Navigate to WaytoAGI Wiki →
Home
Events
Websites
Agents
Prompts
Chat with Wiki
Blog
🇺🇸 English
Login
Home
/
Question List
/
Question Detail
模态分解算法的详细代码
Answer
很抱歉,目前知识库中没有模态分解算法的详细代码。但您可以通过以下途径获取相关代码:
学术研究网站,如 arXiv 等,许多学者会在上面分享他们的研究成果及代码。
相关的开源代码库,如 GitHub 等,您可以通过搜索关键词找到相关项目。
专业的技术论坛,在那里与其他开发者交流,可能会获得有用的信息和代码示例。
Content generated by AI large model, please carefully verify (powered by aily)
Ask Again
Others are asking
多模态
以下是关于多模态的相关信息: 智谱·AI 开源模型列表中的多模态模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。代码链接:、始智社区。 CogVLM17B:强大的开源视觉语言模型(VLM),基于对视觉和语言信息之间融合的理解,能在不牺牲任何 NLP 任务性能的情况下,实现视觉语言特征的深度融合,是目前多模态权威学术榜单上综合成绩第一的模型,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。代码链接:。 Visualglm6B:开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于。 生成式人工智能领域的突破点:多模态模型能够在没有重大定制的情况下推理图像、视频,甚至物理环境。尽管 LLMs 存在一些实际限制,但研究人员在短时间内对这些模型进行了惊人的改进。 走入 AI 的世界中的相关解释:多模态指多数据类型交互,从而能够提供更接近人类感知的场景。正如人有眼、耳、鼻、舌、身、意等多个模态,大模型对应的模态是文本、图像、音频、视频等。
2025-01-27
什么是多模态模型?
多模态模型是指能够处理和融合多种不同模态信息(如视觉、语言、音频等)的模型。 以下为一些常见的多模态模型示例: 智谱·AI 推出的具有视觉和语言双模态的模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。代码链接:。 CogVLM17B:强大的开源视觉语言模型(VLM),基于对视觉和语言信息之间融合的理解,在多模态权威学术榜单上综合成绩优异。代码链接:。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。代码链接:。 RDM:Relay Diffusion Model,级联扩散模型,可以从任意给定分辨率的图像快速生成,而无需从白噪声生成。代码链接:。 Google 的人工智能多模态大模型叫 Gemini,它是 Google DeepMind 团队开发的,不仅支持文本、图片等提示,还支持视频、音频和代码提示。能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出。被称为 Google 迄今为止最强大、最全面的模型,被描述为一种“原生多模态大模型”,从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。但请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-13
多模态大模型与图像、视频生成
多模态大模型与图像、视频生成相关知识如下: 多模态大模型的架构和原理:基于大圆模型,能识别页面组件结构和位置绝对值信息,并与组件、文本映射。由解码器、backbone、Generator 等部件组成,左侧多模态理解,右侧生成输出。 Stable Diffusion 模型原理:是生成模型,通过加噪和去噪实现图像的正向扩散和反向还原,解决潜在空间模型中的速度问题。其应用场景包括带货商品图生成、模特服装展示、海报生成、装修设计等。 吉梦 AI 和吐司平台的使用体验:吉梦 AI 提供 AI 视频生成等能力,通过简单提示词生成图像,对数字体有专项场景训练;吐司是类似的在线生成平台,具备多种 AI 能力,有模型、在线训练、上传模型工作流等功能,可通过输入提示词生成图片。 模型训练:训练模型需要大量图像数据和标签化处理。 AI 视频生成原理:主要基于 Sara 的整体架构,采用 diffusion Transformer 架构,以扩散模型通过随机造点、加噪和去噪得到连续图像帧,输入视频可看成若干帧图片,经处理后生成视频。 模态生成器 MG_X 一般用于生成不同的模态来输出。当前的工作一般使用现成的扩大模型(Latent diffusion model),例如 Stable Diffusion 用于图像生成,Zeroscope 用于视频生成,AudioLDM2 用于音频生成。 多模态模型的技术架构:如果模型既支持 3D 生成,又支持视频生成,就可以实现图文编辑以及具有强一致性的视频生成。Open AI 可能会尝试把图片、视频、3D 变为一个自然空间。Transformer 架构的多模态模型给机器提供了像人类一样与世界互动的新机会,杨立昆(Yann LeCun)提出的世界模型可能是近一年值得关注的研究点。
2025-01-07
多模态大模型与图像、视频生成
多模态大模型与图像、视频生成相关知识如下: 多模态大模型的架构和原理:基于大圆模型,能识别页面组件结构和位置绝对值信息,并与组件、文本映射。由解码器、backbone、Generator 等部件组成,左侧多模态理解,右侧生成输出。 Stable Diffusion 模型原理:是生成模型,通过加噪和去噪实现图像的正向扩散和反向还原,解决潜在空间模型中的速度问题。其应用场景包括带货商品图生成、模特服装展示、海报生成、装修设计等。 吉梦 AI 和吐司平台的使用体验:吉梦 AI 提供 AI 视频生成等能力,通过简单提示词生成图像,对数字体有专项场景训练;吐司是类似的在线生成平台,具备多种 AI 能力,有模型、在线训练、上传模型工作流等功能,可通过输入提示词生成图片。 模型训练:训练模型需要大量图像数据和标签化处理。 AI 视频生成原理:主要基于 Sara 的整体架构,采用 diffusion Transformer 架构,以扩散模型通过随机造点、加噪和去噪得到连续图像帧,输入视频可看成若干帧图片,经处理后生成视频。 模态生成器 MG_X 一般用于生成不同的模态来输出。当前的工作一般使用现成的扩大模型(Latent diffusion model),例如 Stable Diffusion 用于图像生成,Zeroscope 用于视频生成,AudioLDM2 用于音频生成。 多模态模型的技术架构:如果模型既支持 3D 生成,又支持视频生成,就可以实现图文编辑以及具有强一致性的视频生成。Open AI 可能会尝试把图片、视频、3D 变为一个自然空间,Google 的 VideoPoet 已在这个方向上有尝试,但分辨率不够高。Transformer 架构的多模态模型给机器提供了像人类一样与世界互动的新机会,杨立昆(Yann LeCun)提出的世界模型可能是近一年值得关注的研究点。
2025-01-07
Video-LLaVA与多模态图像视频识别
以下是对 26 个多模态大模型的全面比较总结: 1. Flamingo:是一系列视觉语言(VL)模型,能处理交错的视觉数据和文本,并生成自由格式的文本作为输出。 2. BLIP2:引入资源效率更高的框架,包括用于弥补模态差距的轻量级 QFormer,能利用冻结的 LLM 进行零样本图像到文本的生成。 3. LLaVA:率先将 IT 技术应用到多模态(MM)领域,为解决数据稀缺问题,引入使用 ChatGPT/GPT4 创建的新型开源 MM 指令跟踪数据集及基准 LLaVABench。 4. MiniGPT4:提出简化方法,仅训练一个线性层即可将预训练的视觉编码器与 LLM 对齐,能复制 GPT4 展示的功能。 5. mPLUGOwl:提出新颖的 MMLLMs 模块化训练框架,结合视觉上下文,包含用于评估的 OwlEval 教学评估数据集。 6. XLLM:陈等人将其扩展到包括音频在内的各种模式,具有强大的可扩展性,利用 QFormer 的语言可迁移性成功应用于汉藏语境。 7. VideoChat:开创高效的以聊天为中心的 MMLLM 用于视频理解对话,为该领域未来研究制定标准,并为学术界和工业界提供协议。
2025-01-07
多模态模型与多模态问答
多模态模型与多模态问答相关内容如下: Gemini 模型在图像理解方面表现出色,在多个基准测试中处于领先地位。它在高级对象识别、细粒度转录、空间理解和多模态推理等任务中展现出强大性能,在 zeroshot QA 评估中优于其他模型,在学术基准测试中如 MathVista 和 InfographicVQA 有显著改进,在 MMMU 基准测试中取得最好分数。 智谱·AI 推出了具有视觉和语言双模态的模型,如 CogAgent18B、CogVLM17B 和 Visualglm6B。CogAgent18B 拥有 110 亿视觉参数和 70 亿语言参数,支持高分辨率图像理解,具备 GUI 图像的 Agent 能力。CogVLM17B 是多模态权威学术榜单上综合成绩第一的模型。VisualGLM6B 是支持图像、中文和英文的多模态对话语言模型。 Zhang 等人(2023)提出了一种多模态思维链提示方法,将文本和视觉融入到一个两阶段框架中,多模态 CoT 模型(1B)在 ScienceQA 基准测试中的表现优于 GPT3.5。
2025-01-07
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21
不同厂家的AI产品是底层算法不一样吗?比如ChatGPT和豆包
不同厂家的 AI 产品底层算法通常是不一样的。 以常见的 ChatGPT 和豆包为例,ChatGPT 是由 OpenAI 开发的,其底层算法具有独特的特点和优势。而豆包是由字节跳动开发的,也有其自身的算法设计和优化。 在当前的 AI 领域,大多数 AI 应用程序都由大型语言模型(LLMs)驱动,其中只有几个基础模型,由少数几个组织创建。例如 OpenAI 制作了 GPT3.5 和 GPT4,Google 有 Bard 等。 从相关的访问量数据来看,不同的 AI 产品在市场上的表现也有所不同。比如在某些月份,ChatGPT 的访问量较高,而豆包的访问量也在不断变化。但这并不能直接反映其底层算法的差异,只是从侧面反映了它们在用户中的受欢迎程度和使用情况。
2025-01-17
我想知道目前最新、效果最好、代码和模型开源的动作捕捉算法,也叫做人体姿态估计,是哪篇文章
目前最新、效果较好且代码和模型开源的人体姿态估计(动作捕捉算法)相关的研究有以下两篇: 1. 【SD】最强手部识别,controlnet 新预处理器 dw openpose 作者:白马少年|公众号:【白马与少年】 发布时间:20230813 20:00 原文网址:https://mp.weixin.qq.com/s/_RiKxWy9MXt4DUJIKH5w 介绍:在 controlnet 中,手部识别一直使用的是 openpose 预处理器,但复杂手势有时无法识别。新的 dw openpose 预处理器能完美解决手部识别问题,将其放入特定目录即可使用。但需说明的是,目前这个 DW Pose 只是更精确的 openpose 预处理器,未对 ControlNet 的 openpose 模型做改动。 2. YOLONAS Pose:一个开源的实时人体姿态估计模型 应用场景:基于骨骼标记为基础,适用于智慧体育等场景,可对训练过程的姿态、数据、状态等进行统计和管理。 技术类型:视频、AI 学习模型 简介:主要功能是识别图片和视频中人的姿势,能快速处理图像并实时返回姿态数据,适应不同场景和设备。 主要特点: 实时性能:旨在提供实时的姿态估计,适用于需要即时反馈的应用。 高精度:利用神经网络架构搜索(NAS)提高姿态估计的准确性。 优化的网络结构:NAS 自动测试不同网络结构,找到最优模型。
2024-12-31
数据算法算力
以下是关于数据、算法、算力的相关知识: 数据:数据的质量对于生成理想的大模型至关重要,早期大模型存在使用不太合规数据等导致乱说的情况。 算法:算法有技术架构的迭代,如英伟达的显卡辅助模型训练。 算力:算力的字面意思是计算能力,可以直接转化成 GPU 就是算力,电脑里的显卡就是 GPU。一张显卡除了 GPU 外,还有一个很重要的参数是显存。GPU 是一种专门在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器,其诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作。显存的作用是用来存储显卡芯片处理过或者即将提取的渲染数据。GPU 的生产商主要有 NVIDIA 和 ATI。
2024-12-27
监控视频算法
很抱歉,目前知识库中没有关于监控视频算法的相关内容。但一般来说,监控视频算法涵盖了目标检测、跟踪、行为分析等多个方面。常见的算法包括基于深度学习的目标检测算法,如 YOLO 和 SSD 等,用于识别视频中的人物、车辆等目标;还有基于光流的目标跟踪算法,用于持续跟踪目标的运动轨迹;在行为分析方面,会运用模式识别和机器学习算法来判断异常行为等。如果您能提供更具体的需求,我可以为您提供更有针对性的信息。
2024-12-21
ai算法种类
以下是一些常见的 AI 算法种类: 分类算法:如 Categorization Algorithms、Classification Model 等。 聚类方法:如 Cluster Resolution Feature Selection、ClusterBased Splitting、Clustering Methods 等。 动态规划:如 Dynamic Programming 。 超参数相关:如 Hyperparameter Opimization、Hyperparameters 。 图像相关:如 Image And Speech Recognition、Image Classification、Image Classifier、Image Recognition 。 其他:如 Combined Gradient、Dual Algorithm、Dual Problem 等。
2024-12-19
ai能实现自动生成增删改查的后端代码吗?
AI 能够实现自动生成增删改查的后端代码。例如,使用编程工具 Cursor,输入 command+i 唤起 composer,基于用户故事生成代码结构,点击回车。建议使用 claude3.5sonnet 模型,其目前代码生成能力较强。自动生成代码后,需点击 Accept all 才会生效,且最好先阅读输出结果,查看是否理解意图,避免频繁修改。若发现遗漏文件,可让 AI 自行检查并补充。此外,像 Coze 工作流也能在一定程度上辅助生成代码,其代码节点自带 IDE 里的 AI 功能生成代码后,除了直接在节点的试运行功能测试外,还可用「测试代码」功能进行测试。但需要注意的是,生成的代码可能存在不完善之处,需要仔细检查和优化。
2025-01-26
请 输出:Hello Word的C语言代码
以下是一个简单的 C 语言程序,用于输出“Hello World”: ```c include <stdio.h> int main { printf; return 0; } ```
2025-01-25
怎么描述能让gpt写出可靠的代码
要让 GPT 写出可靠的代码,可以参考以下方法: 1. 当需要进行复杂计算时,不要完全依赖 GPT 模型自身,而是指导模型编写并运行代码。 2. 特别地,指示模型将要运行的代码放入指定格式,例如使用三个反引号(backticks)。 3. 对于程序开发人员,可利用 GPT 生成代码,例如在求 1000 以内的所有质数时,先让 GPT 编写代码,然后开启新对话输入代码,再让模型充当代码执行器运行代码。 4. 编写代码时,GPT4 写复杂代码的能力更强。 5. 代码执行的另一个好用例是调用外部 API,可通过向模型提供说明如何使用 API 的文档和/或代码示例来指导模型。 6. 但需注意,执行模型生成的代码本身并不安全,任何试图执行此操作的应用程序都应采取预防措施,特别是需要一个沙盒代码执行环境来限制不受信任的代码可能造成的危害。
2025-01-22
有没有什么AI软件有可视化代码功能
以下是一些具有可视化代码功能的 AI 软件: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 以下是一些写代码或辅助编程的 AI 产品: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出的智能编程辅助工具,提供多种能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码。 5. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于自研的基础大模型微调的代码大模型。 7. Codeium:由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释帮助软件开发人员提高效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据需求选择最适合的工具。 此外,还有一些相关的工具和资源: 1. Screenshot to Code:利用 GPT4 Vision 视觉能力将屏幕截图转换为代码,支持 HTML/Tailwind CSS、React 等,集成 DALLE 3。 2. 交互创意体验网址:http://reboot.studio ,提供丰富的交互创意体验,鼓励加入更多 AI 元素。 3. 沃顿商学院发布的教学提示词库:https://www.moreusefulthings.com/prompts ,包含多用途学习和教育提示词,适合学生、教师和家长收藏。
2025-01-20
找一个可以设计复杂代码的AI
以下是一些可以设计复杂代码的 AI 工具及相关信息: 1. 在独立游戏开发中,如果让 AI 写小功能,可把不方便配表而又需要撰写的简单、模板化、多是调用 API 且只牵涉小部分特殊逻辑的代码交给 AI。以 Buff 系统为例,用 Cursor 让它仿照代码写一些 Buff,生成结果有时可以直接用,但目前 Cursor 生成复杂代码还需要复杂的前期调教,用多了之后 ChatGPT 会更方便。教 AI 时要像哄小孩,有正确的需要及时肯定,指出错误时要克制。 2. OpenAI o1:推理能力强,适合作为架构师或算法顾问,用于复杂算法与架构设计。 3. Claude 3.5/Cursor:Claude 擅长长上下文任务,Cursor 适合上下文控制较好的 IDE 开发,可快速生成代码与网页设计。 4. v0.dev:是网页设计的利器,支持设计稿生成网页。 5. Gemini:长上下文支持(2M Tokens),适合代码反编译与混淆代码分析。 同时需要注意,AI 目前在完成复杂项目方面存在一些限制,如上下文窗口限制、自然语言描述不精确、无法感知环境和直接执行、幻觉问题等。复杂项目需要全局理解,AI 难以设计架构和模块化,项目需求常需反复讨论才能明确,AI 难以完全掌握,编译、部署、调试等复杂任务 AI 难以独立完成,且 AI 可能编造不存在的 API 或错误代码,需人工严格审查。
2025-01-20
可开源的AI工具是什么意思,我可以看到她的代码吗
可开源的 AI 工具是指其源代码可以被公开获取和使用的人工智能工具。这意味着您有机会查看和研究其代码的实现方式。 以下为您列举一些常见的可开源的 AI 工具: 1. CodeGeeX:由智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,能快速生成代码,提升开发效率。 2. :一个带 Web 界面简单易用的声音克隆工具。可使用任何人类音色,将一段文字合成为使用该音色说话的声音,或者将一个声音使用该音色转换为另一个声音。 3. :一个开源的音频、音乐和语音生成整合工具包。 4. :一键部署私人 GPT/LLM 的聊天机器人。支持语音合成、多模态和可扩展的插件系统,可以联网、画图、爬虫等。 5. :能够利用爬虫,自动抓取与整合指定 URL 地址中的各种信息,并生成一个 output.json 的数据文件。将其喂给 ChatGPT,便可快速定制您的专属 GPT,打造个人知识库或者智能助理。 6. :给 AI 看一眼截屏,便能直接生成代码。该项目可借助 GPT4 Vision 的能力,直接给您将屏幕截图转换为 HTML/Tailwind CSS,并利用 DALLE 3 的图像生成能力,生成外观相似的图像。 7. :可在命令行终端,直接调用与展示各种大模型能力。实现了视频和照片编辑、系统配置更改、自动生成并运行 Demo 源码,AI 一对一聊天问答等功能。 需要注意的是,不同的开源 AI 工具在功能和适用场景上可能会有所不同,您可以根据自己的需求选择最适合您的工具。
2025-01-20
(defun 生成记忆卡片 (单词) "生成单词记忆卡片的主函数" (let* ((词根 (分解词根 单词)) (联想 (mapcar #'词根联想 词根)) (故事 (创造生动故事 联想)) (视觉 (设计SVG卡片 单词 词根 故事))) (输出卡片 单词 词根 故事 视觉))) (defun 设计SVG卡片 (单词 词根 故事) "创建SVG记忆卡片" (design_rule "合理使用负空间,整体排版要有呼
以下是关于生成记忆卡片和 SVG 卡片的相关信息: 卡片类的应用被定义为词生卡片,如李继刚的《汉语新解》、一泽的《名片设计》、云中江树的《AI 简历》等,都是通过给大模型优化过的 Prompt,让其生成 HTML 代码或 SVG 代码,再通过浏览器渲染效果。 把提示词丢给 Claude ,如在 Poe 平台上的 Claude 模型,大概率会直接输出 SVG 代码,但对于子步骤是否执行等情况难以知晓。Andrej Karpathy 认为,模型需要 tokens 来思考,如果大语言模型未将思考过程外化,则几乎等于没思考。 甲木介绍了让 Claude 生成古诗词卡片的方法,流程包括输入 Prompt 、用户输入主题和风格,AI 输出最终结果。获取提示词已开源,创作过程主要是根据给定主题和方向生成匹配的中国古诗词,创建设计感强烈、富有中国传统美学的 SVG 卡片展示诗词,并提供相关信息,还支持根据用户提供的主题和方向生成对应语境的 prompt 并配图生成 SVGCard 。但对于“逼格高”的看法因人而异,可将选择权交给 AI 。
2024-11-28
可将复杂任务分解为简单子任务的ai工具是什么
以下是一些可将复杂任务分解为简单子任务的 AI 工具和相关策略: OpenAI 官方指南中提到,对于需要大量独立指令集来处理不同情况的任务,可以首先对查询类型进行分类,并使用该分类来确定需要的指令。例如,在客户服务应用程序中,将查询分类为计费、技术支持、账户管理或一般查询等主要类别,并进一步细分次要类别。 如同软件工程中将复杂系统分解为模块化组件,对 GPT 提交的任务也可如此。复杂任务往往可被重新定义为一系列简单任务的工作流程,早期任务的输出用于构造后续任务的输入。 在 AIAgent 系列中,基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力以及对工具的理解。
2024-11-05
将复杂任务分解为简单子任务以简化问题,这样的ai工具都有什么
以下是一些可将复杂任务分解为简单子任务以简化问题的 AI 工具和相关策略: 1. OpenAI 官方指南中提到的策略: 使用意图分类来识别与用户查询最相关的指令。 对于需要很长对话的对话应用程序,总结或过滤之前的对话。 分段总结长文档,并递归构建完整总结。 指示模型在急于得出结论之前先自己找出解决方案。 使用内心独白或一系列查询来隐藏模型的推理过程。 询问模型在之前的回答中是否遗漏了什么。 使用基于嵌入的搜索来实现高效的知识检索。 使用代码执行来进行更准确的计算或调用外部 API。 2. 在 AIAgent 系列中: 基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力,当然也包括对工具的理解。
2024-11-05
什么ai对思路分解做的比较好
以下几种 AI 在思路分解方面具有一定的优势和特点: 1. 专家 AI:鉴于其神经网络基础,可能通过元学习更快地获得知识。通过构建系统深入探索其内部工作机制,能创造学习的飞轮,未来甚至可能成为下一代专家的教师,帮助我们将复杂问题一部分一部分地拆解研究。 2. ChatGPT:在某些实用向话题,如写代码、解数学题等方面表现相对稳定,能够为解决问题提供一定的思路。 3. 大语言模型:可以加速认知提升,指导学习。人类可以利用其培养结构化思维,将复杂问题分解成更小、更易管理的部分,并通过逻辑和有条理的步骤来解决,从而达到解决整体问题的目的。 需要注意的是,不同的 AI 在不同的场景和任务中表现各异,具体的效果还需根据实际需求和使用情况来评估。
2024-11-02
有没有关于工作任务分解为具体步骤的提示词
以下是关于将工作任务分解为具体步骤的提示词相关内容: 提示词工程的任务可分解为两个步骤,如 Pryzant 等人(2023)所做:第一步,模型预期检查当前提示词和一批样本;第二步,模型预期编写一个改进的提示词。 对于复杂任务,可将其分解成更小的步骤,并在提示词中明确每个步骤的具体操作,引导模型逐步完成任务。例如,使用以下逐步说明:步骤 1 用户将提供用三重引号引用的文本。用一个句子总结这段文本,并以“摘要:”作为前缀。步骤 2 将步骤 1 的摘要翻译成西班牙语,前缀为“翻译:”。 如果将任务分解,Claude 在执行任务时犯错或遗漏关键步骤的可能性会降低。 为了鼓励模型仔细检查批次中的每个示例,并反思当前提示词的局限性,可指导提案模型回答一系列问题,如输出是否正确、提示词是否正确描述了任务、是否有必要编辑提示词等。 实际操作中,提示词插入整个输入序列的位置是灵活的,可能位于输入文本之前用于描述任务,也可能出现在输入文本之后以激发推理能力。在元提示词中应明确提示词和输入之间的相互作用。
2024-10-21
有什么工具可以帮助用户用okr的方式,分解成mvp
将OKR(目标与关键结果)分解成MVP(最小可行产品)的过程需要一些工具和方法来帮助用户进行有效的规划和执行。以下是一些常用的工具和方法,可以帮助用户实现这一目标: 工具 1. Trello: 功能:Trello 是一个基于看板的项目管理工具,可以帮助团队将OKR分解成具体的任务和MVP。 使用方法:创建一个看板,添加列表如“目标(Objectives)”、“关键结果(Key Results)”、“任务(Tasks)”、“MVP”等,将OKR逐步细化为具体的任务和MVP。 2. Asana: 功能:Asana 是一个强大的任务管理和项目管理工具,适合进行OKR到MVP的分解。 使用方法:在Asana中创建项目,设置目标和关键结果,然后将这些目标进一步分解成具体的任务,确定哪些任务构成MVP。 3. Notion: 功能:Notion 提供灵活的笔记、数据库和任务管理功能,可以用来管理OKR和MVP。 使用方法:创建一个数据库用于管理OKR,设置不同的视图(如任务视图、看板视图等)来跟踪目标的进展,并将关键结果细化为可执行的MVP。 4. Jira: 功能:Jira 是一个广泛使用的项目和问题跟踪工具,特别适合软件开发团队。 使用方法:在Jira中创建项目和用户故事,将OKR分解为具体的故事和任务,确定哪些故事构成MVP,使用sprint和看板视图来管理和跟踪进展。 5. Microsoft Planner: 功能:Planner 是微软提供的一个简单易用的任务管理工具,集成在Office 365中。 使用方法:创建计划板,设置OKR和相应的任务,将这些任务分配到团队成员,并标记出构成MVP的关键任务。 方法 1. SMART原则: 描述:确保每个目标都是具体的(Specific)、可衡量的(Measurable)、可实现的(Achievable)、相关的(Relevant)和有时间限制的(Timebound)。 应用:在定义OKR时,使用SMART原则确保目标清晰明确,有助于进一步分解为MVP。 2. 价值流映射: 描述:一种分析和设计流程的方法,旨在识别和减少浪费,提高效率。 应用:绘制从OKR到交付MVP的整个流程图,识别每一步的价值和瓶颈,将OKR有效地转化为MVP。 3. MoSCoW法则: 描述:一种需求优先级排序的方法,将任务分为必须(Must have)、应该(Should have)、可以(Could have)和不会(Won't have)。 应用:在分解OKR时,使用MoSCoW法则来确定哪些任务是MVP的一部分,确保优先完成关键任务。 4. 用户故事映射: 描述:一种用于管理产品功能和用户故事的技术,帮助团队了解和安排产品的工作。 应用:将OKR转化为用户故事,创建故事地图,确定哪些故事和功能构成MVP,确保MVP能实现核心目标。 这些工具和方法可以帮助团队有效地将高层次的OKR分解为具体的MVP,确保目标的实现和产品的快速迭代。
2024-05-28