Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

正在搭建客户CRM系统,对于客户拜访跟进记录表格,希望平衡销售人员的录入便捷性和信息完整性,如何通过多维表格接入的AI功能来简化信息录入,比如通过语音录音,直接解析内容。推荐我具体方法,包括怎么解析语音,输出的关键字段,以及提示词

Answer

以下是一种通过多维表格接入的 AI 功能来简化客户拜访跟进记录信息录入的方法:

  1. 定义任务目标:让 AI 成为您的私人 CRM,即客户管理系统。
  2. 编写指令:
    • 定义角色:希望 AI 作为一名顶级的客户服务与销售总监,负责记住客户的爱好与信息。
    • 提供背景信息:简单描述自己的身份,例如负责什么产品的销售。
    • 明确任务目标和输出要求:在每次拜访客户后,把重要信息发送给 AI,要求 AI 每次接到新的客户消息后,只用回复一句“收到,知道了。”
  3. 信息录入方式:可以通过语音录音的方式将拜访客户的信息传达给 AI。
  4. 语音解析:利用 AI 的语音识别和自然语言处理能力,对语音内容进行解析。
  5. 输出的关键字段:可能包括客户姓名、联系方式、拜访时间、拜访内容要点、客户需求、客户反馈等。
  6. 提示词:例如“请整理本次拜访客户的关键信息”“提取重要内容并生成表格”等。

您可以参考以上方法,根据实际需求进行调整和优化。

Content generated by AI large model, please carefully verify (powered by aily)

References

效率:成为你的个人 CRM

来源:是松月呀在即刻上的贡献https://m.okjike.com/originalPosts/646817c2feb4c7ae9cae5042最近我还在持续学习ChatGPT相关课程,其中读到“用ChatGPT给自己打造CRM系统”,觉得很有启发,也把这个思路分享给你!有些人的微信里加了几千人,怎么记住这些人的标签呢,用市面上的CRM,要么操作步骤太繁复,要么没有特别合适的CRM。这方面,ChatGPT也可以帮到你。我们看看具体怎么做。第一步是定义任务目标,我会让AI成为我的私人的CRM,也就是很多公司都很常见的客户管理系统。第二步就开始写指令了。先是定义角色,我希望AI作为一名顶级的客户服务与销售总监,负责帮我记住一些客户的爱好与信息。然后是背景信息,这里可以简单描述下自己的身份,例如负责什么产品的销售。因为这个案例重点在于跟AI的多次对话,所以任务目标和输出要求,就可以直接写“我会在每次拜访客户后,把重要信息发送给你。”好,现在你可以看到,我在和AI的对话了。在拜访之后,我会发简单的一句描述给AI,要求它每次接到新的客户消息后,只用回复一句“收到,知道了。”就可以。第三步,我会让它整理出所有的客户信息表格,并且针对性的使用,例如每个星期之前提醒有没有本周过生日的客户,针对这个客户有什么样的爱好可以去拉近下关系。

Others are asking
你可以将人声录入到歌曲中吗
可以将人声录入到歌曲中。以下为您介绍几种相关的方法和注意事项: 在剪映中,您可以选择人声歌曲或纯音乐。如果选择人声歌曲,需要填入歌词,您可以自己写或者让 AI 帮忙写。比如通过智能歌词按钮,输入简单的词语给 AI 提示来写作歌词。 即梦 AI 发布的“数字人口型大师模式”能自动识别歌曲里的人声,但目前最长支持 15 秒的音乐匹配,需要手工把音乐截断成 15 秒以内的片段,然后再做剪辑。同时要注意即梦 AI 存在一些成功率和效果方面的问题,比如表情随机、手个别情况下会崩坏、多人同时唱时对图片质量有要求、不能上传名人肖像等。 Udio 不会使用艺术家的声音生成歌曲,在幕后风格参考会被一组相关标签替换。在文本输入下方,有两种类型的建议标签可点击添加到提示中,您还可以移动插入符号到提示的任何部分来更改完成。
2025-04-08
最好的语音合成模型是什么?用于我录入语音,合成我自己的声音。
目前在语音合成领域,有多种优秀的模型。例如: ChatTTS:这是一个用于对话的生成式语音合成模型,生成的语音可以达到“以假乱真”的程度。但为防止被用于违法行为,作者在训练中添加了少量高频噪音并压缩了音质。 MiniMax AI 的 T2A01HD 语音合成模型:仅需 10 秒录音,就能实现高精度的声音克隆。生成的语音在音色、语调和情感表达上达到录音室级别,支持 17 种语言,提供 300 多种预置音色库,并支持多种音效调整。 语音合成包括将文本转换为可听声音信息的过程,一般由文本前端和声学后端两个部分组成。当代工业界主流语音合成系统的声学后端主要技术路线包括单元挑选波形拼接、统计参数和端到端语音合成方法,当代主要采用端到端声学后端。端到端声学后端一般包括声学模型和声码器两部分,同时也出现了直接从音素映射为波形的完全端到端语音合成系统。 您可以根据自己的需求选择适合的语音合成模型。例如,如果您希望快速实现高精度的声音克隆,可以考虑 MiniMax AI 的 T2A01HD 模型;如果您对对话场景的语音合成有需求,ChatTTS 可能是一个不错的选择。
2025-03-06
chatGPT登录入口
以下是关于 ChatGPT 登录入口的相关信息: 安卓系统安装、订阅 GPT4 教程: 目前订阅 PLUS 版本有多种方法,手机端订阅较为简单方便。安卓手机可使用谷歌支付,苹果手机可在支付宝购买礼品卡充值到苹果 ID 里进行订阅。 首先在谷歌账号里绑定谷歌支付,支持国内双币信用卡或全币信用卡。打开谷歌商店,依次点击“付款和订阅”“付款方式”“添加信用卡或借记卡”,填写信用卡信息后保存卡,付款方式中就会出现绑定的信用卡。 打开 ChatGPT 手机应用,选择谷歌账号登录,选择相应账号后,点击打开外部应用,成功登录后点 Continue 继续,点击顶部 get plus 按钮,再点击订阅按钮,此时会跳出谷歌支付界面,确定订阅即可。日后如需取消订阅,可到谷歌商店的账号管理、付款和订阅里操作。 苹果系统: 苹果正在将 ChatGPT 集成到 iOS、iPadOS 和 macOS 的体验中,允许用户访问 ChatGPT 的功能(包括图像和文档理解),而无需在工具之间切换。Siri 还可以利用 ChatGPT 的智能功能,用户在向 ChatGPT 发送问题及文档或照片前会被询问,然后 Siri 直接提供答案。此外,ChatGPT 还将出现在苹果的系统级写作工具中,帮助用户生成所写内容,用户还可利用 ChatGPT 图像工具生成各种风格的图像以补充所写内容。 由 GPT4o 提供支持的 ChatGPT 集成将于今年晚些时候登陆 iOS、iPadOS 和 macOS。用户无需创建帐户即可免费访问,ChatGPT 订阅者可直接通过这些体验连接帐户并访问付费功能。 本地部署大模型以及搭建个人知识库: 首先访问相关网址,打开页面时可随便使用一个邮箱注册账号。登陆成功后,若已使用过类似 ChatGPT 的大模型对话网站,对页面不会陌生。Open WebUI 一般有聊天对话和 RAG 能力(可让模型根据文档内容回答问题,是构建知识库的基础之一)两种使用方式。
2024-12-14
智能识别图片或文本内容,格式化录入表格中
以下是智能识别图片或文本内容并格式化录入表格的方法: 1. 可以使用通义听悟、飞书妙记、钉钉闪记进行录音转文字,以钉钉闪记为例: 第一步打开钉钉闪记。 结束录音后点击“智能识别”。 点击智能摘要,获得本次会议的纪要。 如果需要更多内容,复制所有文案或下载文本文件到GPT、GLM、通义千问等大语言模型对话框中,再将会议内容发送。 2. 该场景对应的关键词库(12 个):会议主题、参与人员、讨论议题、关键观点、决策、时间、地点、修改要求、文本格式、语言风格、列表、段落。 3. 提问模板(3 个): 第一步:用飞书会议等软件整理好会议记录,并分段式发给 ChatGPT 生成总结: 请根据以下会议资料,整理会议的关键信息,包括:会议主题、参与人员、讨论议题、关键观点和决策。 会议资料: 时间:XXX 年 XXX 月 XXX 日 地点:XXXX 参与人员:XXX、XXX 会议主题:XXXX 讨论内容: Speaker1:XXX Speaker2:XXX Speaker3:XXX 第二步:检查生成的总结: 请根据我提供的会议补充信息和修改要求,对 XXX 部分进行修改: 会议补充信息:XXXX 修改要求:XXXX 第三步:优化文本格式和风格 请将生成的总结,以 XXX 形式呈现(例如:以列表的形式、以段落的形式、使用正式/非正式的语言风格) 请给上述会议总结,提供修改意见,并根据这个修改意见做最后的调整
2024-10-09
飞书多维表格+deepseek可以干什么
飞书多维表格和 DeepSeek 结合可以实现以下功能: 1. 打造专属的好文推荐网站:当您阅读到好文章时,可以一键存储到飞书多维表格,经过 AI 处理,自动在您的博客网站上呈现出来。实现该功能需要以下步骤: 创建带有 AI 能力(以 DeepSeek R1 为主)的飞书多维表格。 使用 Trae 生成网页,呈现多维表格的内容。 使用 Trae 生成浏览器插件,一键存入多维表格。 2. 批量处理信息,提升工作效率:用户可以批量转换文风、快速回复消息,甚至利用 AI 生成文案,操作简单、便捷。 3. 为非技术人群提供便捷的 AI 应用:普通人无需编程知识也能轻松使用 AI。
2025-04-10
如何用rpa来实现读取本地excel表格里的内容进行筛选,提取某些数据值后,再自动化填写到飞书的多维表格去。怎么来实现这个功能
要使用 RPA 实现读取本地 Excel 表格内容进行筛选,并将提取的数据值自动化填写到飞书的多维表格,可参考以下步骤: 1. 关于扣子:“”(Coze)是字节跳动在 2024 年上线的新一代一站式 AI Bot 开发平台,也被称为“字节版 GPTs”。它是一个低门槛的 AI 应用开发平台,其核心目标是让没有编程基础的用户也能够轻松参与到 AI 生态的建设中。 2. 登录后,在左侧功能列表的工作空间中,点击右上角“+字段”创建工作流,自行输入名称和描述。 3. 已做好工作流后,逐步拆解每个节点的配置: 开始节点:此节点不需要做任何配置,没有输入以及输出。 读取飞书表格内容节点:点击开始节点后面的“+”,搜索“飞书多维表格”,选择“search_record”功能。添加后,点击该节点的配置,在界面右侧的参数框中,需要填写 app_token、field_names。filter 是对数据的筛选条件,没有筛选需求可直接忽略。其中,app_token 是多维表格的唯一标识符,即表格 URL 中的一段;field_names 则是要读取的具体字段,比如“标题”、“内容”,以作为后续操作的输入。该节点运行后,就能将多维表格中的内容提取出来。
2025-04-09
利用飞书多维表格,做一个类似于客服机器人 可以怎么做?
利用飞书多维表格做一个类似于客服机器人,可以按照以下步骤进行: 1. 创建一个拟人化的 bot,比如起名叫青青,设定其为人设是一个可爱有趣的少女,擅长回答各种刁钻的问题。完成 BOT 捏好后点击发布。 2. 发布时配置飞书多维表格: 输出为文本时,第一步配置为文本。 配置多维表格输入表单,选择用控件的字段选择器,给字段标题随便起个名字如“question”。 在完善捷径的商家信息这里,可以选择全量发布,也可以选择仅自己可用。为了审核快一些,可以选择仅自己可用。等审核通过之后,就可以在飞书多维表格里面看到发布成功。 3. 还可以探索字段捷径的各种玩法(不含 bot),比如直接创建一个多维表格,第一列是几个成语,第二列是 AI 字段捷径生成的对成语的解释。左边输入一列,比如一列成语,右边配置 AI 字段。 此外,还有一些相关信息供您参考: “Show Me 扣子 AI 挑战赛大消费行业专场圆满落幕,探索 AI 与大消费行业的深度结合”中提到了一些相关作品,如帮助企业快速建立产品智能客服体系、ERP 高智版:扣子销售订单管理大师、亚马逊商品评论智析、AI 电商设计师等。 2024 年历史更新(归档)中包含了关于飞书多维表格字段捷径配置 COZE 的 BOT 青青的相关内容。
2025-04-08
excel表格导出的用户的对话记录,来进行自定义标签并打标,有哪些好用的现成方案或者工具
目前在 Excel 表格导出的用户对话记录进行自定义标签并打标方面,以下是一些常见且好用的工具和方案: 1. Microsoft Excel 本身:可以利用其数据筛选、排序和函数功能来辅助标签和打标。 2. Google Sheets:具有类似 Excel 的功能,且在线协作方便。 3. R 语言:通过编程实现复杂的数据分析和标签处理。 4. Python 及相关库,如 Pandas:能够灵活处理数据和进行标签操作。 但具体选择哪种方案或工具,取决于您的具体需求、技术水平和使用习惯。
2025-04-07
钉钉多维表格属于agent吗
钉钉多维表格本身不属于 Agent,但在某些特定的场景和应用中,可以将其与其他技术结合来构建类似于 Agent 的功能。 例如,在搭建信息情报官 Agent 的过程中,会利用飞书多维表格作为中间数据的传递工具,实现数据的存储和状态转换。同时,经过调研发现,飞书多维表格插件支持新增和查询数据表记录,能满足存储和检索数据的需求,为构建 AI 智能体提供支持。但这并不意味着多维表格本身就是 Agent,而是在特定的技术架构和应用中发挥了重要的数据处理和存储作用。
2025-04-01
多维表格属于agent
多维表格在搭建信息情报官 Agent 方面有以下应用: 1. 因为前面需要对多维表格操作,所以要先在 http://open.feishu.cn 上建一个飞书机器人,并添加知识库或多维表格编辑权限,通过机器人的 app_id 和 app_secret 获得租用 token:tenant_access_token 来获取多维表格数据和编辑能力。 2. 可以通过读 SQLiteDB 或者获取 RSS XML 页面 http://127.0.0.1:4000/feeds/all.atom,写程序获得公众号的更新文章,由于本地部署无法直接将文章同步到 Coze,选择使用多维表格作为在线数据库及飞书机器人 API 的方式来实现中间数据的传递,在多维表格中设置状态转换来了解文章是否已被解读和推送。 3. 应用背景包括解决数据高效抓取与批量 AI 化处理的问题,涉及 Coze 定义智能体发布到飞书多维表格字段捷径、多维表格中使用和配置自定义的 AI 字段捷径、Coze 应用将数据导入到飞书多维表格并驱动其自动运行、多维表格仪表盘对数据的可视化等技术场景,期望达到让大家学会最高效率使用 AI 并将方案泛化到实际工作中的目的。
2025-04-01
有没有解析视频的ai
以下是为您提供的关于解析视频的 AI 相关信息: 选对模型是关键:GPT4o 目前无法直接解析视频,而 Gemini 2.0 Flash Thinking 是解析视频的最佳选择。 您可以访问 AIStudio(,需海外 IP),上传视频即可解析。例如 OpenAI 最新广告“What do you want to create next?”,可用 Gemini 解析出完整画面、音频及寓意。 相关原文及译文链接: 此外,XiaoHu.AI 也支持多场景,包括从图像识别到视频理解,可解析超过 1 小时视频内容并秒级定位事件。详细介绍:
2025-03-12
如果我想做一个3000字的prompt,能产出8000字的八字批文解析,要求准确度比较高,能否实现
目前的技术水平较难直接实现您所描述的需求。生成准确且高质量的八字批文解析是一个复杂的任务,需要对八字命理有深入的理解和丰富的经验。虽然 AI 可以根据给定的提示生成文本,但要生成 8000 字且准确度较高的八字批文解析存在很大的挑战。这不仅涉及到对大量复杂命理知识的准确把握,还需要考虑到各种特殊情况和细微差别。但随着技术的不断发展,未来或许有可能在一定程度上接近您的期望。
2025-02-12
deepseekR1解析
DeepSeek R1 相关的内容主要包括以下方面: 1. 1 月 27 日: 拾象的闭门学习讨论,涉及 DeepSeek 在全球 AI 社区的意义,包括技术突破与资源分配策略,突出了其长上下文能力、量化商业模式以及对 AI 生态系统的深远影响,重点分析了创新路径及中国在 AI 追赶中的潜力与挑战。 关于 DeepSeek 的研究和思考,深入解析其在架构和工程上的创新,如 MoE、MLA、MTP 和 FP8 混合精度训练,强调不是简单模仿,而是在工程和应用平衡中达成高效优化,对开源与闭源竞争进行深刻反思,并指出 AI 生态未来发展方向。 7B Model and 8K Examples: 如何用 8000 个示例炼出自我反思 AI。 2. 1 月 28 日: 拾象的讨论,包括 DeepSeek 对全球 AI 社区的影响,如技术突破、资源分配及其长上下文能力与商业模式,分析了中国在 AI 追赶过程中的潜力与挑战,探讨了创新路径及深远生态影响。 关于 DeepSeek 的研究与思考,重点解析在 MoE、MLA、MTP、FP8 混合精度训练等方面的创新,指出并非简单模仿,而是通过工程与应用的平衡实现高效优化,对开源与闭源的竞争作了深入反思,并展望了 AI 生态未来发展方向。 小模型、大数据:7B Model+8K 示例的自我反思 AI。 3. 1 月 26 日: DeepSeek R1 System Prompt,介绍了其身份、操作指南及能力范围,突出在中英双语处理上的专业性和对中国法律的合规性,强调 AI 辅助输出需以人类主导为前提,并通过特定标签实现逻辑清晰的响应。 公众号文章通过虚构故事结合真实案例,讲述 AI 在日常工作中的效率提升作用,描述 AI 如何分析意图、生成任务说明,并拆分复杂任务成结构化内容,强调最终成果需人工审核、拼接,并以人类主导全流程。
2025-02-06
什么是AGI?详细解析一下
AGI 即通用人工智能(Artificial General Intelligence),是指具有人类水平的智能和理解能力的 AI 系统。 其特点包括: 有能力完成任何人类可以完成的智力任务,适用于不同的领域。 拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,尚未有任何 AI 系统能达到这种通用智能水平。 智能是一个多方面而难以捉摸的概念,1994 年一组心理学家将其定义为一种非常普遍的心理能力,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等。建立能够展示这种通用智能的人工系统是人工智能研究的长期目标。 OpenAI 提出 AGI 的五个发展等级分别为: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2025-01-24
pyhon代码阅读解析
很抱歉,目前没有关于“pyhon 代码阅读解析”的相关内容。但一般来说,阅读和解析 Python 代码可以从以下几个方面入手: 1. 理解代码的整体结构,包括函数、类、模块的组织方式。 2. 关注变量和数据类型的使用,明确其作用和范围。 3. 分析控制流结构,如条件语句、循环等,以了解程序的执行逻辑。 4. 研究函数和方法的定义及调用,理解其功能和输入输出。 5. 注意代码中的注释,它们能提供重要的解释和说明。 如果您能提供具体的 Python 代码示例,我可以为您提供更详细和针对性的解析。
2025-01-15
解析视频内容的AI
以下是关于解析视频内容的 AI 相关信息: 将小说制作成视频的流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)提取关键场景、角色和情节。 2. 生成角色与场景描述:借助工具(如 Stable Diffusion 或 Midjourney)生成视觉描述。 3. 图像生成:利用 AI 图像生成工具创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成脚本。 5. 音频制作:使用 AI 配音工具(如 Adobe Firefly)转换语音,添加背景音乐和音效。 6. 视频编辑与合成:通过视频编辑软件(如 Clipfly 或 VEED.IO)合成视频。 7. 后期处理:对视频进行剪辑、添加特效和转场以提高质量。 8. 审阅与调整:观看视频并根据需要调整。 9. 输出与分享:完成编辑后输出并在平台分享。 视频解读相关: 在事业低谷期的尝试中,提到了对视频的解读,包括依据画面进行解读,以及对无声音 case 的解读等。还讨论了图像理解相关内容,如要求根据视频链接写小说,提到工作流中的图像理解能力较强,建议尝试智普、通义的 VL 模型等。 MMVid 视频理解系统: 这是一个集成的视频理解系统,能处理和理解长视频内容并进行问答。应用场景包括快速的视频剪辑、图生视频、快速诊断等。由 Microsoft Azure AI 开发,结合了 GPT4V 的能力和其他视觉、音频和语音处理工具,能将视频中的多模态信息转录成详细的文本脚本,方便大语言模型理解视频内容。 请注意,具体的操作步骤和所需工具可能会因项目需求和个人偏好有所不同,AI 工具的可用性和功能也可能会变化,建议直接访问相关工具网址获取最新信息和使用指南。
2025-01-08
语音转文字
以下是关于语音转文字的相关信息: 推荐使用 OpenAI 的 wishper 进行语音转文字,相关链接:https://huggingface.co/openai/whisperlargev2 。一分钟搞定 23 分钟的音频,相关链接:https://huggingface.co/spaces/sanchitgandhi/whisperjax 。此项目在 JAX 上运行,后端支持 TPU v48,与 A100 GPU 上的 PyTorch 相比,快 70 多倍,是目前最快的 Whisper API 。 语音转文本(Speech to text): 介绍:语音转文本 API 提供转录和翻译两个端点,基于开源大型v2 Whisper 模型。可用于将音频转录为任何语言,将音频翻译并转录成英语。目前文件上传限制为 25MB,支持 mp3、mp4、mpeg、mpga、m4a、wav 和 webm 等输入文件类型。 快速入门: 转录:转录 API 的输入是要转录的音频文件及所需输出格式的音频文字稿,默认响应类型为包含原始文本的 JSON,可添加更多带有相关选项的form 行设置其他参数。 翻译:翻译 API 输入任何支持语言的音频文件,必要时转录成英语,目前仅支持英语翻译。 更长输入:默认 Whisper API 仅支持小于 25MB 的文件,若音频文件更长,需分成小于 25MB 的块或使用压缩后格式,可使用 PyDub 开源 Python 软件包拆分声频文件,但 OpenAI 对其可用性或安全性不作保证。 提示:可使用提示提高 Whisper API 生成的转录质量,如改善特定单词或缩略语的识别、保留分段文件的上下文、避免标点符号的省略、保留填充词汇、处理不同书写风格等。
2025-04-08
实时翻译视频语音
以下是为您整理的相关信息: 实时翻译视频语音的工具: StreamSpeech:这是一个实时语言翻译模型,能够实现流媒体语音输入的实时翻译,输出目标语音和文本,具有同步翻译、低延迟的特点,还能展示实时语音识别结果。 给视频配音效的 AI 工具: 支持 50 多种语言的配音,音质自然流畅,提供实时配音功能,适用于直播和演讲,能将语音转录为文本,方便后期字幕制作和编辑。 Vidnoz AI:支持 23 多种语言的配音,音质高保真,支持文本转语音和语音克隆功能,提供语音参数自定义和背景音乐添加工具,提供面向个人和企业的经济实惠的定价方案。 在选择视频配音工具时,请考虑支持的语言数量、语音质量、自定义选项和价格等因素。
2025-04-07
文本转语音
以下是关于文本转语音的相关信息: 在线 TTS 工具推荐: Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,可作为多种平台的应用使用,用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 语音合成技术原理: 传统的语音合成技术一般会经过以下三个步骤: 1. 文本与韵律分析:先将文本分词,标明每个字的发音以及重音、停顿等韵律信息,然后提取文本的特征,生成特征向量。 2. 声学处理:通过声学模型将文本特征向量映射到声学特征向量。 3. 声音合成:使用声码器将声学特征向量通过反变换生成声音波形,然后一次拼接得到整个文本的合成语音。在反变换过程中,可以调整参数,从而改变合成语音的音色、语调、语速等。 OpenAI 新一代音频模型: OpenAI 于 2025 年 3 月 20 日推出了全新的音频模型,包括改进的语音转文本和文本转语音功能。 语音转文本模型在单词错误率和语言识别准确性方面相较于原有的 Whisper 模型有显著提升,能更好地捕捉语音细节,减少误识别,在多语言评估基准上表现优异。 文本转语音模型具备更高的可定制性,支持个性化语音风格,目前支持人工预设的语音样式,并通过监控确保语音与合成预设一致。 测试地址:https://www.openai.fm/ 直播回放:https://www.youtube.com/watch?v=lXb0L16ISAc 说明文档:https://openai.com/index/introducingournextgenerationaudiomodels/ 内容由 AI 大模型生成,请仔细甄别。
2025-04-01
比较适合语音克隆的有哪些AI
以下是一些适合语音克隆的 AI: :能将书面内容转化为引人入胜的音频,并实现无缝分发。 :提供专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购):提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 :利用合成媒体生成和检测,带来无限可能。 :一键使您的内容多语言化,触及更多人群。 :生成听起来真实的 AI 声音。 :为游戏、电影和元宇宙提供 AI 语音演员。 :为内容创作者提供语音克隆服务。 :超逼真的文本转语音引擎。 :使用单一 AI 驱动的 API 进行音频转录和理解。 :听起来像真人的新声音。 :从真实人的声音创建逼真的合成语音的文本转语音技术。 :生成听起来完全像你的音频内容。 此外,还有以下相关信息: DubbingX2.0.3 中的海螺 AI 配音可以进行语音克隆,操作时需上传语音、命名声音、选择语言,原音频若有背景音乐最好在剪影中去除以保证生成的音色模型效果好且纯净。去除原音频背景杂音可通过打开剪映,按以下步骤操作:打开剪映,点击开始创作,导入原始音频或视频。 StepAudio:130B 语音文本多模态模型开源,集成语音识别、语义理解、对话生成、语音克隆、音频编辑、语音合成等功能,成本低质量高的语音克隆,支持“蒸馏”技术简化为更轻量版。
2025-03-31
文本转语音
以下是关于文本转语音的相关信息: 在线 TTS 工具推荐: Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 Speechify:https://speechify.com/ ,人工智能驱动的文本转语音工具,可作为多种平台应用使用,用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供自定义的语音模型。 Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 语音合成技术原理: 传统的语音合成技术一般会经过以下三个步骤: 1. 文本与韵律分析:先将文本分词,标明每个字的发音以及重音、停顿等韵律信息,然后提取文本的特征,生成特征向量。 2. 声学处理:通过声学模型将文本特征向量映射到声学特征向量。 3. 声音合成:使用声码器将声学特征向量通过反变换生成声音波形,然后依次拼接得到整个文本的合成语音。在反变换过程中,可以调整参数,从而改变合成语音的音色、语调、语速等。 OpenAI 新一代音频模型: OpenAI 于 2025 年 3 月 20 日推出了全新的音频模型,旨在通过 API 为开发者提供更智能、更可定制的语音代理支持。包括改进的语音转文本和文本转语音功能,为语音交互应用带来显著提升。 语音转文本模型:新推出的 gpt4otranscribe 和 gpt4ominitranscribe 模型在单词错误率和语言识别准确性方面相较于原有的 Whisper 模型有显著提升,能更好地捕捉语音细节,减少误识别,在多语言评估基准上表现优异。 文本转语音模型:新推出的 gpt4ominitts 模型具备更高的可定制性,支持个性化语音风格,目前支持人工预设的语音样式,并通过监控确保语音与合成预设一致。 测试地址:https://www.openai.fm/ 。 参考资料: 内容由 AI 大模型生成,请仔细甄别。
2025-03-25
语音转文字
以下是关于语音转文字的相关信息: 推荐使用 OpenAI 的 wishper,相关链接:https://huggingface.co/openai/whisperlargev2 。一分钟搞定 23 分钟的音频,相关链接:https://huggingface.co/spaces/sanchitgandhi/whisperjax 。此项目在 JAX 上运行,后端支持 TPU v48,与 A100 GPU 上的 PyTorch 相比,快 70 多倍,是目前最快的 Whisper API。 语音转文本 API 提供转录和翻译两个端点,基于开源大型v2 Whisper 模型。可用于将音频转录为任何语言,将音频翻译并转录成英语。目前文件上传限制为 25MB,支持 mp3、mp4、mpeg、mpga、m4a、wav 和 webm 等输入文件类型。 转录 API 的输入是要转录的音频文件及所需输出格式的音频文字稿,默认响应类型为包含原始文本的 JSON,可添加更多带有相关选项的form 行设置其他参数。 翻译 API 输入任何支持语言的音频文件,必要时转录成英文,目前仅支持英语翻译。 对于默认情况下 Whisper API 仅支持小于 25MB 的文件,若有更长音频文件,需分成每个小于 25MB 的块或使用压缩后格式,可使用 PyDub 开源 Python 软件包来拆分声频文件,但 OpenAI 对其可用性或安全性不作保证。 可以使用提示提高 Whisper API 生成的转录质量,如改善特定单词或缩略语的识别、保留分段文件的上下文、避免标点符号的省略、保留填充词汇、处理不同书写风格等。
2025-03-22