Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

将复杂任务分解为简单子任务以简化问题,这样的ai工具都有什么

Answer

以下是一些可将复杂任务分解为简单子任务以简化问题的 AI 工具和相关策略:

  1. OpenAI 官方指南中提到的策略:
    • 使用意图分类来识别与用户查询最相关的指令。
    • 对于需要很长对话的对话应用程序,总结或过滤之前的对话。
    • 分段总结长文档,并递归构建完整总结。
    • 指示模型在急于得出结论之前先自己找出解决方案。
    • 使用内心独白或一系列查询来隐藏模型的推理过程。
    • 询问模型在之前的回答中是否遗漏了什么。
    • 使用基于嵌入的搜索来实现高效的知识检索。
    • 使用代码执行来进行更准确的计算或调用外部 API。
  2. 在 AI-Agent 系列中:
    • 基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力,当然也包括对工具的理解。
Content generated by AI large model, please carefully verify (powered by aily)

References

目录:OpenAI 官方指南

正如在软件工程中将复杂系统分解为一组模块化组件是一种良好的实践,对GPT提交的任务也是如此。复杂任务的错误率往往比简单任务高。此外,复杂任务往往可以被重新定义为一系列简单任务的工作流程,其中早期任务的输出用于构造后续任务的输入。策略:使用意图分类来识别与用户查询最相关的指令对于需要很长对话的对话应用程序,总结或过滤之前的对话分段总结长文档,并递归构建完整总结[heading2]给GPT时间「思考」[content]如果要求你将17乘以28,你可能不会立即知道答案,但是还是可以花时间计算出来。同样,GPT在试图立即回答问题时会犯更多的推理错误,而不是花时间去推导出答案。在回答之前要求一个推理链条可以帮助GPT更可靠地推理出正确的答案。策略:指示模型在急于得出结论之前先自己找出解决方案使用内心独白或一系列查询来隐藏模型的推理过程询问模型在之前的回答中是否遗漏了什么[heading2]使用外部工具[content]通过将其他工具的输出提供给GPT来补偿GPT的弱点。例如,文本检索系统可以告诉GPT相关的文档。代码执行引擎可以帮助GPT进行数学运算和执行代码。如果一个任务可以由工具而不是GPT更可靠或有效地完成,那么将其转移出去,以便获得双方的最佳效果。策略:使用基于嵌入的搜索来实现高效的知识检索使用代码执行来进行更准确的计算或调用外部API

目录:OpenAI 官方指南

[title]目录:OpenAI官方指南[heading1]二、战术[heading2]策略:将复杂任务拆分为更简单的子任务[heading3]战术:使用意图分类来识别与用户查询最相关的指令对于需要大量独立指令集来处理不同情况的任务,首先对查询类型进行分类并使用该分类来确定需要哪些指令可能是有益的。这可以通过定义与处理给定类别中的任务相关的固定类别和硬编码指令来实现。这个过程也可以递归地应用于将任务分解为一系列阶段。这种方法的优点是每个查询将仅包含执行任务下一阶段所需的指令,与使用单个查询执行整个任务相比,这可以降低错误率。这也可以降低成本,因为更大的提示运行成本更高([参见定价信息](https://openai.com/pricing))。例如,假设对于客户服务应用程序,可以将查询分类如下:|系统|你将会接收到客户服务查询。将每个查询分类为主要类别和次要类别。以json格式提供你的输出,键(key)为:primary和secondary。主要类别:计费、技术支持、账户管理或一般查询。计费次要类别:-取消订阅或升级-添加付款方式-收费说明-对收费提出异议技术支持次要类别:-故障排除-设备兼容性-软件更新账户管理次要类别:-密码重置-更新个人信息-关闭帐户-账户安全一般查询二级类别:-产品信息-定价-反馈-与人交谈|<br>|-|-|<br>|用户|我需要让我的互联网重新工作。|

AI-Agent系列(一):智能体起源探究

[title]AI-Agent系列(一):智能体起源探究[heading2]十、基于LLM的AI Agent[heading3]10.3行动模块(Action)理解工具:AI Agent有效使用工具的前提是全面了解工具的应用场景和调用方法。没有这种理解,Agent使用工具的过程将变得不可信,也无法真正提高AI Agent的能力。利用LLM强大的zero-shot learning和few-shot learning能力,AI Agent可以通过描述工具功能和参数的zero-shot demonstartion或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。这些学习方法与人类通过查阅工具手册或观察他人使用工具进行学习的方法类似。在面对复杂任务时,单一工具往往是不够的。因此,AI Agent应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于LLM的推理和规划能力,当然也包括对工具的理解。使用工具:AI Agent学习使用工具的方法主要包括从demonstartion中学习和从reward中学习(清华有一篇从训练数据中学习的文章)。这包括模仿人类专家的行为,以及了解其行为的后果,并根据从环境和人类获得的反馈做出调整。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。具身智能在追求人工通用智能(AGI)的征途中,具身Agent(Embodied Agent)正成为核心的研究范式,它强调将智能系统与物理世界的紧密结合。具身Agent的设计灵感源自人类智能的发展,认为智能不仅仅是对预设数据的处理,更多地来自于与周遭环境的持续互动和反馈。与传统的深度学习模型相比,LLM-based Agent不再局限于处理纯文本信息或调用特定工具执行任务,而是能够主动地感知和理解其所在的物理环境,进而与其互动。这些Agent利用其内部丰富的知识库,进行决策并产生具体行动,以此改变环境,这一系列的行为被称为“具身行动”。

Others are asking
AI应用有哪些好的方向
以下是一些 AI 应用的好方向: 1. 医疗药品零售领域: 药品推荐系统:利用机器学习算法分析用户数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 药品库存管理:通过分析历史销售数据等因素,预测药品需求量,优化库存管理策略,降低成本。 药品识别与查询:借助计算机视觉技术,用户可通过手机拍摄药品图像,AI 系统自动识别并提供相关信息查询服务。 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手回答顾客关于购药、用药、保健等常见问题,减轻人工客服工作压力。 药店运营分析:AI 分析药店销售、顾客流量、库存等大数据,发现潜在运营问题和优化空间,为决策提供参考。 药品质量监控:通过机器视觉等技术,AI 自动检测药品包装、标签、颜色等是否合格,及时发现问题。 药品防伪追溯:利用区块链等技术,AI 实现全流程药品溯源,确保药品供应链的安全性和真实可信度。 2. 改善大模型产品的使用体验,使其面对细分领域需求时变得更好用。 3. 助力用户工作流,对已有场景进行优化。 4. 细分场景独立实用工具。 5. AI 社区。 6. Chatbot。 7. 医疗保健: 医学影像分析:辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:为患者提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 8. 金融服务: 风控和反欺诈:降低金融机构风险。 信用评估:帮助金融机构做出贷款决策。 投资分析:辅助投资者做出投资决策。 客户服务:提供 24/7 服务,回答常见问题。 9. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 10. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 11. 交通运输:(具体应用未详细列举)
2025-02-05
我该怎么利用这个网站学习AI
以下是利用这个网站学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 这个网站的功能包括: 1. 和 AI 知识库对话:您可以在这里问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,可以复制到 AI 对话网站来使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 使用 AI 进行英语学习和数学学习的方法: 英语学习: 1. 利用智能辅助工具(如 Grammarly)进行英语写作和语法纠错,改进英语表达和写作能力。 2. 使用语音识别应用(如 Call Annie)进行口语练习和发音纠正,获得实时反馈和建议。 3. 使用自适应学习平台(如 Duolingo),获得量身定制的学习计划和个性化的学习内容及练习。 4. 利用智能对话机器人(如 ChatGPT)进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 1. 使用自适应学习系统(如 Khan Academy),获得个性化的数学学习路径和练习题。 2. 利用智能题库和作业辅助工具(如 Photomath),获取数学问题的解答和解题步骤。 3. 使用虚拟教学助手(如 Socratic),获得数学问题的解答、教学视频和答疑服务。 4. 参与交互式学习平台(如 Wolfram Alpha)的数学学习课程和实践项目,进行数学建模和问题求解。
2025-02-05
制作ai广告,有什么工具
以下是一些常用于制作 AI 广告的工具: 1. Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频。提供多种定价计划,可用于制作营销视频、产品演示等。 2. HeyGen:基于云的 AI 视频制作平台,用户可从众多 AI 头像库中选择,并通过输入文本生成数字人视频,适合制作营销视频和虚拟主持人等。 3. Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等,提供多种语气和风格选择,写作质量较高。 4. Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容,有免费和付费两种计划。 5. Writesonic:专注于营销内容创作的 AI 写作助手,如博客文章、产品描述、视频脚本等,提供多种语气和行业定制选项。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。总的来说,这些 AI 工具能够帮助营销人员高效创作各种营销内容,提高工作效率。用户可根据实际需求选择合适的工具。 此外,分众传媒携手阿里通义大模型,开拓了品牌广告 AI 营销新模式,具有以下价值: 1. 品牌营销 AI 化:赋能品牌客户利用 AI 大模型技术,进行品牌定位分析并制定品牌营销策略,在存量博弈的市场快速找到差异化优势,高效利用线下流量建立品牌势能。 2. 降低营销门槛:降低中小广告主的投放门槛,通过一键生成广告语,一键 AI 设计等 AI 应用,帮助广告主快速高效制作广告创意素材。 3. 业务价值回报:众智 AI 大模型将为分众拓宽客户边界,提高服务能力,通过对供给侧的生产效率变革提高传媒行业新质生产力。 同时还有相关的应用,如: 1. AI 小智助手:通过“AIchat”对话交互方式,进行品牌洞察分析和营销策略制定的应用。基于通义千亿大模型进行准确的语义理解和意图分类,并根据用户的具体提问场景调用“众智 AI 大模型”回答问题并多轮交互。 2. AI 广告语:基于分众高质量广告语数据和广告语方法论,模拟营销专家的创作思路搭建的 Agent 生成应用。 如果您想制作商业级的 AI 视频广告,在脚本和分镜创作方面,需要注意以下几点: 1. 写脚本:确定广告的总时长,内容包括开场白、汽车的基本介绍、展示车辆和服务的亮点、客户证言或推荐以及最后的呼吁行动。同时要选择合适的背景音乐,编写吸引人的台词,准备所需的道具,设计不同的镜头景别,规划镜头的运动方式。 2. 对于奔驰 GLE300L 广告脚本,如果需要,可使用 Claude 生成,并根据不满意的地方要求其进行修改。
2025-02-05
我想要编程用哪个ai好?
以下是一些可以帮助您编程、生成代码、debug 的 AI 工具: 1. GitHub Copilot:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手。它支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,该工具基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,该工具借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 7. Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 以上工具都可以帮助您提高编程效率,但是每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。 对于更有经验的程序员来说,他们的关注点可能不仅限于代码的正确性,还包括整体代码质量。如的 Jeremy Howard 所解释的,关于 OpenAI Codex 模型的最新版本,“它编写冗长的代码,因为它生成的是平均水平的代码。对我来说,将平均水平的代码转化为我喜欢且知道是正确的代码,比从头开始编写它(至少在我熟悉的语言中)要慢得多。” 因此,虽然显然生成性编程是开发人员生产力的一个重要步骤,但目前还不清楚这种改进是否显著地不同于我们以前所看到的。生成式 AI 使程序员更优秀,但他们仍然必须编程。 简而言之,在可以低成本反复评估、并且算法难以显式设计的领域,软件 2.0 都将日益流行起来。当我们考虑整个开发生态以及如何适配这种新的编程范式时,会发现很多令人兴奋的机会。长远来看,这种编程范式拥有光明的未来,因为越来越明显:当我们某天要开发通用人工智能(AGI)时,一定是使用软件 2.0。
2025-02-05
AI SFT 是什么
AI SFT 即监督微调(Supervised Finetuning)。它是一种在人工智能领域中的技术。例如在自然语言处理中,通过使用有监督的数据对预训练的模型进行微调,以使其更好地适应特定的任务和领域。在一些研究和应用中,如会话式医疗诊断人工智能应用 AMIE 中,SFT 被用于弥补真实世界数据样本的充分性、全面性、深刻性和洞察性。同时,在 Transformer 等模型的发展和应用中,SFT 也发挥着重要作用。
2025-02-05
AI生成PPT
以下是关于 AI 生成 PPT 的相关内容: 卓 sir 的经验: 流程:先让 GPT4 生成 PPT 大纲,导入 WPS 启用 WPS AI 一键生成 PPT,再让 chatPPT 添加动画,最后手动修改细节。 难点:让 GPT4 写出符合要求的大纲最花时间,因题目抽象难以理解,后借助 GPT4 明确主题为结合具体电商网站研究 5 种不同电商模式。 雪梅 May 的体验: 体验了 gamma、AIPPT、islide AI 等生成 PPT 的产品,认为 gamma 最好用,只要提供内容框架,生成的 PPT/网页审美水平最高。 熊猫 Jay 的思路和指南: 主要思路:以爱设计为例,基于 Markdown 语法的内容生成 PPT,其他工具操作方式大同小异。 优化:可按照公司要求自行优化字体、图片等元素,对下载后的 PPT 删改内容。
2025-02-05
我想要设计一个以班级期末总结为主题的40分钟班会课,请你帮我推荐一下有哪些AI软件可以完成这项任务
目前没有专门针对设计班级期末总结主题班会课的特定 AI 软件。但您可以借助一些通用的工具来辅助您完成,例如: 1. 文字处理工具,如 Microsoft Word 或 WPS,帮助您撰写班会课的流程和内容。 2. 思维导图工具,如 XMind 或百度脑图,用于梳理班会课的框架和要点。 3. 演示文稿工具,如 Microsoft PowerPoint 或 Keynote,制作展示用的 PPT 来辅助讲解。 希望这些建议对您有所帮助。
2025-01-07
任务管理 项目管理的工具
以下是一些适合软件项目经理的 AI 工具: 1. 项目管理和任务跟踪工具:如 Jira、Trello 等,已开始集成 AI 功能,可辅助制定计划、分配任务、跟踪进度。 2. 文档和协作工具:微软的 Copilot 可集成到 Office 套件中,为项目文档撰写、编辑等提供助手功能。云存储服务如 Google Drive 也提供 AI 驱动的文档管理和协作功能。 3. 风险管理和决策支持工具:可帮助识别和分析项目风险,并提供决策建议。 4. 沟通和协作工具:AI 助手可辅助进行团队沟通协调、客户关系维护等。 5. 创意生成工具:如文心一格、Vega AI 等绘画工具,可帮助快速生成创意图像素材。 此外,在 OpenAI o1 代码能力实测中,正在搭建项目管理工具的面板,包括任务板、团队成员信息、项目进度图表和通知等,每个部分都进行了精细设计和布局,体现了高效的项目监控和管理。 在界面认识方面,新版本 UI 包含顶部工具栏、左侧面板和中央画布。顶部工具栏包含全局操作和工具,如文件操作、编辑操作、视图控制和帮助等。左侧面板通常用于显示节点库,包括输入节点、模型节点、处理节点和输出节点等分类。中央画布是主要工作区域,用户可在此自由拖放和连接节点,构建工作流程,还支持缩放、移动和右键操作。
2025-01-06
请问可以用什么方法,让电脑自动完成多线程任务,实现自动化办公。
在实现电脑自动完成多线程任务以达到自动化办公的目标方面,以下是一些常见的方法: 1. 使用编程语言:如 Python、Java 等,通过相关的多线程库和模块来创建和管理多线程任务。 2. 利用自动化工具和框架:例如 AutoIt、Selenium 等,它们提供了一些功能来实现自动化操作和多线程处理。 3. 借助操作系统的任务调度功能:在 Windows 系统中可以使用任务计划程序,在 Linux 系统中可以使用 cron 任务调度器来安排多线程任务的执行。 需要注意的是,在进行多线程任务的设计和实现时,要合理规划资源分配、避免线程竞争和死锁等问题,以确保系统的稳定性和高效性。
2025-01-06
你是一名资深程序员和经验丰富的编程教授,能够以通俗保姆式的方法教会小白从0开始编程序。现在要你教我完成如下任务:我需要编写一个程序,能够每天和不同的文生图大语言模型对话,生成不同场景下的机器人设计图片。应该怎么一步步实现?
以下是为您提供的从 0 开始编写一个能够每天和不同的文生图大语言模型对话,并生成不同场景下机器人设计图片的程序的步骤: 首先,对于小白来说,可以参考以下教程进行学习和操作: 1. 张梦飞的【保姆级】一步一图,手把手教你把 AI 接入微信: 重点感谢@熊猫大侠的不厌其烦的答疑解惑,并推荐@熊猫大侠的老王。 作者是看着 WaytoAGI 里大佬的文章学习制作的。有代码基础的同学,可以直接移步到这三篇教程中。 本篇教程适合“小白中的小白”,简单粗暴,不做讲解,复制粘贴即可。一步一图,保姆级指引。 本篇文章中,没有写每一步代码的含义和配置文件的对应含义。如果想要深入研究和调优,请移步上方推荐的三篇文章。 2. 大圣的胎教级教程:万字长文带你理解 RAG 全流程: 这是一篇面向普通人的 RAG 科普,不是面向 RAG 研究者的技术向文章。 文章一共 1.6 万字,旨在让您对 RAG 技术有更全面的认知,在使用 RAG 相关产品时,可以更好地理解其能力边界,从而充分发挥其潜力。 本文适合任何人,包括 AI 爱好者、为企业寻找知识库解决方案的老板、AI 产品经理等。 3. Yeadon 的写给小小白的从游戏入手学习搓图像流 bot: 学会将发布的图像流添加进 bot 中,并测试生成海报,解决无法在聊天界面显示图片的问题,重新调整图像流使其在对话窗口显示图片,最后发布 Bot。 通过这份教程,可以学会如何在 Coze 平台上打造一个有趣的 AI 游戏助手,掌握 AI 人格设定和对话逻辑的设计方法,了解如何配置图像生成功能。 希望以上内容对您有所帮助,祝您编程顺利!
2024-12-29
AI驱动的自动化任务在PC端
以下是为您介绍的两个与 AI 驱动的自动化任务在 PC 端相关的产品: 1. Design Buddy:这是一个 Figma 插件,作为协作伙伴发挥作用,能对 UI 设计提供深入反馈。它涵盖布局、颜色、排版、可访问性等方面的结构化评论,并为每个类别分配客观评分,有助于识别 UI 设计中常被忽视的缺陷,减少未来修订需求。 2. AI Employe:这是一个开源、由 GPT4 视觉驱动的工具,用于自动化浏览器环境中的复杂任务。用户可通过在浏览器中概述和演示任务来创建工作流程,它能自动执行类人智能任务,如理解电子邮件、收据和发票,并将数据从电子邮件传输到 CRM/ERP 系统,只记录浏览器更改,不捕获屏幕、麦克风或摄像头,还能从图表、复杂表格和基于图像的 OCR 提供独特见解。
2024-12-26
ai推广接任务
以下是为您提供的与 AI 推广相关的信息: 案例方面: AI+电商场景:对应的关键词库包括品牌洋葱图思维模型、产品信息等 19 个。详情可查看,入库时间为 2023/11/13。 品牌:分析品牌舆论传播:对应的关键词库包括舆论传播、数据分析等 25 个。详情可查看,入库时间为 2023/11/13。 推广:制定上市推广方案:对应的关键词库包括品牌、产品信息等 28 个。详情可查看,入库时间为 2023/11/14。 任务拆解与进度跟踪方面: AI 春晚的任务包括 AI 与画手的对话、AI 与互联网黑话等多个节目,每个节目都有相应的内容简介、目的等。
2024-12-12
我是一个AI小白,我使用AI的主要目的是使用这些工具,简化我工作中费时费力的事情,比如:表格的制作,筛选数据;图片的抠图,渲染,产品的口播介绍;日常工厂管理文件的编写及执行步骤;工作手册及岗位绩效的编写;作业指导书的编写
以下是为您整合的相关内容: 对于 AI 小白来说,使用 AI 工具简化工作中的费时费力之事是可行的。 在接触 AI 工具时,对于超出自己理解范围的事情,最简单有效的方法就是尝试。学习新事物,实践比听闻更重要。 比如在 AI 视频制作方面,人物设定与剧本是关键部分,包括主体、动作、场景等要素;分镜处理也较为重要,要考虑用几个镜头表述内容;生成环节如同抽卡,可多尝试,最后进行粗检和后期处理,如 AI 配音剪辑、加过渡滤镜等。小白制作 AI 视频要做好脚本即提示词,有耐心抽卡,并不断提升撰写提示词的能力。撰写提示词时要了解主体、动作、场景,避免使用专有名词和网络名词,给 AI 清晰描述。工具选用方面,没有绝对好的工具,只有适合的,如小白可使用剪映,主力机是 MacBook Pro 可使用 final cut。还可向 ChatGPT 询问获取灵感。 另外,在“AI 布道”活动中发现,AI 工具虽强大能做很多事,但也在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。无论是什么身份、什么年龄段的人,都可以尝试使用 AI 工具。 如果您想要跟相关作者交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-01-30
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
我要在自己的应用中接入AI大模型能力,请问有什么工具或lib可以简化这个过程
以下是一些可以简化在应用中接入 AI 大模型能力的工具和库: 1. 您可以搭建 ,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型。 2. 搭建 ,这是一个知识库问答系统,您可以将知识文件放入,并接入大模型作为分析知识库的大脑,它也有问答界面。 3. 搭建 ,其中的 cow 插件能进行文件总结、MJ 绘画等。 另外,基于 LangChain 平台提供的 LLM 基础模型,也能完成任意模型接口的封装。LLM(语言逻辑模型)是 LangChain 平台与各种大模型进行交互的核心模型,是一个抽象概念,可理解为处理语言输入和输出的黑盒。其输入是字符串表示的用户请求或问题,输出也是字符串表示的模型回答或结果。LLM 能根据不同输入调用不同大模型完成不同语言任务,具有无需关心大模型细节和复杂性、灵活选择切换大模型、可自行封装实现语言逻辑和功能等优势。 在基础通识课中,还提到了一些相关内容,如流式训练方式提升训练速度和质量,多种 AI 生成工具(如 so no 音频生成工具、能创建个人 AI 智能体的豆包、输入文本可生成播客的 Notebook LN),端侧大模型的特点,AI 工程平台(如 define、coach 等),模型社区(如魔搭社区)等。
2024-10-23
AI应用于信息展示除了以下这段还能写啥?人工智能对演示文稿、网页、微信公众号和Markdown工具都有影响,正重塑信息展示领域。例如,AI可以简化演示文稿设计布局的调整;通过AI能分析用户行为,优化网页内容和结构;在微信公众号利用AI实现个性化推送和智能回复,提升响应和互动质量。Markdown也可利用AI实现智能化编辑和检查。
以下是 AI 应用于信息展示的其他方面: 1. GPT4VAct 作为多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览,基于 AI 的能力、项目目标人群和服务内容类型,可实现未来互联网项目产品原型设计的自动化生成,使效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。 2. 在电影制作方面,可综合应用 AI 工具,如使用 ChatGPT 撰写脚本、分镜、人物设定和旁白,使用 Midjourney 生成静态分镜图片,使用 Runway 生成动态分镜片段,使用 AI 配音软件制作旁白。 3. 在写作方面,AI 可用于草拟各类初稿,如博客文章、论文、宣传材料、演讲、讲座等。还能帮助改进已有的文本,以不同风格创建草稿,激发作者创作出更好的作品,以及协助完成如写邮件、创建销售模板、提供商业计划下一步等任务。
2024-08-15
模态分解算法的详细代码
很抱歉,目前知识库中没有模态分解算法的详细代码。但您可以通过以下途径获取相关代码: 1. 学术研究网站,如 arXiv 等,许多学者会在上面分享他们的研究成果及代码。 2. 相关的开源代码库,如 GitHub 等,您可以通过搜索关键词找到相关项目。 3. 专业的技术论坛,在那里与其他开发者交流,可能会获得有用的信息和代码示例。
2024-12-30
(defun 生成记忆卡片 (单词) "生成单词记忆卡片的主函数" (let* ((词根 (分解词根 单词)) (联想 (mapcar #'词根联想 词根)) (故事 (创造生动故事 联想)) (视觉 (设计SVG卡片 单词 词根 故事))) (输出卡片 单词 词根 故事 视觉))) (defun 设计SVG卡片 (单词 词根 故事) "创建SVG记忆卡片" (design_rule "合理使用负空间,整体排版要有呼
以下是关于生成记忆卡片和 SVG 卡片的相关信息: 卡片类的应用被定义为词生卡片,如李继刚的《汉语新解》、一泽的《名片设计》、云中江树的《AI 简历》等,都是通过给大模型优化过的 Prompt,让其生成 HTML 代码或 SVG 代码,再通过浏览器渲染效果。 把提示词丢给 Claude ,如在 Poe 平台上的 Claude 模型,大概率会直接输出 SVG 代码,但对于子步骤是否执行等情况难以知晓。Andrej Karpathy 认为,模型需要 tokens 来思考,如果大语言模型未将思考过程外化,则几乎等于没思考。 甲木介绍了让 Claude 生成古诗词卡片的方法,流程包括输入 Prompt 、用户输入主题和风格,AI 输出最终结果。获取提示词已开源,创作过程主要是根据给定主题和方向生成匹配的中国古诗词,创建设计感强烈、富有中国传统美学的 SVG 卡片展示诗词,并提供相关信息,还支持根据用户提供的主题和方向生成对应语境的 prompt 并配图生成 SVGCard 。但对于“逼格高”的看法因人而异,可将选择权交给 AI 。
2024-11-28
可将复杂任务分解为简单子任务的ai工具是什么
以下是一些可将复杂任务分解为简单子任务的 AI 工具和相关策略: OpenAI 官方指南中提到,对于需要大量独立指令集来处理不同情况的任务,可以首先对查询类型进行分类,并使用该分类来确定需要的指令。例如,在客户服务应用程序中,将查询分类为计费、技术支持、账户管理或一般查询等主要类别,并进一步细分次要类别。 如同软件工程中将复杂系统分解为模块化组件,对 GPT 提交的任务也可如此。复杂任务往往可被重新定义为一系列简单任务的工作流程,早期任务的输出用于构造后续任务的输入。 在 AIAgent 系列中,基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力以及对工具的理解。
2024-11-05
什么ai对思路分解做的比较好
以下几种 AI 在思路分解方面具有一定的优势和特点: 1. 专家 AI:鉴于其神经网络基础,可能通过元学习更快地获得知识。通过构建系统深入探索其内部工作机制,能创造学习的飞轮,未来甚至可能成为下一代专家的教师,帮助我们将复杂问题一部分一部分地拆解研究。 2. ChatGPT:在某些实用向话题,如写代码、解数学题等方面表现相对稳定,能够为解决问题提供一定的思路。 3. 大语言模型:可以加速认知提升,指导学习。人类可以利用其培养结构化思维,将复杂问题分解成更小、更易管理的部分,并通过逻辑和有条理的步骤来解决,从而达到解决整体问题的目的。 需要注意的是,不同的 AI 在不同的场景和任务中表现各异,具体的效果还需根据实际需求和使用情况来评估。
2024-11-02
有没有关于工作任务分解为具体步骤的提示词
以下是关于将工作任务分解为具体步骤的提示词相关内容: 提示词工程的任务可分解为两个步骤,如 Pryzant 等人(2023)所做:第一步,模型预期检查当前提示词和一批样本;第二步,模型预期编写一个改进的提示词。 对于复杂任务,可将其分解成更小的步骤,并在提示词中明确每个步骤的具体操作,引导模型逐步完成任务。例如,使用以下逐步说明:步骤 1 用户将提供用三重引号引用的文本。用一个句子总结这段文本,并以“摘要:”作为前缀。步骤 2 将步骤 1 的摘要翻译成西班牙语,前缀为“翻译:”。 如果将任务分解,Claude 在执行任务时犯错或遗漏关键步骤的可能性会降低。 为了鼓励模型仔细检查批次中的每个示例,并反思当前提示词的局限性,可指导提案模型回答一系列问题,如输出是否正确、提示词是否正确描述了任务、是否有必要编辑提示词等。 实际操作中,提示词插入整个输入序列的位置是灵活的,可能位于输入文本之前用于描述任务,也可能出现在输入文本之后以激发推理能力。在元提示词中应明确提示词和输入之间的相互作用。
2024-10-21
有什么工具可以帮助用户用okr的方式,分解成mvp
将OKR(目标与关键结果)分解成MVP(最小可行产品)的过程需要一些工具和方法来帮助用户进行有效的规划和执行。以下是一些常用的工具和方法,可以帮助用户实现这一目标: 工具 1. Trello: 功能:Trello 是一个基于看板的项目管理工具,可以帮助团队将OKR分解成具体的任务和MVP。 使用方法:创建一个看板,添加列表如“目标(Objectives)”、“关键结果(Key Results)”、“任务(Tasks)”、“MVP”等,将OKR逐步细化为具体的任务和MVP。 2. Asana: 功能:Asana 是一个强大的任务管理和项目管理工具,适合进行OKR到MVP的分解。 使用方法:在Asana中创建项目,设置目标和关键结果,然后将这些目标进一步分解成具体的任务,确定哪些任务构成MVP。 3. Notion: 功能:Notion 提供灵活的笔记、数据库和任务管理功能,可以用来管理OKR和MVP。 使用方法:创建一个数据库用于管理OKR,设置不同的视图(如任务视图、看板视图等)来跟踪目标的进展,并将关键结果细化为可执行的MVP。 4. Jira: 功能:Jira 是一个广泛使用的项目和问题跟踪工具,特别适合软件开发团队。 使用方法:在Jira中创建项目和用户故事,将OKR分解为具体的故事和任务,确定哪些故事构成MVP,使用sprint和看板视图来管理和跟踪进展。 5. Microsoft Planner: 功能:Planner 是微软提供的一个简单易用的任务管理工具,集成在Office 365中。 使用方法:创建计划板,设置OKR和相应的任务,将这些任务分配到团队成员,并标记出构成MVP的关键任务。 方法 1. SMART原则: 描述:确保每个目标都是具体的(Specific)、可衡量的(Measurable)、可实现的(Achievable)、相关的(Relevant)和有时间限制的(Timebound)。 应用:在定义OKR时,使用SMART原则确保目标清晰明确,有助于进一步分解为MVP。 2. 价值流映射: 描述:一种分析和设计流程的方法,旨在识别和减少浪费,提高效率。 应用:绘制从OKR到交付MVP的整个流程图,识别每一步的价值和瓶颈,将OKR有效地转化为MVP。 3. MoSCoW法则: 描述:一种需求优先级排序的方法,将任务分为必须(Must have)、应该(Should have)、可以(Could have)和不会(Won't have)。 应用:在分解OKR时,使用MoSCoW法则来确定哪些任务是MVP的一部分,确保优先完成关键任务。 4. 用户故事映射: 描述:一种用于管理产品功能和用户故事的技术,帮助团队了解和安排产品的工作。 应用:将OKR转化为用户故事,创建故事地图,确定哪些故事和功能构成MVP,确保MVP能实现核心目标。 这些工具和方法可以帮助团队有效地将高层次的OKR分解为具体的MVP,确保目标的实现和产品的快速迭代。
2024-05-28