产品经理需要做的内容,以及面试可能会考察的知识点
目前知识库中暂时没有关于视觉算法产品、该方向产品经理工作内容以及面试考察知识点的相关信息。但一般来说,视觉算法产品是利用计算机视觉技术来实现特定功能的产品,例如图像识别、目标检测、视频分析等。 视觉算法产品经理需要做的工作内容可能包括: 1. 市场调研与需求分析:了解市场需求、竞争对手情况,挖掘潜在的用户需求。 2. 产品规划与定义:明确产品的目标、功能、性能指标等。 3. 算法选型与整合:根据需求选择合适的视觉算法,并进行整合和优化。 4. 项目管理与推进:协调开发团队、测试团队等,确保项目按时交付。 5. 与客户沟通:收集反馈,优化产品。 在面试视觉算法产品经理时,可能会考察以下知识点: 1. 计算机视觉基础知识,如常见的算法和模型。 2. 对相关行业和市场的了解。 3. 产品管理的方法和流程。 4. 项目管理经验和能力。 5. 沟通协调和团队合作能力。
2024-11-01
总结一下最新AI动态和新闻,各种新技术和新的应用方向
以下是最新的 AI 动态和新闻,以及新技术和新的应用方向: 技术研究方向: 数学基础:包括线性代数、概率论、优化理论等。 机器学习基础:涵盖监督学习、无监督学习、强化学习等。 深度学习:涉及神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:包含语言模型、文本分类、机器翻译等。 计算机视觉:有图像分类、目标检测、语义分割等。 前沿领域:如大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 编程基础:如 Python、C++等。 机器学习基础:如监督学习、无监督学习等。 深度学习框架:如 TensorFlow、PyTorch 等。 应用领域:包括自然语言处理、计算机视觉、推荐系统等。 数据处理:涵盖数据采集、清洗、特征工程等。 模型部署:涉及模型优化、模型服务等。 行业实践:包含项目实战、案例分析等。 AIGC 周刊动态: 2024 年 7 月第二周:快手发布可灵网页版及大量模型更新;阶跃星辰发布多款模型;商汤打造类似 GPT4o 的实时语音演示;GraphRAG:微软开源新型 RAG 架构。 2024 年 7 月第三周:Anthropic 新增分享和后台功能;LLM 分布式训练框架 OpenDiLoCo;Odysseyml 重构 AI 视频生成技术。 2024 年 7 月第四周:Open AI 发布 GPT4omini、Mistral 发布三个小模型,还有其他一堆小模型等。 2024 年 7 月第五周:Meta 发布的 Llama3.1 405B 模型,具备 128K token 上下文窗口及对 8 种语言的改进,能与领先闭源模型竞争。评估显示其在指令遵循、代码和数学能力上表现优异。同时,还提到 AI 音乐工具 Udio 的大规模更新,以及 OpenAI 推出的 SearchGPT 搜索功能。 新手学习 AI 的方法: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 选择感兴趣的模块深入学习:如图像、音乐、视频等,掌握提示词技巧。 实践和尝试:实践巩固知识,使用各种产品创作,分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式。
2024-10-31
ChatGLM视频表现有何特色,优劣分析一下
ChatGLM 是中文领域效果最好的开源底座模型之一,具有以下特色: 1. 针对中文问答和对话进行了优化,能更好地处理中文语境下的任务。 2. 经过约 1T 标识符的中英双语训练,并辅以监督微调、反馈自助、人类反馈强化学习等技术的加持。 其优势包括: 1. 在处理中文相关的任务时表现出色,能提供较为准确和有用的回答。 然而,目前可能存在的不足暂未在提供的内容中有明确提及。但一般来说,与其他先进的语言模型相比,可能在某些复杂场景下的表现还有提升空间。
2024-10-30
介绍一下智谱清言
智谱清言是由智谱 AI 和清华大学推出的大模型产品,其基础模型为 ChatGLM 大模型。 模型特点: 工具使用排名国内第一。 在计算、逻辑推理、传统安全能力上排名国内前三。 更擅长专业能力,但代码能力有优化空间,知识百科方面与其他第一梯队模型相比稍显不足。 适合应用: 场景广泛,可优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景。 在较复杂推理应用上效果不错。 广告文案、文学写作方面也是很好的选择。 访问方式: PC 端: 移动端: 小程序端:搜索【智谱清言】进入【清影】智能体 在中国 AI 领域,智谱 AI 的模型具有开创性,其背后技术源自清华大学研发团队的科研成果转化。产品设计对标 ChatGPT,在逻辑推理和处理复杂提示词方面表现出明显优势。
2024-10-30
能否介绍一下ai的历史
人工智能(Artificial Intelligence)的历史源远流长。 早在 19 世纪,查尔斯·巴贝奇发明了计算机,用于按照明确的程序进行数字运算,现代计算机虽更先进,但仍遵循相同的受控计算理念。 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为神经网络奠定基础。 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,正式提出“人工智能”一词,并确立其为一门学科。 此后近 70 年,AI 的发展起伏不定,曾两次引发人类对其毁灭世界的恐慌,热度时高时低。 在发展过程中,对于一些任务,如根据照片判断一个人的年龄,由于无法明确解法,无法编写明确程序让计算机完成,这类任务正是 AI 所关注的。 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,引发了全球的 AI 浪潮。
2024-10-27
AI如何综合利用,可以高效率做哪些事情,总结一下
以下是 AI 综合利用并能高效率做事的一些方面: 在教学中: 帮助教师节省时间和提高生产力,如备课。 为学生制定个性化学习计划,分析学生表现并根据知识差距和个人学习风格创建定制的学习路径。 进行课程开发和创造学习沉浸体验,包括生成图像、文本和视频,转化为补充教育材料、作业和练习题。 与新的 AI 工具结合,为学生提供更好的口语和展示沟通准备工具。 但与优秀人类教师相比仍有差距,人机融合是趋势。 在政府工作中: 帮助政府为美国人民提供更好的结果,扩大机构的监管、治理和福利分配能力,降低成本并增强政府系统的安全性。 为机构使用 AI 发布指导,包括明确保护权利和安全的标准,改进 AI 采购,并加强 AI 部署。 帮助机构通过更快速和高效的合同获取特定的 AI 产品和服务。 加速招聘 AI 专业人员。 在工作场景中: 营销方面,如蓝色光标 X 京东探索出 AIGC 精细化作业模式,革新传统代言人 TVC 制作流程;定制营销报告,涵盖多种相关数据和分析。 办公方面,如利用 ChatGPT 生成 Markdown 语法内容,再借助 MindShow 转换为精美的 PPT。
2024-10-26