Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

NLP包括哪些任务,现在的GPT是否都已覆盖,CV类包括哪些任务,现在由哪些网络模型覆盖

Answer

NLP 包括的任务有文本分类、情感分析、命名实体识别、信息抽取、机器翻译、问答系统、摘要生成等。目前 GPT-4 在一系列 NLP 任务上表现出色,优于现有的大型语言模型,但不能说已完全覆盖所有 NLP 任务。

CV 包括的任务有图像分类、目标检测、图像分割、图像生成、视频分析等。在 CV 领域,一些常见的网络模型有生成对抗网络(GANs)、变分自编码器(VAEs)、流模型、扩散模型、视觉变压器(ViT)、Swin 变压器等。

Content generated by AI large model, please carefully verify (powered by aily)

References

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

在计算机视觉(CV)领域,在深度学习革命之前,传统的图像生成技术依赖于诸如纹理合成[5]和纹理映射[6]等方法,这些方法基于手工制作的特征。然而,这些方法在生成复杂和生动的图像方面的能力是有限的。图3:视觉领域生成式AI的历史。生成对抗网络(GANs)[7]和变分自编码器(VAEs)[8]的引入标志着一个重要的转折点,因为它在各种应用中展现出了非凡的能力。随后的发展,如流模型[9]和扩散模型[10],进一步提高了图像生成的细节和质量。最近在人工智能生成内容(AIGC)技术方面的进展,使内容创作民主化,使用户能够通过简单的文本指令生成所需内容[11]。在过去的十年中,生成式计算机视觉(CV)模型的发展采取了多种路径,如图3所示。这一格局在成功应用变压器架构[12]于自然语言处理(NLP)后开始显著转变,如BERT[13]和GPT[14]所示。在CV中,研究人员通过将变压器架构与视觉组件相结合,将这一概念推向更远,使其能够应用于下游CV任务,如视觉变压器(ViT)[15]和Swin变压器[16]。与变压器的成功平行,扩散模型在图像和视频生成领域也取得了重大进展[10]。扩散模型提供了一个数学上合理的框架,通过U-Nets[17]将噪声转换成图像,其中U-Nets通过学习在每一步预测和减轻噪声来促进这一过程。

XiaoHu.AI日报

?Xiaohu.AI日报「1月29日」✨✨✨✨✨✨✨✨1⃣️?LLMs-from-scratch项目:详细解释LLMs的工作原理。提供创建自己的LLM的逐步指南。适合企业团队、初创公司和教育机构学习。?https://github.com/rasbt/LLMs-from-scratch?https://x.com/xiaohuggg/status/1751890557805449693?s=202⃣️?SliceGPT-微软开发的大语言模型压缩方法:在保持高性能的同时大幅减少模型参数。允许在更少的GPU上运行,提高运行速度。显著降低了在消费级GPU上的总计算量。?https://arxiv.org/abs/2401.15024?https://x.com/xiaohuggg/status/1751880365307011182?s=203⃣️?️?VisualWebArena-自主智能体的视觉网络任务基准测试:评估智能体在网络环境中的规划、推理和执行任务能力。着重于视觉信息的重要性和多模态智能体评估。提供深入的定量和定性分析,揭示LLM智能体的限制。?https://arxiv.org/abs/2401.13649?https://jykoh.com/vwa?https://x.com/dotey/status/1751746302155632925?s=204⃣️?百川智能的Baichuan 3模型:中文任务评测表现卓越,超越GPT-4。在医疗领域和中华传统文化理解方面表现突出。引入创新技术,提高训练效率和数据质量。?https://x.com/xiaohuggg/status/1751830719222124727?s=205⃣️?Apple Vision Pro最新宣传片:?https://x.com/xiaohuggg/status/1751789758186238100?s=20

报告:GPT-4 官方技术报告

我们描述了GPT-4,一个大型多模态模型,在某些困难的专业和学术基准上具有人类水平的表现。GPT-4在一系列NLP任务上的表现优于现有的大型语言模型,并且超过了绝大多数已报告的最先进的系统(这些系统通常包括特定任务的微调)。我们发现,改进后的能力,虽然通常是在英语中测量的,但可以在许多不同的语言中得到证明。我们强调了可预测的扩展是如何让我们对GPT-4的损失和能力做出准确预测的。由于能力的提高,GPT-4带来了新的风险,我们讨论了为了解和提高其安全性和一致性所采取的一些方法和结果。尽管仍有许多工作要做,但GPT-4代表着向广泛有用和安全部署的人工智能系统迈出了重要一步。

Others are asking
可以给出国内出名的大语言模型的信息吗,包括其模型名称,版本,发布时间,发布公司,模型参数,性能特点等信息,尽可能覆盖更多的大模型,使用表格输出,并按照发布时间排序
|模型名称|版本|发布时间|发布公司|模型参数|性能特点|适合应用| |||||||| |Baichuan213BChat|Baichuan2192K|10月31日|百川智能|未提及|在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名200亿参数量级国内模型第一,在计算和代码能力上有一定优化空间|场景相对广泛且可以私有化部署,重点推荐在小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景,可部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务| |文心一言|V4.0|10月17日|百度|未提及|在计算、逻辑推理、生成与创作、传统安全这4大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且绝大部分能力有很高的水平|能力栈较为广泛,可应用的场景较多,重点推荐在查询搜索知识应用、任务拆解规划Agent、文案写作以及代码编写及纠错等方面的应用,由于在逻辑推理方面的不俗表现,可以重点关注在科学研究、教育、工业方面的落地能力| |通义千问 2.0|2.0|10月31日|阿里云|千亿级参数|未提及|未提及|
2025-03-15
能帮我通过各种电化学性能图(如CV图、XRD图等)帮我分析电化学性能的ai
目前尚未有专门通过各种电化学性能图(如 CV 图、XRD 图等)来分析电化学性能的成熟 AI 工具。但在电化学性能分析领域,一些相关的软件和算法可以辅助您进行处理和解读。您可以关注一些专业的科研软件和数据分析工具,它们可能会提供一定的帮助。
2025-04-18
gpt充值
以下是关于 GPT 充值的相关内容: 苹果系统安装、订阅 GPT4 教程 一、注册准备 1. 若使用的邮箱注册过 Apple ID,建议换全新邮箱,最好使用 iCloud 或谷歌邮箱。 2. 若使用的手机号码以前注册过多个 Apple ID(2 个或 2 个以上),强烈建议使用全新手机号码。 3. 若电脑端注册始终出现提示,可尝试换到手机端,使用 Safari 浏览器注册。 4. 若 IP 地址被风控,使用美国 IP 地址注册。 5. 密码中不要包含名字,年龄需大于 18 岁。 二、使用支付宝购买礼品卡充值订阅 GPT4 1. 支付宝购买礼品卡 来到支付宝首页,在左上角位置选择美国城市(如纽约),在底部位置选择“大牌礼卡低至 9 折”。 选择 App Store。 第一次购买需绑定美区 ID,按指示绑定,绑定后输入要充值的美金金额。 直接用支付宝支付。 根据当天汇率,实际支付的人民币金额会有所不同。 完成付款后点击订单列表。 复制礼品卡号码。 2. 充值到美区 ID 来到 App Store,点击右上角的人形头像,点击兑换充值卡或代码。 点击手动输入兑换码。 粘贴礼品卡号码,点击兑换。 成功充值到美区 ID 账号。 3. 到 ChatGPT 订阅 Plus 打开 ChatGPT,用谷歌邮箱登录后点击最上方的 Get Plus。 点击 Upgrade to Plus。 之后会弹出苹果支付页面,确认订阅后每个月将会在美区 ID 账户里扣款,若想保持订阅,每个月需确保账户有足够金额。 若中途不想继续订阅了,可到订阅列表中取消订阅。 极简未来(Link.AI)平台充值 机器人应用背后使用到的大模型等能力需要付费。平台的计费规则如下: 1. 详细版计费规则可参考:https://docs.linkai.tech/platform/funds/price 。 2. AI 大模型相关的功能交互主要用 Token 作为单位,不同大模型能力,平台一积分能兑换到的 Token 数不同,能力越强的大模型一积分所能兑换到的 Token 数越少,如日常使用的 GPT 3.5 能力的大模型,平均每次对话大概消耗不到 20 积分。 3. 除每天平台签到可免费领取 50 到几百的积分外,充值 19 元可兑换 10000 积分,使用成本不算高。
2025-04-18
chatGPT
ChatGPT 是一种由 OpenAI 开发的基于 GPT(生成式预训练变换器)架构的人工智能模型。 它的工作原理是:从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本。特别是能够从“提示”开始,继续生成“类似于训练内容”的文本。 ChatGPT 中的实际神经网络由大量简单元素组成,基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”。 其具体工程相当引人入胜,最终(至少在它可以使用外部工具之前),ChatGPT 仅仅从它积累的“传统智慧统计数据”中提取了一些“连贯的文本线索”。 ChatGPT 基于 OpenAI 最先进的语言模型 gpt3.5turbo。使用 OpenAI 的 API,你可以用它构建自己的应用来做很多事情,比如起草邮件、写 Python 代码、回答关于一组文档的问题、创建会话代理、给软件提供自然语言接口、辅导各种学科、语言翻译、假扮游戏或其他内容的角色等。 目前 ChatGPT 官网有两个版本,分别是 GPT3.5 和 GPT4。GPT3.5 是免费版本,拥有 GPT 账号即可使用,但智能程度不如 GPT4 高,且无法使用 DALL.E3(AI 画图功能)和 GPTs 商店和高级数据分析等插件。想要使用更多功能更智能的 GPT4 需要升级到 PLUS 套餐,收费标准是 20 美金一个月,当然 GPT4 还有团队版和企业版,功能更多、限制更少,但费用也更贵,一般推荐使用 PLUS 套餐。 在注册 ChatGPT 账号之前,建议先注册一个谷歌账号,因为国外很多软件支持谷歌账号一键登录,注册谷歌账号支持国内手机号码和国内邮箱验证,过程简单。
2025-04-12
gpt4o图像生成提示词有哪些
以下是一些 GPT4o 图像生成的提示词示例: 1. 将这张图更改为蓝色氛围,星星图标改为魔法棒图标,同时将里面文案描述的主题改为其他的。 2. 帮我生成一张这样的 UI 设计稿:Peerlist 邀请链接界面分析,界面内容。 3. 一张逼真的照片,描绘了一匹马在宁静的海洋表面从右向左奔驰,准确地描绘了飞溅的水花。 Realistic photograph of a horse galloping from right to left across a vast,calm ocean surface,accurately depicting splashes,reflections,and subtle ripple patterns beneath their hooves.Exaggerate horse movements but everything else should be still,quiet to show contrast with the horse's strength.clean composition,cinematographic.A wide,panoramic composition showcasing a distant horizon.Atmospheric perspective creating depth.zoomed out so the horse appears minuscule compared to vast ocean.horse is right at the horizon where ocean meets sky.use rule of thirds to position horse.size of horse is 1% size of entire image because camera is so far away from subject.camera view is super close to the ground/ocean like a worm's eye view.horse is galloping right where ocean meets the sky 4. 生成一张 2006 年夏天的周六多伦多农夫市场的逼真照片,那天是六月的美好时光,人们在购物和吃三明治。焦点应是一个穿着牛仔工装裤、啜饮草莓香蕉奶昔的年轻亚洲女孩——其余部分可以模糊。照片应让人联想到 2006 年的数码相机拍摄的效果,带有像打印照片一样的日期和时间戳。画幅比例应为 3:2
2025-04-11
GPT提示词
以下是关于 GPT 提示词的相关内容: 夙愿:AI 快速总结群聊消息 提示词:需要编写一套提示词让 GPT 执行总结文字内容的工作,包括单人发言版和多人发言版。 GPT 处理:将提示词和文字原文发送给 GPT,等待其输出完毕后复制粘贴到文本编辑器中,整理并删除无关内容,替换双星号。 头脑风暴常用的 20 个 prompt:列举了 20 个不同类型的提示词,如 Brainwriting Prompt、Reverse Brainstorming Prompt 等。 子瞻:五个 GPTs 破解攻略 GPT 使用的两大痛点:创建满足指定需求的提示词和找到满足指定需求的 GPTs。 学习高质量提示词的好处:学习高手的 Prompt 方法和更好地使用对应的 GPTs。 五大破解攻略的具体方法: 直接法:适用于未设置提示防御和未限定回答领域,示例中只要四个单词,粗暴好用。 设置遗忘:适用于 GPTs 设置了简单的提示防御。 复述法:适用于可获取 OpenAI 官方的设定。
2025-04-10
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
gpts相关内容
GPTs 是 OpenAI 推出的一种工具,允许用户量身打造自己的 AI 助理。用户可根据自身需求和偏好创建完全定制的 ChatGPT,如能帮忙梳理电子邮件或提供创意灵感的助手。目前,OpenAI 已推出几种现成的 GPTs 供使用,如“The Negotiator”“Game Time”等,用户也可上传资料来自定义 GPTs。 GPTs 的出现代表着 AI 技术的重要进展,将 AI 应用延伸到普通大众的日常生活。其使用目前仅限于 ChatGPT Plus 的用户,且 OpenAI 推出了 GPT Store 平台,允许用户分享他们的 GPTs,甚至可能实施收益分润制度。 例如,有网友分享了 RPG 版《悲惨世界》的 GPTs 案例,其提示词包括设定游戏背景、角色、剧情发展依据、对话格式与信息、场景图片等要求。 总的来说,GPTs 是一种让使用者能够量身打造自己的 AI 助理的工具,开启了个性化 AI 的新阶段,为开发者和普通用户提供了更多便利。
2025-03-31
NLP相关概念
以下是关于 NLP 相关概念的详细介绍: 一、NLP、NLU、NLG 的关系 自然语言处理(NLP)中包含了自然语言理解(NLU)和自然语言生成(NLG)。 二、NLP 的定义 自然语言处理(Natural Language Processing,NLP)是研究人与计算机之间使用自然语言进行有效通信,希望机器能像人一样具备正常人的语言理解能力。有别于计算机语言,“自然语言”是人类发展过程中形成的一种信息交流方式,包括汉语、英语、法语等世界上所有的语种语言。“处理”包含理解、转化、生成等过程。“自然语言处理”就是指用计算机对自然语言的形、音、义等信息进行处理,即对字、词、句、篇章的输入、输出、识别、分析、理解、生成等的操作和加工,以实现人机间的信息交流。 三、NLP 的用途 如文字校对、信息检索、机器翻译、问答系统、聊天机器人、文章摘要、舆情监测、情绪分析等都涉及到 NLP 相关技术。 四、NLP 的技术原理 按照内容构成的层次,NLP 的基本技术原理可以分成 5 个层次: 1. 词法分析:找到词汇的各个词素,从中获得语言学信息。 2. 句法分析:对句子和短语的结构进行分析,目的是要找出词、短语等的相互关系以及各自在句中的作用。 3. 语义分析:找出词义、结构意义及其结合意义,从而确定语言所表达的真正含义或概念。 4. 篇章分析:分析篇章结构,识别不同部分之间的语义联系,结合内外部信息,在整体上理解篇章。 5. 内容生成 五、NLU 专注于让计算机理解人类语言的含义。NLU 系统试图理解句子和词语背后的含义,而不是仅仅处理单个词语。NLU 能够识别文本中的情感、意图和实体,并将其转化为计算机可以理解的结构化信息。 六、NLG 专注于让计算机生成人类可以理解的语言。NLG 系统将结构化数据转化为自然语言文本,例如新闻报道、产品描述、聊天机器人回复等。NLG 能够根据不同的需求和场景,生成不同风格和语气的文本。 七、NLP 任务 主要包含 3 大类任务: 1. 自然语言理解任务(NLU,Natural Language Understanding):特点是能看到完整上下文信息,然后做广义分类任务,典型任务如文本情感分析,词性标注,信息检索等。 2. 有条件自然语言生成任务(conditionedNLG,Natural Language Generation):特点是 seq2seq,典型任务例如机器翻译,自动摘要等。 3. 无条件自然语言生成任务(unconditionedNLG):特点是开放性的句子生成,典型任务如问答系统(QA)、对话机器人(ChatBot)等。一开始针对不同任务会使用不同的模型,后来发现 NLG 任务能通过 incontext learning + prompt 来完成 NLU 任务,于是逐渐收敛到了 NLG 任务。
2025-03-24
剧本分析(NLP):AI 读取剧本,分析情节、角色发展,甚至预测观众反应。
以下是关于剧本分析(NLP)中 AI 读取剧本并进行相关处理的一些信息: 人物剧本与角色状态: 对人物如李洛云进行“剧本推演”,每天生成 20 40 个时间段剧本,依据人物背景和增长记忆体生成。 可使用 LLM 生成英文提示词用于 Stable Diffusion 出图,图存于“手机相册”用于对话多模态中的图片回复。 选择剧本和图片生成朋友圈文案。 拟人行为: 反感度系统:通过 LLM 分析对话判断角色是否产生反感度。 延迟回复:根据状态忙闲或是否睡觉决定回复时间。 接受多轮输入,一并回复:避免每一条输入回复一句,不像真人。 响应拆分与响应延迟:将一大段响应文本拆分成多段,模拟人类打字速度(3 5 字/秒),回复时概率性使用表情包,有概率主动聊天(与亲密度正相关)。 微信朋友圈:根据每天人物剧本挑选 1 2 个发布朋友圈并配图,目前内容由 AI 生成但手工发布。 将小说做成视频的制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)提取关键场景、角色和情节。 2. 生成角色与场景描述:用工具(如 Stable Diffusion 或 Midjourney)生成视觉描述。 3. 图像生成:用 AI 图像生成工具创建图像。 4. 视频脚本制作:将关键点和图像组合成脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)转换语音,添加背景音乐和音效。 6. 视频编辑与合成:用视频编辑软件(如 Clipfly 或 VEED.IO)合成。 7. 后期处理:剪辑、添加特效和转场提高质量。 8. 审阅与调整:观看视频并根据需要调整。 9. 输出与分享:完成编辑后输出并分享。 Inworld AI: Inworld AI 是一家专注于游戏和人工智能的初创公司,开发了 Inworld 的 AI 角色引擎,可将游戏 NPC 进行 AI 化并集成到游戏中。该引擎超越大语言模型,增加可配置的安全性、知识、记忆、叙事控制、多模态等功能,使 NPC 能够自我学习和适应,具有情绪智能。其角色引擎可创建具有独特个性和上下文意识的角色,无缝集成到实时应用中,内置优化规模和性能的功能。Character Brain(性格大脑)引擎使 AI NPC 能够学习和适应,具有情绪智能的关系导航能力、记忆和回忆能力,并能自主发起目标、执行动作并遵循动机。功能包括目标和行动、长期记忆、个性、情绪等。
2025-03-20
AI领域,传统机器学习,nlp,深度学习,大语言模型,rag,agent,请生成一张让普通人能看懂的AI领域概念图
以下是为您生成的 AI 领域概念图的相关解释: 人工智能(AI):一种目标,让机器展现智慧。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容。 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失。 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因为有很多层所以叫深度),神经网络可用于多种学习方式。 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。它是美国 OpenAI 公司开发的一款基于大型语言模型(LLM)的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-02-11
文档自动化的技术方案: OCR+NLP pipeline指的是什么,个人具体怎么实施
OCR(Optical Character Recognition,光学字符识别)+NLP(Natural Language Processing,自然语言处理)pipeline 是一种将 OCR 技术和 NLP 技术相结合的文档自动化处理流程。 OCR 用于将文档中的图像或扫描的文字转换为可编辑的文本。 NLP 则对转换后的文本进行分析、理解和处理,例如提取关键信息、分类、情感分析等。 对于个人实施 OCR + NLP pipeline,大致可以按照以下步骤进行: 1. 选择合适的 OCR 工具和服务:有许多开源和商业的 OCR 工具可供选择,根据您的需求和技术能力进行评估和选用。 2. 准备数据:收集和整理需要处理的文档,并确保其质量适合 OCR 处理。 3. 进行 OCR 处理:使用选定的 OCR 工具对文档进行转换。 4. 选择 NLP 框架和模型:根据具体的任务和需求,选择适合的 NLP 框架和预训练模型。 5. 数据预处理:对 OCR 输出的文本进行清洗、预处理,以便 NLP 模型能够更好地处理。 6. 训练和优化 NLP 模型(如果需要):如果通用模型不能满足需求,可以使用标注数据进行训练和优化。 7. 集成和部署:将 OCR 和 NLP 部分集成在一起,并部署到实际应用环境中。 需要注意的是,实施过程中可能会遇到一些技术挑战,例如文档格式的复杂性、OCR 识别的准确性、NLP 模型的适应性等,需要不断调试和优化。
2025-02-08
我想要学习nlp的知识,请告诉我该如何入门
以下是学习 NLP 入门的一些建议: 1. 理解基本概念: 明确自然语言处理(NLP)包含自然语言理解(NLU)和自然语言生成(NLG)。 了解 NLP 涉及各种技术和方法,目标是让计算机像人类一样理解和使用语言,实现人机交互自然化。 认识到 NLU 专注于让计算机理解人类语言含义,能够识别文本中的情感、意图和实体等,并转化为结构化信息。 知道 NLG 专注于让计算机生成人类可理解的语言,能根据需求和场景生成不同风格和语气的文本。 2. 学习相关课程: 可以学习如“和 Cursor AI 一起学 Python 编程”中关于 Python 基础语法与文本处理,以及利用 Python 进行自然语言处理的课程。 掌握 Python 的基本语法和结构,能够进行简单的文本数据处理。 3. 深入学习技术: 了解机器学习是人工智能的子领域,核心是让计算机通过数据学习提高性能。 明白深度学习是机器学习的子领域,尝试模拟人脑工作方式,创建人工神经网络处理数据。 认识到大语言模型是深度学习在自然语言处理领域的应用,像 ChatGPT、文心一言等,被训练来理解和生成人类语言。 希望以上建议对您学习 NLP 入门有所帮助。
2025-01-26
NLP是什么
自然语言处理(Natural Language Processing,NLP)是研究人与计算机之间使用自然语言进行有效通信的领域。它希望机器能具备像人一样的语言理解能力。 “自然语言”是人类发展过程中形成的信息交流方式,包括各种语种。“处理”包含对自然语言的形、音、义等信息进行理解、转化、生成等操作和加工,如对字、词、句、篇章的输入、输出、识别、分析、理解、生成等。 NLP 的用途广泛,如文字校对、信息检索、机器翻译、问答系统、聊天机器人、文章摘要、舆情监测、情绪分析等都涉及到相关技术。 其技术原理按照内容构成的层次,可分成 5 个层次: 1. 词法分析:找到词汇的各个词素,获取语言学信息。 2. 句法分析:分析句子和短语的结构,找出词、短语等的相互关系及在句中的作用。 3. 语义分析:确定词义、结构意义及其结合意义,明确语言所表达的真正含义或概念。 4. 篇章分析:分析篇章结构,识别不同部分之间的语义联系,结合内外部信息整体理解篇章。 5. 内容生成 在人工智能学科下,自然语言处理(NLP)包含了自然语言理解(NLU)和自然语言生成(NLG)。 1. NLP:涉及各种技术和方法,使计算机能够分析、理解和生成人类语言,实现人机交互的自然化。 2. NLU:专注于让计算机理解人类语言的含义,能够识别文本中的情感、意图和实体,并转化为结构化信息。 3. NLG:专注于让计算机生成人类可以理解的语言,将结构化数据转化为自然语言文本,能根据不同需求和场景生成不同风格和语气的文本。 在深度学习和自然语言处理(NLP)中,Embedding 是一种特征工程方法,用于将高维度的数据(如单词、短语、句子等)转换为低维度的向量,目的是降低数据的抽象和复杂性,帮助模型理解语义关系。例如在电影推荐系统和文本分类中都有应用。
2024-11-18