直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

将复杂任务分解为简单子任务以简化问题,这样的ai工具都有什么

回答

以下是一些可将复杂任务分解为简单子任务以简化问题的 AI 工具和相关策略:

  1. OpenAI 官方指南中提到的策略:
    • 使用意图分类来识别与用户查询最相关的指令。
    • 对于需要很长对话的对话应用程序,总结或过滤之前的对话。
    • 分段总结长文档,并递归构建完整总结。
    • 指示模型在急于得出结论之前先自己找出解决方案。
    • 使用内心独白或一系列查询来隐藏模型的推理过程。
    • 询问模型在之前的回答中是否遗漏了什么。
    • 使用基于嵌入的搜索来实现高效的知识检索。
    • 使用代码执行来进行更准确的计算或调用外部 API。
  2. 在 AI-Agent 系列中:
    • 基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力,当然也包括对工具的理解。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

目录:OpenAI 官方指南

正如在软件工程中将复杂系统分解为一组模块化组件是一种良好的实践,对GPT提交的任务也是如此。复杂任务的错误率往往比简单任务高。此外,复杂任务往往可以被重新定义为一系列简单任务的工作流程,其中早期任务的输出用于构造后续任务的输入。策略:使用意图分类来识别与用户查询最相关的指令对于需要很长对话的对话应用程序,总结或过滤之前的对话分段总结长文档,并递归构建完整总结[heading2]给GPT时间「思考」[content]如果要求你将17乘以28,你可能不会立即知道答案,但是还是可以花时间计算出来。同样,GPT在试图立即回答问题时会犯更多的推理错误,而不是花时间去推导出答案。在回答之前要求一个推理链条可以帮助GPT更可靠地推理出正确的答案。策略:指示模型在急于得出结论之前先自己找出解决方案使用内心独白或一系列查询来隐藏模型的推理过程询问模型在之前的回答中是否遗漏了什么[heading2]使用外部工具[content]通过将其他工具的输出提供给GPT来补偿GPT的弱点。例如,文本检索系统可以告诉GPT相关的文档。代码执行引擎可以帮助GPT进行数学运算和执行代码。如果一个任务可以由工具而不是GPT更可靠或有效地完成,那么将其转移出去,以便获得双方的最佳效果。策略:使用基于嵌入的搜索来实现高效的知识检索使用代码执行来进行更准确的计算或调用外部API

目录:OpenAI 官方指南

[title]目录:OpenAI官方指南[heading1]二、战术[heading2]策略:将复杂任务拆分为更简单的子任务[heading3]战术:使用意图分类来识别与用户查询最相关的指令对于需要大量独立指令集来处理不同情况的任务,首先对查询类型进行分类并使用该分类来确定需要哪些指令可能是有益的。这可以通过定义与处理给定类别中的任务相关的固定类别和硬编码指令来实现。这个过程也可以递归地应用于将任务分解为一系列阶段。这种方法的优点是每个查询将仅包含执行任务下一阶段所需的指令,与使用单个查询执行整个任务相比,这可以降低错误率。这也可以降低成本,因为更大的提示运行成本更高([参见定价信息](https://openai.com/pricing))。例如,假设对于客户服务应用程序,可以将查询分类如下:|系统|你将会接收到客户服务查询。将每个查询分类为主要类别和次要类别。以json格式提供你的输出,键(key)为:primary和secondary。主要类别:计费、技术支持、账户管理或一般查询。计费次要类别:-取消订阅或升级-添加付款方式-收费说明-对收费提出异议技术支持次要类别:-故障排除-设备兼容性-软件更新账户管理次要类别:-密码重置-更新个人信息-关闭帐户-账户安全一般查询二级类别:-产品信息-定价-反馈-与人交谈|<br>|-|-|<br>|用户|我需要让我的互联网重新工作。|

AI-Agent系列(一):智能体起源探究

[title]AI-Agent系列(一):智能体起源探究[heading2]十、基于LLM的AI Agent[heading3]10.3行动模块(Action)理解工具:AI Agent有效使用工具的前提是全面了解工具的应用场景和调用方法。没有这种理解,Agent使用工具的过程将变得不可信,也无法真正提高AI Agent的能力。利用LLM强大的zero-shot learning和few-shot learning能力,AI Agent可以通过描述工具功能和参数的zero-shot demonstartion或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。这些学习方法与人类通过查阅工具手册或观察他人使用工具进行学习的方法类似。在面对复杂任务时,单一工具往往是不够的。因此,AI Agent应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于LLM的推理和规划能力,当然也包括对工具的理解。使用工具:AI Agent学习使用工具的方法主要包括从demonstartion中学习和从reward中学习(清华有一篇从训练数据中学习的文章)。这包括模仿人类专家的行为,以及了解其行为的后果,并根据从环境和人类获得的反馈做出调整。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。具身智能在追求人工通用智能(AGI)的征途中,具身Agent(Embodied Agent)正成为核心的研究范式,它强调将智能系统与物理世界的紧密结合。具身Agent的设计灵感源自人类智能的发展,认为智能不仅仅是对预设数据的处理,更多地来自于与周遭环境的持续互动和反馈。与传统的深度学习模型相比,LLM-based Agent不再局限于处理纯文本信息或调用特定工具执行任务,而是能够主动地感知和理解其所在的物理环境,进而与其互动。这些Agent利用其内部丰富的知识库,进行决策并产生具体行动,以此改变环境,这一系列的行为被称为“具身行动”。

其他人在问
AI分镜
以下是关于《李清照》AI 视频创作的分镜内容: |分镜|子分镜|分镜主视觉|配音|角色|配音|画面| |||||||| |8|0801<br>0802|嗯~谁在叫我<br>小姑娘,你从哪里来?你叫什么名字呀?|王维||| |9|0901 疑惑<br>0902 诗文|疑惑自言自语<br>疑惑的表情<br>看到明月松间照,清泉石上流惊喜|我叫什么名字呢?(疑惑)<br>哦~(惊讶)<br>李清照吟诵:明月松间照,清泉石上流。|少年李清照|| |10|1001 惊喜<br>1002 照清高亮|李清照灵机一动<br>墙上诗:明月松间照,清泉石上流。照和清高亮显示|背景音效:灵机一动|||| |11|11 得意|李清照脸部特写,惊喜表情|我叫李清照(高兴)|少年李清照|| |12|12 王维沉思|王维沉思|李清照~李清照,好名字、好名字|王维|| |13|13 夜景|明月下溪水潺潺|王维吟诵:明月松间照,清泉石上流。|王维|| |20|20|画面穿越到当代写字楼办公室|忙乱和电话铃声|背景声|| |21|21|面对电脑的李清照一脸茫然|||| |22|22|旁边两个同事聊天|你们打算什么时间要孩子?<br>要孩子,要什么孩子,我们是丁克家庭。|同事甲<br>同事乙|| |23|23|李清照满脑子疑惑,丁克是什么意思|疑问背景音|背景声|| |24|24|李清照查询丁克的意思,发现是不要孩子的家庭。|||| |25|25|旁边两个同事聊天|那你不打算结婚吗?<br>我才 30 岁,结哪门子婚,我的环游世界梦想还没有实现呢|同事甲<br>同事乙|| |26|26|李清照满脑子疑惑,为什么可以不结婚?怎么生活?|疑问背景音|背景声|| |27|27|李清照开始查阅资料|清照~清照~你不下班吗?<br>哦哦~我查点资料|同事甲<br>李清照|| |1||远景一个古装小女孩草丛中嬉戏|背景音乐:小女孩嬉戏声|||| |2|0201 欢快<br>0202 疑惑|李清照与蝴蝶对话:远景、特写|蝴蝶:你叫什么名字呀?(欢快)<br>李清照:嗯~嗯~我叫什么名字呢?(疑惑)|蝴蝶<br>少年李清照|| |3|0202 放大|李清照特写|||| |4|04 穿越唐代|李清照满是疑惑|画外音:这是什么地方?(疑惑)|少年李清照|| |5|《辋川别业》建筑|写有《辋川别业》的古代建筑|辋川别业、辋川别业,难到这是王维的住处!(恍然大悟)|少年李清照|| |6|06|《维摩诘诗集》特写|真的是王维(高兴)|少年李清照|| |7|07|李清照高兴奔向王维|王伯伯~王伯伯~(高兴)|少年李清照||
2024-11-23
学习AI
以下是针对新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-23
有什么 ai 辅助打工人学习的工具推荐
以下是为打工人推荐的一些 AI 辅助学习工具: 英语学习工具: 1. Speak:这是一款 AI 英语学习 APP,利用先进的 AI 语言学习技术,提供全面实时反馈,支持随时随地练习口语,且 OpenAI 曾投资该公司。 2. Duolingo:提供游戏化学习平台,通过 AI 辅助教学,帮助学习新词汇和短语,其口语练习功能有助于练习发音和口语表达。 3. Call Annie:在发音过程中能根据发言调整表情和动作,让人感觉如同与真人对话,可随时通过视频或语音进行英语对话。 英语和数学通用学习方法: 1. 利用智能辅助工具,如英语写作助手 Grammarly 进行写作和语法纠错。 2. 借助语音识别应用,如 Call Annie 进行口语练习和发音纠正。 3. 使用自适应学习平台,如 Duolingo 为您量身定制学习计划。 4. 运用智能导师和对话机器人,如 ChatGPT 进行会话练习和对话模拟。 数学学习工具: 1. 自适应学习系统,如 Khan Academy,结合 AI 技术提供个性化学习路径和练习题。 2. 智能题库和作业辅助工具,如 Photomath,通过图像识别和数学推理技术提供数学问题解答和解题步骤。 3. 虚拟教学助手,如 Socratic,利用 AI 技术解答数学问题、提供教学视频和答疑服务。 4. 参与交互式学习平台,如 Wolfram Alpha 的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 内容仿写工具: 1. 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,能一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-23
如何理解AI的边界
AI 的边界可以从以下几个方面来理解: 1. 从生态位角度:AI 是一种似人而非人的存在,无论其技术如何发展,都处于这样的生态位。在与 AI 相处时,要基于其“非人”的一面,通过清晰的语言文字指令压缩其自由度,明确告诉它需要做什么、边界在哪里、目标是什么、实现路径和方法以及提供所需的正确知识。 2. 在品牌卖点提炼中的应用:在搭建智能体提炼品牌卖点前,要先明确 AI 的能力边界。例如,AI 对公司的主要产品、产品解决的用户需求、产品独特之处、获得的认可、依赖的核心渠道、核心购买人群、使用过的营销手段、在新渠道的期望结果等方面了解程度接近于 0。AI 真正的能力在于通过分析数据和信息进行逻辑推理、快速处理和分析数据并提取有价值的信息和模式、拥有大量训练数据并能输出更全面的相关信息、理解用户提供的内容并按正确结构梳理有效输出内容。因此,智能体更适合作为引导型的灵感提问助手。 3. 在编程方面:在许多情况下,我们给 AI 下达明确命令完成一次性任务。当期待提高,希望进一步解脱繁琐日常任务时,需要了解 AI 编程的边界和限制。编程准则第一条是能不编尽量不编,优先找线上工具、插件、本地应用,对于 API 功能,先找现成开源工具,然后考虑付费服务,都找不到时才考虑自己编程,且编程时要以终为始,聚焦目标。
2024-11-23
如何对ai祛魅
以下是关于对 AI 祛魅的相关内容: 在游戏 PV 制作方面: AI 抠图:可直接抠图或在 PS 里操作,图片上传即可抠图,用于制作素材,如叶子飘落、战斗时石头等素材的氛围动画。 声音素材:包括背景音乐,团队曾尝试制作但有难度,利用工具生成背景音乐,还使用分离人声的 AI 软件处理音乐。旁白方面,使用微软 AI 语音,其语音库支持 147 种语言,还有定制声音。 在使用 AI 做事方面: AI 可能“产生幻觉”并生成看似合理但错误的内容,需要检查其输出。 人工智能不会真正解释自己,给出的解释可能是编造的,理解系统中的偏见较困难。 存在被不道德使用来操纵或作弊的可能,使用者要对输出负责。 在写作方面: 以前人们在写作的普遍期望和写作的固有困难之间承受巨大压力,如今 AI 使写作压力消散。 这将导致世界分为会写和不会写的人,中间水平的写作者可能消失。 写作是一种思考方式,技术使写作技能消失是不好的。
2024-11-23
ai怎么帮英语老师进行教学
以下是 AI 帮助英语老师进行教学的一些方式: 1. 生成作业和测试题:AI 能够模仿中高考、托福雅思、SAT、GRE 等各类考试的题型,为老师提供源源不断的真题库,同时也能为学生生成错题练习库。例如,在选词填空这类题型上,通过合适的提示词,AI 可以发挥作用,这种逻辑还能迁移到语文学科。 2. 实现个性化教学:2022 年教育部颁布的新课程标准提到“开展差异化教学”“加强个别指导”,但一线教师行政任务繁重。借助大模型,AI 可以为每个学生量身定制个性化学习和定制化作业。 3. 实时交流与反馈:想象一个由 AI 驱动的语言老师,能够实时与学生交流,并对发音或措辞给予反馈。 4. 协助教学评估:AI 可以作为出题小助手,帮助老师进行教学评估。 5. 提升学生写作水平:像 Grammarly、Orchard 和 Lex 这样的工具可以帮助学生克服写作难题,提升写作水平。 6. 辅助创建演示文稿:例如 Tome 和 Beautiful.ai 可以协助创建演示文稿。 需要注意的是,由于人工智能可能会产生幻觉,对于关键数据,应根据其他来源仔细检查。
2024-11-23
最近有什么类似任务清单的AI应用
以下是一些类似任务清单的 AI 应用: WPS 文档翻译功能:这是一个 AI 办公文档翻译工具,使用自然语言处理技术,市场规模达数亿美元。它能快速翻译办公文档,提高工作效率,例如可快速翻译 Word、Excel、PPT 等文档。 美丽修行 APP:作为 AI 美容护肤产品推荐平台,运用数据分析和自然语言处理技术,市场规模达数亿美元。它能根据用户肤质推荐适合的美容护肤产品,比如为油性皮肤推荐控油、保湿的护肤品。 360 儿童手表:这是一个 AI 儿童安全监控系统,采用图像识别和机器学习技术,市场规模达数亿美元。它能保障儿童安全,让家长放心,比如当孩子走出安全区域时会自动向家长发送警报。 汽车之家 APP:作为 AI 汽车保养提醒系统,运用数据分析和机器学习技术,市场规模达数亿美元。它能提醒车主及时进行汽车保养,例如当汽车行驶到一定里程时会推送保养提醒信息。 平安好医生 APP:这是一个 AI 医疗诊断辅助系统,使用数据分析和机器学习技术,市场规模达数十亿美元。它能辅助医生进行疾病诊断,提高诊断准确性,比如用户上传症状描述和检查报告后,系统能给出初步诊断建议和治疗方案。 腾讯会议:作为 AI 会议记录生成工具,运用语音识别和自然语言处理技术,市场规模达数亿美元。它能自动生成会议记录,方便回顾和整理,比如在会议过程中能生成包括发言内容、讨论要点等的记录。 字体管家 APP:这是一个 AI 书法字体生成器,采用图像生成和机器学习技术,市场规模达数亿美元。它能生成各种风格的书法字体,比如生成楷书、行书、草书等字体。 醒图 APP:作为 AI 摄影构图建议工具,运用图像识别和数据分析技术,市场规模达数亿美元。它能为摄影爱好者提供构图建议,提升照片质量,比如引导用户将主体放在画面的黄金分割点上。 宝宝树安全座椅推荐:这是一个 AI 儿童安全座椅推荐系统,运用数据分析和机器学习技术,市场规模达数亿美元。它能为家长推荐合适的儿童安全座椅,比如根据儿童年龄、体重等信息进行推荐。 途虎养车保养推荐:作为 AI 汽车保养套餐推荐系统,运用数据分析和机器学习技术,市场规模达数十亿美元。它能根据车辆情况推荐保养套餐,比如分析车辆型号、行驶里程等。 丰巢快递柜管理系统:这是一个 AI 物流快递柜管理系统,采用数据分析和物联网技术,市场规模达数十亿美元。它能优化快递柜使用效率,比如分配柜子、通知取件等。 智联招聘面试模拟功能:作为 AI 招聘面试模拟平台,运用自然语言处理和机器学习技术,市场规模达数亿美元。它能帮助求职者进行面试模拟,比如模拟面试官提问并提供反馈。 酷家乐装修设计软件:这是一个 AI 房地产装修设计平台,运用图像生成和机器学习技术,市场规模达数十亿美元。它能为用户提供装修设计方案,比如生成各种装修设计方案供用户选择和调整。
2024-11-19
摘要总结作为 llm 训练的下游任务,一般的训练流程是怎样的
作为 LLM 训练的下游任务,一般的训练流程如下: 1. 首先从大量文本数据中训练出一个基础 LLM。 2. 随后使用指令和良好尝试的输入和输出来对基础 LLM 进行微调和优化。 3. 接着通常使用称为“人类反馈强化学习”的技术进行进一步细化,以使系统更能够有帮助且能够遵循指令。 在训练过程中,会涉及到一些相关的理论探讨和评价指标: 理论探讨方面,如在推理阶段对 InContext Learning 能力的运行分析,将其视为隐式微调,通过前向计算生成元梯度并通过注意力机制执行梯度下降,且实验表明 LLM 中的某些注意力头能执行与任务相关的操作。 评价指标方面,entropylike 指标(如 crossentropy 指标)常用于表征模型的收敛情况和测试集的简单评估(如 Perplexity 指标),但对于复杂的下游应用,还需更多指标,如正确性(Accuracy)、信息检索任务中的 NDCG@K 指标、摘要任务中的 ROUGE 指标、文本生成任务中的 BitsperByte 指标、不确定性中的 ECE 指标、鲁棒性(包括 invariance 和 equivariance)、公平性、偏见程度和有毒性等。
2024-11-07
可将复杂任务分解为简单子任务的ai工具是什么
以下是一些可将复杂任务分解为简单子任务的 AI 工具和相关策略: OpenAI 官方指南中提到,对于需要大量独立指令集来处理不同情况的任务,可以首先对查询类型进行分类,并使用该分类来确定需要的指令。例如,在客户服务应用程序中,将查询分类为计费、技术支持、账户管理或一般查询等主要类别,并进一步细分次要类别。 如同软件工程中将复杂系统分解为模块化组件,对 GPT 提交的任务也可如此。复杂任务往往可被重新定义为一系列简单任务的工作流程,早期任务的输出用于构造后续任务的输入。 在 AIAgent 系列中,基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力以及对工具的理解。
2024-11-05
有没有关于工作任务分解为具体步骤的提示词
以下是关于将工作任务分解为具体步骤的提示词相关内容: 提示词工程的任务可分解为两个步骤,如 Pryzant 等人(2023)所做:第一步,模型预期检查当前提示词和一批样本;第二步,模型预期编写一个改进的提示词。 对于复杂任务,可将其分解成更小的步骤,并在提示词中明确每个步骤的具体操作,引导模型逐步完成任务。例如,使用以下逐步说明:步骤 1 用户将提供用三重引号引用的文本。用一个句子总结这段文本,并以“摘要:”作为前缀。步骤 2 将步骤 1 的摘要翻译成西班牙语,前缀为“翻译:”。 如果将任务分解,Claude 在执行任务时犯错或遗漏关键步骤的可能性会降低。 为了鼓励模型仔细检查批次中的每个示例,并反思当前提示词的局限性,可指导提案模型回答一系列问题,如输出是否正确、提示词是否正确描述了任务、是否有必要编辑提示词等。 实际操作中,提示词插入整个输入序列的位置是灵活的,可能位于输入文本之前用于描述任务,也可能出现在输入文本之后以激发推理能力。在元提示词中应明确提示词和输入之间的相互作用。
2024-10-21
能更换任务形象的AI助手
Character.ai 是一款每个人都可定制自己个性化 AI 的工具。其愿景是“让地球上的每个人都能获得自己的深度个性化超级智能,帮助他们过上最美好的生活”。在这个平台上,授课教师、游戏玩家、情感伴侣等各种角色都可以由 AI 来扮演,一切的服务都可以被 AI 重构。这意味着每个人都能拥有像钢铁侠中的 Javis 一样的人工智能助手,帮助完成各种任务,成为生活中不可或缺的一部分。这种技术的发展将为人类带来更多便利和创新,改变人们的生活和工作方式。您可以通过以下链接了解更多:
2024-09-23
项目型,任务型的AI整合工具,推荐一下
以下是为您推荐的项目型、任务型的 AI 整合工具: 1. 项目管理和任务跟踪工具: Jira、Trello 等项目管理软件已开始集成 AI 功能,可辅助制定计划、分配任务、跟踪进度。 2. 文档和协作工具: 微软的 Copilot 可集成到 Office 套件中,为项目文档撰写、编辑提供 AI 助手功能。 云存储服务如 Google Drive 也开始提供 AI 驱动的文档管理和协作功能。 3. 风险管理和决策支持工具: 部分 AI 工具能帮助识别和分析项目风险,并提供决策建议。 4. 沟通和协作工具: AI 助手可辅助进行团队沟通协调、客户关系维护等。 5. 创意生成工具: 如文心一格、Vega AI 等 AI 绘画工具,可帮助快速生成创意图像素材。 6. Dart: 是一款擅长智能化处理任务管理的项目管理工具,具有路线图、日历视图、文档处理等功能。 拥有用户友好界面、AI 功能(如自动填充特性和子任务自动生成),可高度自定义布局,轻松区分工作和个人任务。 集成了生成性 AI(如 ChatGPT),在规划和任务创建方面能为用户节约大量时间和精力。 随着 AI 技术的发展,越来越多的工具正在为项目管理提供智能化的辅助功能,涵盖项目管理的各个环节,有助于提高工作效率和决策能力。
2024-09-19
我要在自己的应用中接入AI大模型能力,请问有什么工具或lib可以简化这个过程
以下是一些可以简化在应用中接入 AI 大模型能力的工具和库: 1. 您可以搭建 ,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型。 2. 搭建 ,这是一个知识库问答系统,您可以将知识文件放入,并接入大模型作为分析知识库的大脑,它也有问答界面。 3. 搭建 ,其中的 cow 插件能进行文件总结、MJ 绘画等。 另外,基于 LangChain 平台提供的 LLM 基础模型,也能完成任意模型接口的封装。LLM(语言逻辑模型)是 LangChain 平台与各种大模型进行交互的核心模型,是一个抽象概念,可理解为处理语言输入和输出的黑盒。其输入是字符串表示的用户请求或问题,输出也是字符串表示的模型回答或结果。LLM 能根据不同输入调用不同大模型完成不同语言任务,具有无需关心大模型细节和复杂性、灵活选择切换大模型、可自行封装实现语言逻辑和功能等优势。 在基础通识课中,还提到了一些相关内容,如流式训练方式提升训练速度和质量,多种 AI 生成工具(如 so no 音频生成工具、能创建个人 AI 智能体的豆包、输入文本可生成播客的 Notebook LN),端侧大模型的特点,AI 工程平台(如 define、coach 等),模型社区(如魔搭社区)等。
2024-10-23
AI应用于信息展示除了以下这段还能写啥?人工智能对演示文稿、网页、微信公众号和Markdown工具都有影响,正重塑信息展示领域。例如,AI可以简化演示文稿设计布局的调整;通过AI能分析用户行为,优化网页内容和结构;在微信公众号利用AI实现个性化推送和智能回复,提升响应和互动质量。Markdown也可利用AI实现智能化编辑和检查。
以下是 AI 应用于信息展示的其他方面: 1. GPT4VAct 作为多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览,基于 AI 的能力、项目目标人群和服务内容类型,可实现未来互联网项目产品原型设计的自动化生成,使效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。 2. 在电影制作方面,可综合应用 AI 工具,如使用 ChatGPT 撰写脚本、分镜、人物设定和旁白,使用 Midjourney 生成静态分镜图片,使用 Runway 生成动态分镜片段,使用 AI 配音软件制作旁白。 3. 在写作方面,AI 可用于草拟各类初稿,如博客文章、论文、宣传材料、演讲、讲座等。还能帮助改进已有的文本,以不同风格创建草稿,激发作者创作出更好的作品,以及协助完成如写邮件、创建销售模板、提供商业计划下一步等任务。
2024-08-15
什么ai对思路分解做的比较好
以下几种 AI 在思路分解方面具有一定的优势和特点: 1. 专家 AI:鉴于其神经网络基础,可能通过元学习更快地获得知识。通过构建系统深入探索其内部工作机制,能创造学习的飞轮,未来甚至可能成为下一代专家的教师,帮助我们将复杂问题一部分一部分地拆解研究。 2. ChatGPT:在某些实用向话题,如写代码、解数学题等方面表现相对稳定,能够为解决问题提供一定的思路。 3. 大语言模型:可以加速认知提升,指导学习。人类可以利用其培养结构化思维,将复杂问题分解成更小、更易管理的部分,并通过逻辑和有条理的步骤来解决,从而达到解决整体问题的目的。 需要注意的是,不同的 AI 在不同的场景和任务中表现各异,具体的效果还需根据实际需求和使用情况来评估。
2024-11-02
有什么工具可以帮助用户用okr的方式,分解成mvp
将OKR(目标与关键结果)分解成MVP(最小可行产品)的过程需要一些工具和方法来帮助用户进行有效的规划和执行。以下是一些常用的工具和方法,可以帮助用户实现这一目标: 工具 1. Trello: 功能:Trello 是一个基于看板的项目管理工具,可以帮助团队将OKR分解成具体的任务和MVP。 使用方法:创建一个看板,添加列表如“目标(Objectives)”、“关键结果(Key Results)”、“任务(Tasks)”、“MVP”等,将OKR逐步细化为具体的任务和MVP。 2. Asana: 功能:Asana 是一个强大的任务管理和项目管理工具,适合进行OKR到MVP的分解。 使用方法:在Asana中创建项目,设置目标和关键结果,然后将这些目标进一步分解成具体的任务,确定哪些任务构成MVP。 3. Notion: 功能:Notion 提供灵活的笔记、数据库和任务管理功能,可以用来管理OKR和MVP。 使用方法:创建一个数据库用于管理OKR,设置不同的视图(如任务视图、看板视图等)来跟踪目标的进展,并将关键结果细化为可执行的MVP。 4. Jira: 功能:Jira 是一个广泛使用的项目和问题跟踪工具,特别适合软件开发团队。 使用方法:在Jira中创建项目和用户故事,将OKR分解为具体的故事和任务,确定哪些故事构成MVP,使用sprint和看板视图来管理和跟踪进展。 5. Microsoft Planner: 功能:Planner 是微软提供的一个简单易用的任务管理工具,集成在Office 365中。 使用方法:创建计划板,设置OKR和相应的任务,将这些任务分配到团队成员,并标记出构成MVP的关键任务。 方法 1. SMART原则: 描述:确保每个目标都是具体的(Specific)、可衡量的(Measurable)、可实现的(Achievable)、相关的(Relevant)和有时间限制的(Timebound)。 应用:在定义OKR时,使用SMART原则确保目标清晰明确,有助于进一步分解为MVP。 2. 价值流映射: 描述:一种分析和设计流程的方法,旨在识别和减少浪费,提高效率。 应用:绘制从OKR到交付MVP的整个流程图,识别每一步的价值和瓶颈,将OKR有效地转化为MVP。 3. MoSCoW法则: 描述:一种需求优先级排序的方法,将任务分为必须(Must have)、应该(Should have)、可以(Could have)和不会(Won't have)。 应用:在分解OKR时,使用MoSCoW法则来确定哪些任务是MVP的一部分,确保优先完成关键任务。 4. 用户故事映射: 描述:一种用于管理产品功能和用户故事的技术,帮助团队了解和安排产品的工作。 应用:将OKR转化为用户故事,创建故事地图,确定哪些故事和功能构成MVP,确保MVP能实现核心目标。 这些工具和方法可以帮助团队有效地将高层次的OKR分解为具体的MVP,确保目标的实现和产品的快速迭代。
2024-05-28