Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

什么ai对思路分解做的比较好

Answer

以下几种 AI 在思路分解方面具有一定的优势和特点:

  1. 专家 AI:鉴于其神经网络基础,可能通过元学习更快地获得知识。通过构建系统深入探索其内部工作机制,能创造学习的飞轮,未来甚至可能成为下一代专家的教师,帮助我们将复杂问题一部分一部分地拆解研究。
  2. ChatGPT:在某些实用向话题,如写代码、解数学题等方面表现相对稳定,能够为解决问题提供一定的思路。
  3. 大语言模型:可以加速认知提升,指导学习。人类可以利用其培养结构化思维,将复杂问题分解成更小、更易管理的部分,并通过逻辑和有条理的步骤来解决,从而达到解决整体问题的目的。

需要注意的是,不同的 AI 在不同的场景和任务中表现各异,具体的效果还需根据实际需求和使用情况来评估。

Content generated by AI large model, please carefully verify (powered by aily)

References

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

[title]为了在医疗保健中产生真正的改变,AI需要像我们一样学习鉴于人工智能依赖的神经网络基础,这些专家AI可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI的性质让我们可以做一些我们无法对人做的事情;即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家AI的内部工作机制,我们将创造一个学习的飞轮。最终,专家AI可能超越领域专家的角色,成为下一代专家——无论是人类还是AI——的教师。

健康:这个比 ChatGPT 情商还高的 AI,我可以和它聊三天三夜

[title]健康:这个比ChatGPT情商还高的AI,我可以和它聊三天三夜[heading1]这或许是情商最高的AI所以,虽然Pi总是鼓励你、肯定你,以问句结尾让你继续说下去,擅长给你思路而不是答案,但有时它的回复和引导方式完全在意料之中,让人失去了谈话的兴致,不痛不痒的Pi式鸡汤尤其令人敬谢不敏。另外,Pi并非对写代码、解数学题等实用向话题一窍不通,只是发挥不如ChatGPT稳定,甚至戏台没搭好就已戏瘾大发。我让Pi帮我用Java实现一个冒泡排序,它先介绍了什么是冒泡排序,问我跟不跟得上它的思路,我冷漠回应直接给出示例就好,然后让ChatGPT点评Pi的生成结果。ChatGPT表示,这段代码实现了冒泡排序算法的核心思想,但存在一个可能的错误。至于数学能力,我考了Pi七八道入门水平的题,有时它压根不回答,说自己不会做算数和解方程式,甚至开始转移话题,有时它又能答出来,或者接受挑战却答错了,状态飘忽不定。类似地,写论文提纲之类的事最好也交给ChatGPT。简而言之,Pi对自己的认知很清楚:擅长引导话题、同理心强的聊天伙伴,主打你来我往的交互感。在MBTI体系下,如果不幸有个i人扎堆的房间,它应该是那个把场子炒热的e人。

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

[title]智变时代/全面理解机器智能与生成式AI加速的新工业革命[heading1]05选择-成长与投资[heading3]5.2自我提升但这也不意味着不用再培养基础认知了,我们可以利用大语言模型来加速认知的提升,用它们来指导学习,让生物大脑和机器智能一同进化,这样我们才有更多的时间来做高阶思维的锻炼,例如计划,评估,决策、抽象和创造,从而培养出达到更高理解水平所需的直觉。。要知道过去没有高阶认知我们没有任何代价,现在的代价是非创造级别的工作,对人类来说即将失去经济价值,因为AI的自动化会做得更好。提问与思考在许多事情都被自动化的情况下,什么是值得学习的呢?首先,学会提问,未来的教育应侧重于如何提出有价值的问题,而不仅仅是回答问题。好的思考才能带来好的问题,批判性思维和好奇心是思考的前提,也是人类文明能够向前的动力。其次,学会广泛而深入地思考——尽可能多地吸收各种知识和思维模式,重点培养结构化思维。调将复杂的问题分解成更小、更易管理的部分,并通过逻辑和有条理的步骤来解决这些部分,从而达到解决整体问题的目的。我们在上一章就提到了,目前AI模型都在练习如何根据长期目标来分解和执行计划,从而提升自己的智能,人类不是更应该这样吗?不然如何去评估和验证AI的执行结果呢?利用自然语言来表达和整理思维,形成清晰的“人类级别”叙述;所以AI不会减少编程的需求,而是让人人都能编程,这是通过算法和逻辑来解决问题的一种思维模式,可以帮助我们更好地结构化思考。通过广泛而深入的思考,我们才能定义真正对我们有价值的东西。成为超级个体

Others are asking
市面上已有很多免费的AI工具,为什么企业还要花钱大规模落地部署?
企业花钱大规模落地部署 AI 而非仅使用免费的 AI 工具,主要有以下原因: 1. 资源分配和人才需求:预算呈现急剧增长,实施和扩展生成式人工智能需要高度专业化的技术人才,目前许多企业内部缺乏此类人才。2023 年实施费用占据了 AI 支出的较大部分,开发成本也占据大部分预算。 2. 服务与定制:为帮助企业启动和运行模型,基础模型提供商提供专业服务,这也是企业选择特定模型提供商的关键原因之一。 3. 应用场景:企业重点放在自主构建应用程序上,目前市场上缺乏经过严格测试、能在特定领域取得决定性成功的企业级人工智能应用程序。基础模型的出现使企业更易通过 API 构建自己的 AI 应用程序,企业正在构建如客户支持和内部聊天机器人等常见应用,还在尝试更新颖的应用。虽然目前不清楚更多面向企业的 AI 应用上市时情况是否会变化,但 GenAI 已成为一种“战略工具”,允许企业将某些功能内部化。那些能在“LLM+UI”公式之外创新,并重新思考企业基本工作流程或帮助企业利用专有数据的应用,将在市场上表现出色。
2024-12-25
AI 是什么
AI 是一门令人兴奋的科学,它研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情。对于 AI ,可以有以下几种理解: 1. 对于没有理工科背景的文科生来说,可以将其当成一个黑箱,只需要知道它是某种模仿人类思维可以理解自然语言并输出自然语言的东西。其生态位是一种似人而非人的存在,即便技术再进步,这一生态位也不会改变。 2. 从任务角度来看,对于像“根据照片判断一个人的年龄”这类无法明确编程的任务,因为我们不清楚大脑完成此任务的具体步骤,所以无法编写明确程序让计算机完成,而这类任务正是 AI 所感兴趣的。 3. AI 健身是指利用人工智能技术来辅助或改善健身训练和健康管理的方法。它利用 AI 算法和数据分析来个性化地指导用户进行锻炼、提供健康建议、监测运动进度和提供反馈。 在实际应用中,有一些不错的 AI 健身工具,如 Keep 、 Fiture 、 Fitness AI 、 Planfit 等。
2024-12-25
修图ai是哪个
以下是一些常见的修图 AI 工具: 1. Niji·journey 5:在二次元绘画领域表现出色,能够生成令人惊叹的二次元风格角色。 2. 无界 AI:国内网络可稳定使用,有免费出图点数,支持中文关键词输入,无需额外下载风格模型,可直接取用。 如果您想了解更多关于这些工具的详细信息或使用方法,可以进一步向我提问。
2024-12-25
图像对比与图像搜索这块,有没有哪个ai大模型做的比较好比较深入的
在图像对比与图像搜索方面,以下是一些相关的 AI 大模型特点和应用: RAG(检索增强生成):通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。RAG 是一个检索生成框架,能够支持在本地运行。 AI 搜索:结合了多种能力,如 fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容。一些 AI 搜索平台专注于特定领域,如为程序员提供代码搜索。 多模态大模型:像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。 生成式模型和决策式模型:决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。
2024-12-25
AI提示词的意思是指训练自己的AI智能体吗
AI 提示词并非仅仅指训练自己的 AI 智能体。 智能体大多建立在大模型之上,其发展从基于符号推理的专家系统逐步演进而来。基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。智能体的核心在于有效控制和利用大型模型以达到设定目标,这通常涉及精确的提示词设计,提示词的设计直接影响智能体的表现和输出结果。 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。与多数其他 NLP 服务不同,补全和聊天补全几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。 我们的模型通过将文本分解为标记来理解和处理文本,在给定的 API 请求中处理的标记数量取决于输入和输出长度。对于英文文本,1 个标记大约相当于 4 个字符或 0.75 个单词,文本提示词和生成的补全合起来不能超过模型的最大上下文长度。
2024-12-25
最好用的会计AI
以下是关于会计 AI 的相关信息: 生成式 AI 在金融服务领域,包括会计方面,具有多方面的应用和优势: 1. 预测方面:能够帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,发现模式,从更广泛、更复杂的数据集中为预测建议输入,并适应模型为公司决策提供依据。 2. 报告方面:可以自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 3. 会计和税务方面:能够帮助综合、总结,并就税法和潜在的扣除项提出可能的答案。 4. 采购和应付账款方面:能够帮助自动生成和调整合同、采购订单和发票以及提醒。 金融服务公司利用历史金融数据微调大型语言模型或从零开始训练模型,能够迅速回答几乎任何金融问题。金融服务行业准备使用生成式人工智能实现个性化的消费者体验、成本效益高的运营、更好的合规性、改进的风险管理以及动态的预测和报告这五个目标。 目前没有专门针对“最好用的会计 AI”的明确推荐,但您可以参考以上生成式 AI 在金融和会计领域的应用特点,结合自身需求进行选择。同时,营销领域有一些常用的 AI 工具,如 Synthesia、HeyGen、Jasper AI、Copy.ai、Writesonic 等,更多相关产品可查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。但请注意内容由 AI 大模型生成,请仔细甄别。
2024-12-25
(defun 生成记忆卡片 (单词) "生成单词记忆卡片的主函数" (let* ((词根 (分解词根 单词)) (联想 (mapcar #'词根联想 词根)) (故事 (创造生动故事 联想)) (视觉 (设计SVG卡片 单词 词根 故事))) (输出卡片 单词 词根 故事 视觉))) (defun 设计SVG卡片 (单词 词根 故事) "创建SVG记忆卡片" (design_rule "合理使用负空间,整体排版要有呼
以下是关于生成记忆卡片和 SVG 卡片的相关信息: 卡片类的应用被定义为词生卡片,如李继刚的《汉语新解》、一泽的《名片设计》、云中江树的《AI 简历》等,都是通过给大模型优化过的 Prompt,让其生成 HTML 代码或 SVG 代码,再通过浏览器渲染效果。 把提示词丢给 Claude ,如在 Poe 平台上的 Claude 模型,大概率会直接输出 SVG 代码,但对于子步骤是否执行等情况难以知晓。Andrej Karpathy 认为,模型需要 tokens 来思考,如果大语言模型未将思考过程外化,则几乎等于没思考。 甲木介绍了让 Claude 生成古诗词卡片的方法,流程包括输入 Prompt 、用户输入主题和风格,AI 输出最终结果。获取提示词已开源,创作过程主要是根据给定主题和方向生成匹配的中国古诗词,创建设计感强烈、富有中国传统美学的 SVG 卡片展示诗词,并提供相关信息,还支持根据用户提供的主题和方向生成对应语境的 prompt 并配图生成 SVGCard 。但对于“逼格高”的看法因人而异,可将选择权交给 AI 。
2024-11-28
可将复杂任务分解为简单子任务的ai工具是什么
以下是一些可将复杂任务分解为简单子任务的 AI 工具和相关策略: OpenAI 官方指南中提到,对于需要大量独立指令集来处理不同情况的任务,可以首先对查询类型进行分类,并使用该分类来确定需要的指令。例如,在客户服务应用程序中,将查询分类为计费、技术支持、账户管理或一般查询等主要类别,并进一步细分次要类别。 如同软件工程中将复杂系统分解为模块化组件,对 GPT 提交的任务也可如此。复杂任务往往可被重新定义为一系列简单任务的工作流程,早期任务的输出用于构造后续任务的输入。 在 AIAgent 系列中,基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力以及对工具的理解。
2024-11-05
将复杂任务分解为简单子任务以简化问题,这样的ai工具都有什么
以下是一些可将复杂任务分解为简单子任务以简化问题的 AI 工具和相关策略: 1. OpenAI 官方指南中提到的策略: 使用意图分类来识别与用户查询最相关的指令。 对于需要很长对话的对话应用程序,总结或过滤之前的对话。 分段总结长文档,并递归构建完整总结。 指示模型在急于得出结论之前先自己找出解决方案。 使用内心独白或一系列查询来隐藏模型的推理过程。 询问模型在之前的回答中是否遗漏了什么。 使用基于嵌入的搜索来实现高效的知识检索。 使用代码执行来进行更准确的计算或调用外部 API。 2. 在 AIAgent 系列中: 基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力,当然也包括对工具的理解。
2024-11-05
有没有关于工作任务分解为具体步骤的提示词
以下是关于将工作任务分解为具体步骤的提示词相关内容: 提示词工程的任务可分解为两个步骤,如 Pryzant 等人(2023)所做:第一步,模型预期检查当前提示词和一批样本;第二步,模型预期编写一个改进的提示词。 对于复杂任务,可将其分解成更小的步骤,并在提示词中明确每个步骤的具体操作,引导模型逐步完成任务。例如,使用以下逐步说明:步骤 1 用户将提供用三重引号引用的文本。用一个句子总结这段文本,并以“摘要:”作为前缀。步骤 2 将步骤 1 的摘要翻译成西班牙语,前缀为“翻译:”。 如果将任务分解,Claude 在执行任务时犯错或遗漏关键步骤的可能性会降低。 为了鼓励模型仔细检查批次中的每个示例,并反思当前提示词的局限性,可指导提案模型回答一系列问题,如输出是否正确、提示词是否正确描述了任务、是否有必要编辑提示词等。 实际操作中,提示词插入整个输入序列的位置是灵活的,可能位于输入文本之前用于描述任务,也可能出现在输入文本之后以激发推理能力。在元提示词中应明确提示词和输入之间的相互作用。
2024-10-21
有什么工具可以帮助用户用okr的方式,分解成mvp
将OKR(目标与关键结果)分解成MVP(最小可行产品)的过程需要一些工具和方法来帮助用户进行有效的规划和执行。以下是一些常用的工具和方法,可以帮助用户实现这一目标: 工具 1. Trello: 功能:Trello 是一个基于看板的项目管理工具,可以帮助团队将OKR分解成具体的任务和MVP。 使用方法:创建一个看板,添加列表如“目标(Objectives)”、“关键结果(Key Results)”、“任务(Tasks)”、“MVP”等,将OKR逐步细化为具体的任务和MVP。 2. Asana: 功能:Asana 是一个强大的任务管理和项目管理工具,适合进行OKR到MVP的分解。 使用方法:在Asana中创建项目,设置目标和关键结果,然后将这些目标进一步分解成具体的任务,确定哪些任务构成MVP。 3. Notion: 功能:Notion 提供灵活的笔记、数据库和任务管理功能,可以用来管理OKR和MVP。 使用方法:创建一个数据库用于管理OKR,设置不同的视图(如任务视图、看板视图等)来跟踪目标的进展,并将关键结果细化为可执行的MVP。 4. Jira: 功能:Jira 是一个广泛使用的项目和问题跟踪工具,特别适合软件开发团队。 使用方法:在Jira中创建项目和用户故事,将OKR分解为具体的故事和任务,确定哪些故事构成MVP,使用sprint和看板视图来管理和跟踪进展。 5. Microsoft Planner: 功能:Planner 是微软提供的一个简单易用的任务管理工具,集成在Office 365中。 使用方法:创建计划板,设置OKR和相应的任务,将这些任务分配到团队成员,并标记出构成MVP的关键任务。 方法 1. SMART原则: 描述:确保每个目标都是具体的(Specific)、可衡量的(Measurable)、可实现的(Achievable)、相关的(Relevant)和有时间限制的(Timebound)。 应用:在定义OKR时,使用SMART原则确保目标清晰明确,有助于进一步分解为MVP。 2. 价值流映射: 描述:一种分析和设计流程的方法,旨在识别和减少浪费,提高效率。 应用:绘制从OKR到交付MVP的整个流程图,识别每一步的价值和瓶颈,将OKR有效地转化为MVP。 3. MoSCoW法则: 描述:一种需求优先级排序的方法,将任务分为必须(Must have)、应该(Should have)、可以(Could have)和不会(Won't have)。 应用:在分解OKR时,使用MoSCoW法则来确定哪些任务是MVP的一部分,确保优先完成关键任务。 4. 用户故事映射: 描述:一种用于管理产品功能和用户故事的技术,帮助团队了解和安排产品的工作。 应用:将OKR转化为用户故事,创建故事地图,确定哪些故事和功能构成MVP,确保MVP能实现核心目标。 这些工具和方法可以帮助团队有效地将高层次的OKR分解为具体的MVP,确保目标的实现和产品的快速迭代。
2024-05-28
帮我捋一捋思路,我要开发一个智能体agent,帮我做门店的增长潜力分析,我有门店所在区的数据,包括本地区常驻人口数量、每个人的用户画像,本区域各行业门店数量,门店的地理位置,每个门店每天的到访人数,每个到访用户的画像,包括他们家庭地址(有可能是本区的,也可能是其他区,甚至是外市的)。利用这些信息,我如何分析这个门店,在本区内是否有发展潜力,和他的同行业对手相比,他是否有竞争力,已经如何变得有竞争力,有什么机会?请给出完整、详细的分析思路,分析过程。
以下是为您梳理的利用所提供信息分析门店增长潜力、竞争力及机会的完整详细思路和过程: 一、数据整理与分析 1. 对门店所在区的常驻人口数量、用户画像、各行业门店数量、门店地理位置、每个门店每天的到访人数以及到访用户的画像(包括家庭地址)等数据进行分类整理。 二、门店增长潜力分析 1. 市场需求评估 分析常驻人口数量和用户画像,了解本地区的消费能力、消费偏好和潜在需求。 对比同行业其他门店的到访人数,评估市场饱和度。 2. 地理位置优势分析 考虑门店位置的交通便利性、周边配套设施以及与目标客户群体的距离。 3. 客户增长趋势 观察门店到访人数的变化趋势,判断是否有增长的迹象。 三、门店竞争力分析 1. 与同行业对比 比较本门店与同行业门店的到访人数、客户画像和经营数据。 分析同行业门店的优势和劣势,找出自身的差异化竞争点。 2. 服务质量评估 根据到访用户的画像和反馈,评估门店的服务质量和用户满意度。 3. 产品或服务特色 确定本门店的独特产品或服务特色,是否能够吸引和留住客户。 四、提升竞争力和机会挖掘 1. 优化策略 根据分析结果,制定针对性的营销策略,如针对特定客户群体的促销活动。 改进服务流程,提高服务质量。 2. 拓展业务 基于用户需求和市场趋势,考虑拓展新的产品或服务。 3. 合作与联盟 寻找与其他相关企业或品牌的合作机会,共同拓展市场。 4. 数字化转型 利用数据分析优化运营,提升客户体验,如线上预订、个性化推荐等。 总之,通过对上述数据的深入分析和综合评估,您可以全面了解门店的现状、潜力、竞争力以及未来的发展机会,并制定相应的策略来实现门店的增长和提升竞争力。
2024-11-29
有没有语音交互领域的AI Agent的好的思路
以下是关于语音交互领域的 AI Agent 的一些思路: 1. 构建像人一样的 Agent:实现所需的记忆模块、工作流模块和各种工具调用模块,这在工程上具有一定挑战。 2. 驱动躯壳的实现:定义灵魂部分的接口,躯壳部分通过 API 调用,如 HTTP、webSocket 等。要处理好包含情绪的语音表达以及躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 保证实时性:由于算法部分组成庞大,几乎不能单机部署,特别是大模型部分,会涉及网络耗时和模型推理耗时,低延时是亟需解决的问题。 4. 实现多元跨模态:不仅要有语音交互,还可根据实际需求加入其他感官,如通过添加摄像头数据获取视觉信息并进行图像解析。 5. 处理拟人化场景:正常与人交流时会有插话、转移话题等情况,需要通过工程手段丝滑处理。 此外,像 AutoGLM 这样的产品,通过模拟人类操作来实现跨应用的控制,展现出了一定的智能理解能力,如能根据用户意图选择合适的应用场景。但仍存在语音识别偏差、操作稳定性需提升、支持平台有限等问题,未来随着多模态理解能力和操作精准度的提高,发展空间较大。
2024-11-19
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15
我计划编写一本关于生成式人工智能的书籍,但是在开始前,我需要确定一个合适的大纲框架来组织我的思路。这个框架应该包括那些部分,以及如何将各个部分连接起来,以便读者能够理解掌握AIGC的概念和应用
以下是为您编写关于生成式人工智能书籍提供的大纲框架建议: 一、引言 介绍编写本书的目的和背景,引导读者进入生成式人工智能的世界。 二、基础概念 1. 什么是生成式人工智能(AIGC) 定义和特点 与传统人工智能的区别 2. 相关技术名词 AI(人工智能) 机器学习(包括监督学习、无监督学习、强化学习) 深度学习(神经网络、神经元) 生成式 AI(可生成文本、图片、音频、视频等内容形式) LLM(大语言模型) 三、AIGC 的应用领域 1. 文字生成(如使用大型语言模型生成文章、故事、对话等) 2. 图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等) 3. 视频生成(如使用 Runway、KLING 等模型生成动画、短视频等) 四、AIGC 与其他内容生成方式的关系 1. AIGC 与 UGC(用户生成内容) 区别与联系 各自的优势和适用场景 2. AIGC 与 PGC(专业生成内容) 区别与联系 相互的影响和融合 五、技术原理 1. Transformer 模型 自注意力机制 处理序列数据的优势 2. 技术里程碑(如谷歌团队发表的《Attention is All You Need》论文) 六、实际案例分析 展示不同领域中成功的 AIGC 应用案例,分析其实现过程和效果。 七、挑战与展望 1. 面临的挑战(如数据隐私、伦理问题等) 2. 未来发展趋势和前景 八、结论 总结全书重点内容,对 AIGC 的未来发展进行展望。 各个部分之间可以通过逻辑递进、案例引用、对比分析等方式进行连接,使读者能够逐步深入理解掌握 AIGC 的概念和应用。
2024-10-23
国内有适合做新媒体平台创意思路的ai软件,例如抖音、小红书等,
目前对于适合国内新媒体平台(如抖音、小红书等)创意思路的 AI 软件,还没有明确的定论。但我们可以先从内容创作的角度来思考。之前汉青老师分享时提到,生成式 AI 的内容与传统社交媒体内容共存,如小红书、抖音、微信等。短期内,大家可能因新鲜感获得流量红利,但最终人们在意的仍是高质量的内容。 我们虽掌握了各种先进工具,如在 MJ 里用关键词出图、用 SD 做复杂工作流、制作炫酷宣传片等,但在此我们先不讨论工具,而是专注于内容。让节奏慢下来,认真感受真实世界,关注身边通常被一扫而过的普通人。 比如偶然在朋友朋友圈刷到的题材:“这两张照片其实是在同一条街道上拍下的,只不过年轻的女孩在街上,孤独的老人在围墙里。”“这张照片传递两种关系、一种爱意,年轻人手牵着怀孕的爱人,老母亲扶着女儿坐上电动车,这应该是这个世界最稳固的两种关系,而现在他们相遇在一张照片当中。”“很多人把生活当中的便利,比如电商快递外卖速度快便宜看着是我们的移动互联网优势,其实唯一的优势是我们的劳动力,无数个在深夜独自啃着馒头的年轻人支撑着美团阿里的市值...放大镜头看你会发现这其实是一个非常年轻的女孩子,她瘦小,即使戴了头盔也比后面的箱子高不了多少,她进食的时候甚至都没玩手机——我骑车路上看到过很多快递小哥都是边骑车边刷短视频,这至少说明他们对生活中的乐子还充满期待,而图中的女孩看着让人垂头丧气,不仅是她,也包括我。” 关于如何与 AI 结合来为新媒体平台创作优质内容,目前还没想好,也没完全想明白,需要慢慢思考和探索。
2024-10-18
AI可以通过扫描我从而精准的判断出我骨头的位置并基于丰富的医疗学识制作出医疗思路,从而使我避免人工的失误且人类医生的刻意为难
目前的 AI 技术在医疗领域虽然取得了显著的进展,但还无法仅仅通过扫描您就精准判断出骨头的位置,并基于丰富的医疗学识直接制作出完整的医疗思路。AI 在医疗中的应用更多是辅助医生进行诊断和治疗决策,例如通过图像识别技术帮助医生更准确地识别病变部位,但最终的诊断和治疗方案仍需要人类医生综合多方面的因素进行判断和制定。而且,大多数人类医生都是秉持着职业道德和专业精神为患者服务的,不存在刻意为难的情况。
2024-08-26
可以用AI生产公众号文章吗?哪一类公众号比较好起号?
AI 可以用于生产公众号文章。以下是利用 AI 生产文章的相关要点: 1. 撰写文章: 关键在于提供清晰且具有指导性的提示词(prompt)。好的提示词能帮助 AI 更准确理解需求,生成符合预期的内容。 若已有基本提示词,AI 可生成基础文章;若想提升质量,可提供更详细、具创意的提示词,设定文章语气、风格和重点。 例如:“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。” AI 生成的文章可能需要进行微调,以符合预期和公众号风格。不到十分钟就能完成文章内容产出。 2. 添加多媒体元素: 为文章增添视觉魅力,精心挑选相关的图片、视频或图表,丰富内容,提升吸引力和专业度。 可利用 Perplexity.AI 的 Search Images 功能寻找合适素材,注意避免使用带水印、画质不清晰或分辨率低的图片。 图片出处主要在 twitter 和官方网站,若遇英文内容难以理解,可借助谷歌浏览器一键翻译功能或其他浏览器插件。 至于哪一类公众号比较好起号,这取决于多种因素,如您的兴趣、专业知识、目标受众等。一般来说,以下几类公众号相对容易起号: 1. 生活分享类:涵盖美食、旅行、健身等,贴近大众生活,容易引起共鸣。 2. 知识科普类:针对特定领域,如历史、科学、技术等,满足人们的求知欲。 3. 情感励志类:提供心灵慰藉和激励,触动读者内心。 但无论选择哪一类,关键是要提供有价值、独特且优质的内容。
2024-12-24
目前AI大模型有多少个比较知名的
目前比较知名的 AI 大模型有: 北京企业机构: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海企业机构: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 大模型的特点和架构: 架构方面: encoderonly 模型通常适用于自然语言理解任务,例如分类和情感分析,最知名的代表模型是 BERT。 encoderdecoder 模型同时结合了 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 Google 的 T5。 decoderonly 模型更擅长自然语言生成任务,目前耳熟能详的 AI 助手基本都来自此类架构。 大模型的优势在于: 预训练数据非常大,往往来自于互联网上,包括论文、代码、公开网页等,最先进的大模型一般用 TB 级别的数据进行预训练。 参数非常多,Open 在 2020 年发布的 GPT3 就已经达到 170B 的参数。 大模型比较火的应用场景: 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 编程和代码辅助:代码自动补全、bug 修复和代码解释。 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,未来可能扩展到视频内容的生成。 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 医疗和健康咨询:提供初步的健康建议和医疗信息查询服务。 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 需要注意的是,随着大模型的普及,也需要关注其在隐私、安全和伦理方面的挑战。
2024-12-24
我应该具备哪些知识才能应用的AI呢?主要想使用AI开一家一人公司。学习AI比较快速的方法有哪些呢
要应用 AI 开一家一人公司,您可以从以下方面学习相关知识: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 6. Python 编程: 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 函数: 定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。 参数和返回值:理解函数如何接收参数和返回结果。 作用域和命名空间:了解局部变量和全局变量的概念,以及它们在 Python 中工作的方式。 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或者第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序的功能。 面向对象编程(OOP): 类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。 属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。 继承和多态:了解类之间的继承关系以及如何实现多态。 异常处理: 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 文件操作: 文件读写:学习如何打开文件、读取文件内容以及写入文件。 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。 学习 AI 比较快速的方法包括: 1. 参加线上或线下的短期培训课程,有专业老师指导和答疑。 2. 阅读相关的权威书籍和教程,系统学习知识体系。 3. 实践项目,通过实际操作加深对知识的理解和应用能力。 4. 加入学习社区或论坛,与其他学习者交流经验和心得。
2024-12-23
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
文生视频,谁比较强?
目前在文生视频方面,PIKA1.0 表现较为出色。它启用全新模型,文生视频质量大幅提升,3D 和 2D 动画效果吊炸天,稳定性强,神情表现出色,在处理各种场景和提示词时都有惊艳的效果。例如,输入“Cinematic,happy laughing girl in office,Pixar style”瞬间就能匹配出皮克斯水平的镜头,而且在处理不规则构图的汽车行驶等场景时,光影表现极好。同时,可灵在文生视频方面也有一定特点,在多对象场景中能保持较好的形体轮廓,在处理偏真实场景的视频,如吃东西、老人神情和皮肤细节等方面表现出色,地面光影变化处理恰当,但在处理远距离和密集人群时有局限,在动画方面不是强项,处理稍长动作时会遇到挑战。
2024-12-19