Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我要在自己的应用中接入AI大模型能力,请问有什么工具或lib可以简化这个过程

Answer

以下是一些可以简化在应用中接入 AI 大模型能力的工具和库:

  1. 您可以搭建 OneAPI,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型。
  2. 搭建 FastGpt,这是一个知识库问答系统,您可以将知识文件放入,并接入大模型作为分析知识库的大脑,它也有问答界面。
  3. 搭建 chatgpt-on-wechat接入微信,配置 FastGpt 把知识库问答系统接入到微信。但建议先用小号以防封禁风险。若想拓展功能,可参考 Yaki.eth 同学的教程Yaki:GPT /MJ 接入微信,其中的 cow 插件能进行文件总结、MJ 绘画等。

另外,基于 LangChain 平台提供的 LLM 基础模型,也能完成任意模型接口的封装。LLM(语言逻辑模型)是 LangChain 平台与各种大模型进行交互的核心模型,是一个抽象概念,可理解为处理语言输入和输出的黑盒。其输入是字符串表示的用户请求或问题,输出也是字符串表示的模型回答或结果。LLM 能根据不同输入调用不同大模型完成不同语言任务,具有无需关心大模型细节和复杂性、灵活选择切换大模型、可自行封装实现语言逻辑和功能等优势。

在基础通识课中,还提到了一些相关内容,如流式训练方式提升训练速度和质量,多种 AI 生成工具(如 so no 音频生成工具、能创建个人 AI 智能体的豆包、输入文本可生成播客的 Notebook LN),端侧大模型的特点,AI 工程平台(如 define、coach 等),模型社区(如魔搭社区)等。

Content generated by AI large model, please carefully verify (powered by aily)

References

DIN:全程白嫖 - 拥有一个AI大模型的微信助手

[title]DIN:全程白嫖-拥有一个AI大模型的微信助手1.搭建[OneAPI](https://github.com/songquanpeng/one-api),这东西是为了汇聚整合多种大模型接口,方便你后面更换使用各种大模型。下面会告诉你怎么去白嫖大模型接口。2.搭建[FastGpt](https://fastgpt.in/),这东西就是个知识库问答系统,你把知识文件放进去,再把上面的大模型接进来,作为分析知识库的大脑,最后回答你问题,这么个系统。如果你不想接到微信去,自己用用,其实到这里搭建完就OK了,他也有问答界面。3.搭建[chatgpt-on-wechat](https://github.com/zhayujie/chatgpt-on-wechat),接入微信,配置FastGpt把知识库问答系统接入到微信。这里建议先用个小号,以防有封禁的风险。搭建完后想拓展Cow的功能,我推荐Yaki.eth同学这篇教程[Yaki:GPT /MJ接入微信](https://waytoagi.feishu.cn/wiki/UADkwZ9B0iAWdTkFJIjcN7EgnAh),里面的cow插件能进行文件总结、MJ绘画的能力。完成上面3步就算OK了,那我们正式开始。

开发:LangChain大模型应用开发指南-封装自己的LLM

LLM(语言逻辑模型)是LangChain平台与各种大模型进行交互的核心模型,它是一个抽象的概念,可以理解为一个能够处理语言输入和输出的黑盒。LLM的输入是一个字符串,表示用户的请求或问题,LLM的输出也是一个字符串,表示模型的回答或结果。LLM可以根据不同的输入,调用不同的大模型,来完成不同的语言任务,如文本生成、文本理解、文本翻译等。LLM的优势在于,它可以让开发者无需关心大模型的细节和复杂性,只需要关注语言的逻辑和意义,就可以利用大模型的能力来构建自己的应用。LLM也可以让开发者灵活地选择和切换不同的大模型,而无需修改代码或适配接口。LLM还可以让开发者自己封装自己的LLM,来实现自己的语言逻辑和功能。

02-基础通识课

[title]02-基础通识课[heading1]智能纪要[heading2]总结AI技术的发展与应用流式训练方式提升训练速度和质量:将孔明灯换成泡泡,通过流式训练方式提高了整体训练的过程速度和质量,基于Transformer模型进行流匹配,这种方式优于扩大模型。多种AI生成工具:如输入简单提示词就能创作音乐的so no音频生成工具,能创建个人AI智能体的豆包,输入文本可生成播客的Notebook LN。端侧大模型的特点:端侧大模型能部署在手机端等设备,参数量小,可利用手机自带芯片或处理器运算,主要通过压缩来解决存储和性能问题,如减少模型参数量和计算复杂度,知识蒸馏模型有教师模型和学生模型。AI工程平台:AI工程平台对模型和应用有要求,像define是典型的工程平台,涉及数据清洗管道、数据存储和检索、编辑生成平台、构建prompt技巧、智能体概念、插件调用、运维平台、模型层和缓存机制等,还能接入多家大模型。AI工程平台coach的应用:coach平台新版本有很多模板,如名画照相馆,有众多插件工具,包括必应搜索、链接读取、代码执行器等,还有工作流,可创建应用APP。AI相关工具与平台的介绍及应用coach平台的使用:介绍了coach平台的新手教程和文档,可创建智能体,通过工作流节点调用和prompt构建提示词,还能调用插件、图像流、知识库等,商城中有各种智能体和插件模板,知识库可添加多种格式内容。模型社区介绍:提到魔搭社区等几个为大模型提供数据、企业模型和算力服务的平台,有按任务划分的模型库、数据集和在线应用供体验。AI建站预告:为后续AI建站做预告,需要在今明两天安装vs code等基础软件,以简单步骤帮助文科生和无基础人员完成建站,获得正反馈。

Others are asking
我想寻找一个AI模型,能快速读懂视频,并总结成为知识架构的应用或网站
以下为您推荐能快速读懂视频并总结成为知识架构的应用或网站: 百炼大模型平台:其影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,可生成爆款文案,还能根据偏好调试提示词。2025 年 1 月 9 号更新的模型可通过 API 调用纹身 AI 等,Windows 用户可在左下角开始运行输入命令提示符进行本地调用,但生成过程较缓慢。 应用场景:包括商品信息图片生成淘宝上架规格参数、智能手表文案生成、社交媒体内容生成、合同提取、拍照搜题、图片转换、模特换装等。 提供 AI 硬件底层能力,AI 拍立得相机拍照可快速成诗并打印,其对接多模态能力可通过智能体应用或工作流形式的 API 调用。 开源使用:有开源地址,可下载到本地,配置阿里云百炼平台的 API key 及 appid 实现场景,运行项目需特定 Python 包和依赖,可新建应用获取 appid,拍照时需设置 API key。 此外,关于 AI 技术原理与框架的相关知识: 生成式 AI 生成的内容称为 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,电脑通过找规律进行学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,生成图像的扩散模型不属于大语言模型,对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,无需依赖循环神经网络或卷积神经网络。
2025-04-09
从事AI工作,需要什么样的能力
从事 AI 工作需要具备以下能力: 1. 熟悉各种 AI 工具:了解不同 AI 工具的特点和用途,根据具体任务选择合适的工具。例如,写标题可用 ChatGPT,写文章可用 Claude,检查文本错别字和病句可用秘塔写作猫的 AI 纠错功能。 2. 编写提示词:这是用好 AI 工具的关键。要用 AI 能理解的语言,清晰说明需求、任务内容和步骤,搭建起人与 AI 之间的“沟通桥梁”,让 AI 明白要做什么和怎么做。 3. 搭建 AI 智能体:让其替代人工,使用多个 AI 工具协同工作,自动完成任务。 此外,从“AI 摊主速成脑暴会”的相关内容来看,具备以下方面的能力和背景也有助于从事 AI 工作: 1. 技术背景:包括编程、算法工程、AI 应用开发、后端开发等,是 AI 行业内的技术专家或初学者。 2. 产品开发与管理经验:有产品经理的经验,尤其在互联网和 AI 产品开发方面,具备项目管理与执行能力。 3. 多元化应用场景经验:广泛涉足 AIGC 内容创作、自动驾驶、金融数据分析、教育、医疗健康、影视创作、营销等 AI 应用场景。 4. AI 学习与技能提升:处于 AI 技术的初学阶段,渴望通过学习提升技能,并将 AI 技术应用到实际工作和生活中。 5. 内容创作与营销能力:包括自媒体运营、视频博主、内容创作者所具有的文案策划、视频剪辑、图文制作等创意能力,以及营销和品牌运营人士所掌握的商业化路径和解决方案提供能力。 6. 活动策划与执行能力:有丰富的活动策划和运营经验,涉及线下工作坊、社群活动、比赛等,具备资源整合和组织协调能力。
2025-04-09
ai搜索引擎哪个好
以下是一些推荐的 AI 搜索引擎: 1. 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升用户搜索效率和体验。 2. Perplexity:聊天机器人式搜索引擎,允许用自然语言提问,通过生成式 AI 技术从各种来源收集信息并给出答案。 3. 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰有理的答案,支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持图像、语音等多模态搜索。 5. Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 做好 AI 搜索引擎的关键在于: 1. 准确度:取决于问答底座模型的智能程度和挂载上下文的信息密度。要选用智能的问答底座模型,并对 RAG 的检索结果进行排序去重以保证信息密度。 2. 差异化创新:错位竞争,如对问答结果以 outline/timeline 等形式输出,支持多模态搜索问答,允许挂载自定义信息源等策略。 3. 具备“准/快/稳”的特点:回复结果要准,响应速度要快,服务稳定性要高。 在使用 AI 搜索引擎时需注意: 1. 幻觉风险较高,大多数 AI 搜索引擎未连接到互联网。 2. 必应通常是较好的选择,特别是在某些特定场景下,如技术支持、决定吃饭地点或获取建议等,必应可能比谷歌更好。但这是一个迅速发展的领域,使用时应小心。对于儿童,可汗学院的 Khanmigo 提供由 GPT4 驱动的良好的人工智能驱动辅导。
2025-04-09
ai agent有哪些技术
AI Agent 涉及的技术包括以下方面: 1. 长期任务执行技术:能够将复杂、跨度长的任务分解为小步骤,并在执行中保持目标导向和适时调整策略。 2. 多模态理解技术:能同时理解文字、图像、声音等多种交流方式,通过多种感官理解世界和任务上下文。 3. 记忆与行动技术:通过先进的记忆机制积累经验,记住对话、操作步骤和效果,使行动更精准高效。 4. 自适应学习技术:从每次交互中吸取经验,不断完善策略,实现“智慧成长”。 在技术层面,AI Agent 的发展有两条技术路线: 1. 以自主决策为核心的 LLM 控制流,代表了 AGI 的探索方向。 2. 以工作流(Workflow)编排为重点的工具集成系统,加速了 AI 落地应用。 特别值得关注的是 Anthropic 提出的 MCP(Model Context Protocol),其本质是一个通用接口协议,能解决让 AI 模型以标准化、可扩展方式与外部世界交互的问题。 此外,强化学习(RL)也是 AI Agent 的重要技术,起初主要依托策略搜索和价值函数优化等算法,如 Qlearning 和 SARSA。随着深度学习技术兴起,深度神经网络与强化学习结合形成深度强化学习,赋予 Agent 从高维输入中学习复杂策略的能力,如 AlphaGo 和 DQN 等。但强化学习面临训练周期长、采样效率低和稳定性等问题。其特点是通过试错学习最优行为策略以最大化累积奖励,时间始于 20 世纪 90 年代至今,技术包括 Qlearning、SARSA、深度强化学习(结合 DNN 和 RL),优点是能够处理高维状态空间和连续动作空间,缺点是样本效率低、训练时间长。
2025-04-09
有没有关于AI生成ppt的系统性教学
以下是关于 AI 生成 PPT 的系统性教学: 背景: 作者熊猫 Jay 因企业内部要求编写此文章并公开分享,旨在帮助不同水平的用户,包括 PPT 专家和新手,通过 AI 工具更高效地制作 PPT,满足不同需求,提高工作效率。 主要内容: 介绍了市面上最受欢迎的 5 款 AI PPT 工具,包括 MindShow、爱设计、闪击、Process ON、WPS AI。每款工具都有独特优势,能助用户快速、高效完成 PPT 设计。 总结: AI 介入 PPT 工具带来便捷高效体验,文中核心章节为 AI 生成 PPT 的主要思路。不同工具适合不同人群,应根据实际需求选择,试用和体验比盲目跟风更明智。在 AI 时代,它是办公革新和思维升级的体现。 提示词及相关索引: 作者联系方式: 公众号:熊猫 Jay 字节之旅;免费星球:熊猫 Jay·AI·成长,欢迎关注。
2025-04-09
有没有可替代Adobe Dreamweaver的ai工具?
以下是一些可替代 Adobe Dreamweaver 的 AI 工具: 图像生成方面: 最透明的选项:Adobe Firefly(https://www.adobe.com/sensei/generativeai/firefly.html) 开源选项:Stable Diffusion(https://stablediffusionui.github.io/) 最佳免费选项:Bing 或 Bing Image Creator(https://www.bing.com/images/create)(使用 DALLE),Playground(https://playgroundai.com/)(允许您使用多个模型) 最佳质量图像:MidJourney(https://midjourney.com/) CAD 图绘制方面: CADtools 12:Adobe Illustrator(AI)插件,为 AI 添加 92 个绘图和编辑工具。 Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件。 nTopology:基于 AI 的设计软件,可创建复杂的 CAD 模型。 ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据设计目标和约束条件自动生成 3D 模型。 一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等提供的基于 AI 的生成设计工具。 在音乐生成方面,相关的平台和工具包括: UDIO.com:目前最先进的 AI 音乐生成平台之一,音质优异,功能全面,但有一定技术门槛。 SUNO.ai:用户数量众多、操作方便,支持多语言,能一次生成完整曲长的音乐,但音质相对较差。 Ripx Daw Pro:独特的 DAW 软件,可对混合音频进行分轨并进行钢琴卷帘形式的修改操作。 Adobe Audition:由 Adobe 出品的数字音频编辑软件,操作直观,具备多种音频处理功能。
2025-04-09
liblib ai 教程
以下是关于 Liblibai 的简易上手教程: 一、概念与功能说明 1. 迭代步数:AI 调整图片内容的次数。步骤越多,调整越精密,出图效果理论上更好,但生图耗时越长。并非越多越好,效果提升非线性,过多后效果增长曲线放平并开始震荡。 2. 尺寸:图片生成的尺寸大小。太小 AI 生成内容有限,太大 AI 易放飞自我。如需高清图,可设中等尺寸并用高分辨率修复(以后再学)。 3. 生成批次:用本次设置重复生成的批次数。 4. 每批数量:每批次同时生成的图片数量。 5. 提示词引导系数:指图像与 prompt 的匹配程度。数字增大图像更接近提示,但过高会使图像质量下降。 6. 随机数种子:生成的每张图都有随机数种子,固定种子后可对图片进行“控制变量”操作,如修改提示词、修改 clip 跳过层等。首次生成图时无种子,不用管。 7. ADetailer:面部修复插件,可治愈脸部崩坏,高阶技能,后续学习。 8. ControlNet:控制图片中特定图像,用于控制人物姿态、生成特定文字、艺术化二维码等,高阶技能,稍后学习。 9. 重绘幅度:图生图时用到,幅度越大,输出图与输入图差别越大。 二、简明操作流程 1. 文生图 定主题:明确生成图片的主题、风格和表达信息。 选择 Checkpoint:根据主题找贴近内容的 checkpoint,如麦橘、墨幽的系列模型。 选择 lora:寻找与生成内容重叠的 lora,控制图片效果及质量。 设置 VAE:无脑选 840000 那一串。 CLIP 跳过层:设成 2。 Prompt 提示词:用英文写需求,单词、短语组合,用英文半角逗号隔开,不管语法和长句。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词、短语组合,用英文半角逗号隔开。 采样方法:一般选 DPM++2M Karras,也可参考 checkpoint 详情页模型作者推荐的采样器。 迭代步数:选 DPM++2M Karras 后,一般在 30 40 之间,多了意义不大且慢,少了出图效果差。 尺寸:根据喜好和需求选择。 生成批次:默认 1 批。 三、prompt 简易技巧 能简单控制图。 虽然视频教程很多,但看图文说明更方便。Liblibai 网站(https://www.liblib.ai/)可点击进入免费在线生图。若看完不明白,可评论区交流或添加微信:designurlife1st 沟通。
2025-03-31
liblib ai 使用教程
以下是 Liblibai 的使用教程: 简明操作流程: 1. 定主题:明确您想要生成的图片主题、风格和表达的信息。 2. 选择 Checkpoint:根据主题选择贴近的 Checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. 设置 VAE:选择 840000 那一串。 5. 设置 CLIP 跳过层:设为 2。 6. Prompt 提示词:用英文写想要 AI 生成的内容,使用单词和短语组合,用英文半角逗号隔开。 7. 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,单词和短语组合,用英文半角逗号隔开。 8. 采样方法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 9. 迭代步数:选 DPM++2M Karras 时,一般在 30 40 之间。 10. 尺寸:根据喜好和需求选择。 11. 生成批次:默认 1 批。 概念与功能说明: 1. 迭代步数:AI 调整图片内容的次数,并非越多越好,需根据采样器特征选择。 2. 尺寸:图片生成的大小,太小或太大都有影响。 3. 生成批次:用本次设置重复生成的批次数。 4. 提示词引导系数:指图像与 prompt 的匹配程度,过高会影响图像质量。 5. 随机数种子:固定后可对图片进行“控制变量”操作。 6. ADetailer:面部修复插件,高阶技能。 7. ControlNet:控制图片中特定图像,高阶技能。 8. 重绘幅度:图生图时用到,幅度越大,输出图与输入图差别越大。 其他概念: 1. 首页 模型广场:有其他用户发布的模型,收藏和运行数多的模型在首页前排,可查看模型详情并加入模型库。 2. Checkpoint:生图必需的基础模型,必选。 3. lora:低阶自适应模型,可选可不选,用于控制细节。 4. VAE:类似于滤镜,调整生图饱和度,选择 840000 即可。 5. CLIP 跳过层:一般设为 2,早期不用过多关注。 6. Prompt 提示词:想要 AI 生成的内容。 7. 负向提示词 Negative Prompt:想要 AI 避免产生的内容。 8. 采样方法:让 AI 用的生图算法。
2025-03-31
liblib教程
以下是关于 liblib 的教程: 线稿提取教程: 1. 出两张彩色的稍连贯的图片。 2. 提取第一张的线稿图: 用 liblib 提取,进入 https://www.liblib.art/ 。 点击【在线生图】。 滑到下面找出【ControlNet】并点击右侧。 点击上传图片。 勾选【启用】、【允许预览】、【Lineart】,预处理器选择【写实线稿提取】,并点击【运行&预览】。 把右侧的黑白图拉到左侧栏,预处理器改为【invert(白底黑线反色)】,并点击【运行&预览】,线稿提取大功告成!右键图片另存即可。 文生图简明操作流程: 1. 定主题:确定要生成的图片主题、风格和表达的信息。 2. 选择 Checkpoint:根据主题选择贴近的 checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找内容重叠的 lora 以控制图片效果及质量。 4. 设置 VAE:选择 840000 那一串。 5. CLIP 跳过层:设成 2。 6. Prompt 提示词:用英文写需求,单词、短语之间用英文半角逗号隔开。 7. 负向提示词 Negative Prompt:用英文写避免产生的内容,单词、短语组合,中间用英文半角逗号隔开。 8. 采样方法:一般选 DPM++2M Karras,也可参考 checkpoint 详情页上模型作者推荐的采样器。 9. 迭代步数:选 DPM++2M Karras 时,在 30 40 之间。 10. 尺寸:根据喜好和需求选择。 11. 生成批次:默认 1 批。 此外,还有 Liblibai 简易上手教程,包含概念与功能说明、简明操作流程、prompt 简易技巧三部分。可通过进入免费在线生图。若有不明白之处,可在评论区交流或添加微信:designurlife1st 沟通。
2025-01-28
liblib 使用
Liblib 的使用方式如下: 1. 在线生图: 2. 本地 ComfyUI Flux+Lora 工作流: 。 Liblibai 简易上手教程中的概念与功能说明: 1. 迭代步数:AI 调整图片内容的次数。步骤越多,调整越精密,出图效果理论上更好,但生图耗时越长,且并非越多越好,效果的提升非线性,多了以后效果的增长曲线就放平并开始震荡。 2. 尺寸:图片生成的尺寸大小。太小了 AI 生成不了什么内容,太大了 AI 开始放飞自我。如需高清图,可设置中等尺寸并用高分辨率修复。 3. 生成批次:用本次设置重复生成几批图。 4. 每批数量:每批次同时生成的图片数量。 5. 提示词引导系数:指图像与 prompt 的匹配程度。数字增大将导致图像更接近提示,但过高会让图像质量下降。 6. 随机数种子:生成的每张图都有随机数种子,在固定好种子以后,可对图片进行“控制变量”效果的操作,比如修改提示词、修改 clip 跳过层等。第一次生成图时没有种子,不用管,空着就行。第二次生图若用上次图的种子,且其他设置不变,会出一样的图片。 7. ADetailer:面部修复插件,治愈脸部崩坏的超强小工具,高阶技能,后面再学。 8. ControlNet:控制图片中一些特定的图像,可用于控制人物姿态,或生成特定文字、艺术化二维码等。也是高阶技能,后面再学。 9. 重绘幅度:图生图时用到,重绘幅度越大,输出的图和输入的图差别就越大。 此外,Liblib 相关辅助工具中,换脸方面有 FaceFusion 这款开源软件,可在本地运行,不仅能将源图像中的面部与目标图像或视频中的面部进行交换,还提供多种面部和帧处理器以改进或定制面部特征。FaceFusion 1.1.0 更新,增加了摄像头功能,可进行实时换脸和面部改造。其有多种选项和参数,允许用户根据需要进行定制,还内置了一些检查机制,以防止软件被用于不道德或非法的用途。GitHub: 。
2025-01-24
ImportError: DLL load failed while importing libpaddle: 动态链接库(DLL)初始化例程失败 这个错误如何解决?
很抱歉,目前知识库中没有关于“ImportError: DLL load failed while importing libpaddle: 动态链接库初始化例程失败”这个错误的具体解决方法。但您可以尝试以下常见的解决步骤: 1. 检查相关依赖库的安装是否完整和正确,确保没有遗漏或损坏的部分。 2. 确认您的系统环境是否满足该库的要求,包括操作系统版本、硬件架构等。 3. 尝试重新安装相关库,确保安装过程中没有出现错误。 4. 查看是否存在其他软件或进程与该库的使用产生冲突,如有,尝试关闭或卸载冲突的软件。 希望这些建议能对您有所帮助,如果问题仍未解决,建议您进一步查阅相关技术文档或向更专业的技术社区寻求帮助。
2025-01-12
那为什么使用from matplotlib报错
很抱歉,目前没有关于“使用 from matplotlib 报错”的相关内容。可能导致这种报错的原因有很多,比如 matplotlib 库未正确安装、版本不兼容、代码中其他部分的冲突等。您可以检查一下 matplotlib 库的安装情况,确认是否与您当前使用的环境和其他依赖项相匹配。同时,查看报错信息中的具体提示,这通常能为您找到问题的线索。
2024-12-05
我是一名日语大四学生,我要利用我的开题报告结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
要向 DeepSeek 提问以结合您的开题报告完成论文初稿,您可以遵循以下正确的提问模板: 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,例如您的开题报告的主题、研究目的、已有的研究进展等,以使 DeepSeek 更好地理解您的问题。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如您希望它根据开题报告提供论文大纲、分析相关数据、提供文献综述等,提出的需求越明确获得的答案越有价值。 4. 补充要求:您还可以提出关于回答的格式、风格、字数等方面的要求。 例如:您可以这样提问“我赋予您论文撰写助手的角色,我的开题报告主题是关于日本文化在现代社会中的变迁,目前我已经完成了初步的文献收集和分析,我的目标是请您根据这份开题报告为我生成一个详细的论文大纲,要求大纲结构清晰,逻辑连贯,具有一定的创新性”。
2025-03-31
我是一名日语大四学生,我要利用我的开题报告和文献综述结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
向 DeepSeek 提问时,可遵循以下万能通用的提问公式:提示词=赋予角色+背景/现状+目标/需求+补充要求。 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,以使它更好地理解您的问题,并为您提供更准确的答案。例如您是日语大四学生,正在进行开题报告和文献综述相关工作。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如完成一篇结合开题报告和文献综述的论文初稿。 4. 补充要求:例如指定写作风格要具有吸引力、友好性和幽默感等。 另外,在使用 DeepSeek 时还需注意: 对于像“仅通过东方集团的历年公开财务数据,分析这家公司的潜在投资机会和风险”这样的特定需求,可能需要进一步追问以获得更满意的结果。 与 DeepSeek 交流时,在其提供方法建议后,可以追问背后的方法论。 对于创作类的需求,如脱口秀段子,可以结合特定人物的特点和风格,并指定主题和字数等要求。
2025-03-31
我要系统学习AI怎么操作
以下是为您提供的系统学习 AI 的操作方法: 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 对于新手学习 AI,还可以: 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,找到一系列为初学者设计的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 总之,无论是中学生还是新手,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2025-03-31
我是一位程序开发小白,不会用代码开发程序。我现在有一台安装Window 11操作系统的笔记本电脑,配置为14代i7CPU、32G内存、1TB硬盘、1张RTX4070显卡。我想部署一套本地的大模型+智能体+知识库。我要怎么样才能实现无代码部署,请列出详细的安装步骤。
以下是为您提供的无代码部署本地大模型、智能体和知识库的详细安装步骤: 1. 硬件评估:您的笔记本电脑配置为 14 代 i7 CPU、32G 内存、1TB 硬盘、1 张 RTX4070 显卡,基本满足部署要求。但需要注意,运行内存最低 32GB,越高越好,最低配可能会经常爆显存。建议将软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 2. 选择合适的部署工具:ComfyUI 是一个相对配置要求较低、系统资源占用少、出图速度快的工具。它最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 3. 安装准备:如果您的电脑能顺畅清晰地玩 3A 游戏,那么运行相关部署工具一般也没问题。 4. 预算和需求:根据您的需求和预算来选择合适的配置。例如,如果有做 AIGC 视频、建模渲染和炼丹(lora)的需求,可能需要更高的配置。 请注意,以上步骤仅为参考,实际部署过程可能会因具体情况而有所不同。
2025-03-26
我要学习提示词工程哪些教程最好
以下是一些学习提示词工程的优质教程推荐: 1. 小七姐的“Prompt Engineering a Prompt Engineer 精读翻译”: 提供了提示词工程的在线教程。 将提示词工程的任务分解为两个步骤,并在元提示词中明确这两个步骤,提前传达期望。 为鼓励模型仔细检查示例,指导提案模型回答一系列问题。 明确提示词在不同上下文中与输入的相互作用。 2. 歸藏翻译的“简单易懂,强烈推荐 Codesignal 提示工程教程1”: 通俗易懂,给出丰富实践经验。 课程地址:https://learn.codesignal.com/preview/coursepaths/16/promptengineeringforeveryone 。 3. “GPT1 到 Deepseek R1 所有公开论文 The 2025 AI Engineer Reading List”中的第 3 节: 推荐了 Lilian Weng、Eugene Yan、Anthropic 的《提示工程教程》和《人工智能工程师工作坊》。
2025-03-25
如果我要把多篇会议纪要整理成一片行业调研报告,需要如何做
要将多篇会议纪要整理成一篇行业调研报告,您可以按照以下步骤进行: 1. 让 AI 阅读学习:提供一篇优秀的行业调研报告,让 AI 总结其中的方法论,输出一份“行业调研报告”的研究方法和操作框架。 2. 问 AI:询问文章在收集行业数据时所使用的一手数据和二手数据,并让其推荐一些靠谱的行业资料收集网站。 3. 要求 AI:表明您想参考以上内容写一份特定“XXX 行业调研报告”,让其作为“行业调研报告撰写专家”,为您推荐 10 个“XXX 行业”信息网站和 5 个“XXX 行业”研究微信公众号,并输出一份“XXX 行业调研报告”框架。 4. 要求 AI:针对上述“XXX 行业调研报告”框架,丰富每一章节内容,每章内容字数大于 200 字。 5. 经过以上 4 个步骤,AI 会为您生成一个“XXX 行业调研报告”的初稿。之后,您可以根据自身需求,让 AI 进一步完善每一个章节的内容,并结合自己的独特经验和知识,对文章内容进行润色和调整。 需要注意的是,要使调研报告有深度,可以通过以下两个途径: 1. 自身对行业比较了解,整理深度洞察和见解。 2. 一步一步深度咨询 AI,借助 AI 的海量知识,一边学习、一边研究、一边洞察总结。(通过借助 AI,可以加速我们的学习和研究能力) 操作示例可获取“kimi 对话原文”链接: 欢迎与 JessieZTalk 交流,在 AIGC 的路上共同进步!
2025-03-24
飞书多维表格如何接入gemini?
要将飞书多维表格接入 Gemini,以下是一些相关的操作步骤和说明: 首先,请注意部分操作需要搭配 Google 云服务或自备 API 才可以正常练习,具体内容)。友情提示,从这一部分及以后内容,多数都会是配合代码完成的,如果您是 0 代码学习者,尝试看懂提示词,并在一些 AI 产品上尝试使用。 接下来,课程将深入探讨代码部分。为了运行这个笔记本,需要执行一些设置代码。首先,需要导入 utils 并进行身份验证,这意味着需要设置一些凭证和项目 ID,以便能够从笔记本环境调用云端的 Gemini API。项目包含在云中使用的资源和 Gemini API。这个设置过程确保了笔记本能够正确连接和使用 Gemini 模型。 对于本课程,还需要指定一个区域,即代码将在哪里执行。在这种情况下,使用的是 uscentral1。 接下来,课程将导入 Vertex AI SDK。Vertex AI SDK 可以看作是一个 Python 工具包,帮助用户与 Gemini 交互。通过这个 SDK,可以使用 Python 调用 Gemini API 并获得响应。 在笔记本中,需要初始化 Vertex SDK。这意味着需要告诉 SDK 以下信息: 1. 使用的项目 2. 想要使用 Gemini 模型的区域 3. 用户凭证 通过提供这些信息,Gemini API 就能识别用户身份,并确认用户有权使用 API。 为了使用 Gemini API,需要从 SDK 中导入 generative_model。设置完成后,需要指定具体的模型。这可以通过设置 model 变量来完成,使用刚刚导入的 generative_model,并选择特定的 Gemini 模型。在这个案例中,课程将使用 Gemini 1.0 Pro 版本。这个选择反映了对于当前任务,Gemini Pro 可能是最合适的平衡点,提供了良好的性能和效率。 此外,Gemini 不仅是单一模型,而是一个模型系列,包含不同大小的模型,每种大小都针对特定的计算限制和应用需求而定制。首先是 Gemini Ultra,这是系列中最大和最强大的模型。Gemini Pro 被设计为多功能的主力模型,平衡了模型性能和速度。还有 Gemini Flash,这是一个专门为高容量任务设计的最快、最具成本效益的模型。最后是 Gemini Nano,它是 Gemini 家族中的轻量级成员,专门设计用于直接在用户设备上运行。
2025-03-28
coze开发硬件接入ai
如果您想开发硬件接入 Coze 智能体,以下是一些相关信息: 在服务器设置方面,对于 chatgptonwechat(简称 CoW)项目,可点击“Docker”中的“编排模板”中的“添加”按钮。备注说明版可借用“程序员安仔”封装的代码。将编译好的内容复制进来,在“容器编排”中“添加容器编排”,选择在“编排模板”里创建的“coze2openai”,若无法正常启动,可查看文档后面的“常见问题”。 关于计划,包括弄共学、做网页连接 Coze 等,涉及网页、小程序、App、桌面应用、浏览器插件等方面,还提到了硬件相关的工作安排。 在入门 Coze 工作流方面,首先要明确任务目标与执行形式,包括详细描述期望获得的输出内容(如文本、图像、音频等形式的数据,以及具体格式和结构、质量标准),预估任务的可行性,确定任务的执行形式。例如对于一篇文章,可参照特定框架进行微调,评估任务可行性,结合使用习惯确定预期的执行形式。
2025-03-27
COZE接入企业微信
要将 COZE 接入企业微信,您可以按照以下步骤进行操作: 1. 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。具体操作包括:点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后,点击容器,查看运行的服务,手动刷新日志,若看到“WeChat login success”,则接入成功。 2. 在 COZE 官网左下角选择 COZE API,在 API 令牌中选择“添加新令牌”,为令牌命名,选择永久有效,指定团队空间,勾选所有权限,保存好令牌的 Token,切勿向他人泄露。 3. 获取机器人 ID:在个人空间中找到要接入微信的机器人,进入机器人编辑界面,浏览器地址栏“bot/”之后的数据即为该机器人的 Bot ID。 4. 进行 API 授权:点击右上角发布,出现“Bot as API”,勾选并确定应用已成功授权。 5. 配置微信客服: 访问微信客服 https://kf.weixin.qq.com/,点击开通,勾选同意,点击下一步,按步骤填写,注册企业微信。 点击配置,到微信客服的企业信息,复制企业 ID 到 COZE 页面进行粘贴填写企业 ID,并点击下一步。 到微信客服的开发配置,找到回调配置,复制 Token、EncodingAESKey(若为空,点击“随机获取”),到 COZE 页面进行粘贴,点击下一步。 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 COZE 页面粘贴。 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 COZE 页面粘贴,点击保存。 请注意,第一次设置回调地址时,目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。
2025-03-21
COZE接入企业微信
要将 COZE 接入企业微信,您可以按照以下步骤进行操作: 1. 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。具体操作包括:点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后,点击容器,查看运行的服务,手动刷新日志,若看到“WeChat login success”,则成功接入微信。 2. 在 COZE 官网左下角选择 COZE API,在 API 令牌中选择“添加新令牌”,为令牌命名,选择永久有效,指定团队空间,勾选所有权限,保存好令牌的 Token,切勿向他人泄露。 3. 获取机器人 ID:在个人空间中找到要接入微信的机器人,进入机器人编辑界面,浏览器地址栏“bot/”之后的数据即为该机器人的 Bot ID。 4. 进行 API 授权,点击右上角发布,勾选 Bot as API,确定应用已成功授权 Bot as API。 5. 配置微信客服: 访问微信客服 https://kf.weixin.qq.com/,点击开通,勾选同意,点击下一步,按步骤填写,注册企业微信。 点击配置>到微信客服的企业信息,复制企业 ID>到 COZE 页面进行粘贴填写企业 ID,并点击下一步。 到微信客服的开发配置,找到回调配置,复制 Token、EncodingAESKey(若为空,点击“随机获取”),到 COZE 页面进行粘贴,点击下一步。 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 COZE 的页面粘贴。 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 COZE 的页面粘贴,点击保存。 请注意,第一次设置回调地址时,目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。
2025-03-21
COZE接入企业微信
要将 COZE 接入企业微信,可参考以下步骤: 1. 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。具体操作包括:点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后,点击容器,可看到运行的两个服务。然后点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。此界面不会实时更新显示,需手动刷新,若看到“WeChat login success”,则接入微信成功。 2. 在扣子官网左下角选择扣子 API,在 API 令牌中选择“添加新令牌”,为令牌命名,选择永久有效作为过期时间,选择指定团队空间,勾选所有权限。保存好令牌的 Token,切勿向他人泄露。 3. 获取机器人 ID:在个人空间中找到要接入微信的机器人,进入机器人编辑界面,浏览器地址栏“bot/”之后的数据即为该机器人的 Bot ID。 4. 进行 API 授权:点击右上角发布,勾选 Bot as API,确定应用已成功授权 Bot as API。 5. 配置微信客服: 访问微信客服 https://kf.weixin.qq.com/,点击开通,勾选同意,点击下一步,按步骤填写,注册企业微信。 点击配置>到微信客服的企业信息,复制企业 ID>到 coze 页面进行粘贴填写企业 ID,并点击下一步。 到微信客服的开发配置,找到回调配置,复制 Token、EncodingAESKey(若为空,点击“随机获取”),到 coze 页面进行粘贴,点击下一步。 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 coze 的页面粘贴。 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 coze 的页面粘贴,点击保存。 注意:目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。
2025-03-21
excel如何接入AI
以下是 Excel 接入 AI 的一些方式和相关工具: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了包括 Excel 在内的多种办公软件。用户通过聊天形式告知需求,Copilot 会自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。
2025-03-20