直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

《2024大模型人才报告》

回答

以下是与您查询的相关报告:

您可以通过相应的链接获取更详细的内容。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

4.4 历史更新

[title]4.4历史更新[heading2]2024年9月[heading3]9月10日《[大模型行业可信应用框架研究报告](https://waytoagi.feishu.cn/record/Z9evrpRl6ezkSwcdOyPcDiffn2d)》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案。报告提出了一个系统化的可信应用框架,强调了专业性、可控性、真实性和安全性四个核心要素,并从数据质量、模型能力、推理过程、系统安全等方面提供了具体的技术实现建议。其它一些报告发布在[研究报告板块](https://waytoagi.feishu.cn/wiki/WvhZwk16WiEnSvk8AcpcdZetnMe)和[知识星球](https://t.zsxq.com/18DnZxlrl):《[InfoQ:中国AI Agent应用研究报告2024](https://waytoagi.feishu.cn/record/Y45LrXJiwe4SgYc5tMZcVVtqn6b)》《[新战略:2024人形机器人产业半年研究报告](https://waytoagi.feishu.cn/record/CMtPrA26ReWXCBcrc6HcHC1ynHo)》《[脉脉:2024大模型人才报告](https://waytoagi.feishu.cn/record/BaV7rrxQneDbSmcGAYCcsyKPnrd)》《[2024人工智能术语研究阶段性成果报告](https://waytoagi.feishu.cn/record/UeYSrwRKsehI4acgKR5cqIfPnvb)》

4.4 历史更新

[title]4.4历史更新[heading2]2024年7月[heading3]7月10日极客邦科技通过《[大模型领航者-AIGC实践案例集锦](https://waytoagi.feishu.cn/record/OFNgrmwKlelnuvcyu93cCTSzn4d)》报告深入探讨AIGC技术在企业中的应用,提供实战经验和趋势洞察。这份报告集合了多篇文章和案例,覆盖互联网产品、企业生产、医疗、教育等行业,展现大模型应用潜力。同时,AI技术在编程、面试、音乐创作等领域的应用正不断拓展,带来新机遇和挑战。更多研究报告,可[在线查看](https://waytoagi.feishu.cn/wiki/WvhZwk16WiEnSvk8AcpcdZetnMe)也可到[知识星球订阅及下载](https://t.zsxq.com/18DnZxlrl):《[百度智能云:大模型激发新质生产力-2024案例集](https://waytoagi.feishu.cn/record/ZEsBr5l9AeDIiIcjQhlcRWWHnZg)》《[创业邦&中国移动:2024人形机器人研究报告](https://waytoagi.feishu.cn/record/BVFWrY5W2e5YE5ccjnNcXIOVnZe)》《[孔维高:生成式AI重塑银行对公信贷业务报告](https://waytoagi.feishu.cn/record/VvDIrkHSzezlw5cmGpVcpA3BnXg)》《[民生证券:海外AI研究系列(二):英伟达深度报告](https://waytoagi.feishu.cn/record/AC9mrVGpGelTMwcWOZ0cTDX2ndh)》

4.4 历史更新

[title]4.4历史更新[heading2]2024年9月[heading3]9月18日《[北大国发院&智联招聘:AI大模型对我国劳动力市场潜在影响研究报告(2024)](https://waytoagi.feishu.cn/record/UDRdrRFEkeiZ0NcP5k3czvpwnTV)》探讨了AI技术,尤其是大模型技术对劳动力市场的影响。报告指出,AI技术的发展推动了对AI人才的需求增长,特别是自然语言处理和深度学习岗位。大模型相关岗位的招聘薪资上涨,对学历和经验的要求提高。技术应用对企业招聘产生影响,编辑/翻译工作最易受影响,而研发岗位招聘更快做出调整。地域分析显示,一线城市和省会城市的AI产业发展水平更高,中西部省会城市的劳动力市场结构更易受大模型技术影响。其它报告:《[2024年AI时代全链路营销进化白皮书](https://waytoagi.feishu.cn/record/BeYirwFaweBJBacMAn9czZ1AnKU)》探讨了AI技术在营销领域的应用现状和发展趋势。《[AVEVA剑维:2024年工业智能行业洞察白皮书](https://waytoagi.feishu.cn/record/P1RZrlOS7eNXA3cVe1ucStRAnKd)》《[AI决策背后的黑箱:企业如何避免陷入智能陷阱,重塑决策流程](https://waytoagi.feishu.cn/wiki/ZtdmwBUXuiutn0k063ScA3bEnQe)》这是大雨老师在组织参与「谁是人类」活动之后写下他的观察和思考,本文探讨了AI在企业决策中的潜力与风险,强调了AI的“黑箱”效应,提醒企业领导者保持批判性思维,避免盲目信任AI。文章分析了数据偏见与认知扭曲对决策的影响,并提出建立AI决策审核流程的重要性。

其他人在问
为什么2024年诺贝尔物理学奖颁发给了Hinton
2024 年诺贝尔物理学奖颁发给了 Hinton(杰弗里·埃弗里斯特·辛顿),原因是“以表彰他们利用人工神经网络进行机器学习的奠基性发现和发明”。 Hinton 出生于 1947 年 12 月 6 日的英国温布尔登。他的职业生涯丰富: 1970 年,获得剑桥大学实验心理学学士学位。 1976 年—1978 年,担任苏塞克斯大学认知科学研究项目研究员。 1978 年,获得爱丁堡大学人工智能学博士学位。 1978 年—1980 年,担任加州大学圣地亚哥分校认知科学系访问学者。 1980 年—1982 年,担任英国剑桥 MRC 应用心理学部科学管理人员。 1982 年—1987 年,历任卡内基梅隆大学计算机科学系助理教授、副教授。 1987 年—1998 年,担任多伦多大学计算机科学系教授。 1996 年,当选为加拿大皇家学会院士。 1998 年,当选为英国皇家学会院士。 1998 年—2001 年,担任伦敦大学学院盖茨比计算神经科学部创始主任。 2001 年—2014 年,担任多伦多大学计算机科学系教授。 2003 年,当选为认知科学学会会士。 2013 年—2016 年,担任谷歌杰出研究员。 2016 年—2023 年,担任谷歌副总裁兼工程研究员。 2023 年,从谷歌辞职。 2023 年,当选为美国国家科学院院士。 Hinton 是反向传播算法和对比散度算法的发明人之一,也是深度学习的积极推动者,被誉为“深度学习教父”。他曾花了小半个世纪的时间开发神经网络,让机器拥有了深度学习的能力。
2024-10-29
2024-2028年内最有可能上市的ai创业项目有哪些
以下是对 2024 2028 年内可能上市的 AI 创业项目的一些分析和预测: 1. 企业应用的 AI 催化项目有望较快实现,因其更易于部署。 2. 个人数字娱乐领域通过 AI 技术创造内容的项目预计会有发展。 3. 自动驾驶和机器人技术的突破可能在 2026 年或 2027 年出现。 4. 小参数大模型相关的项目,尤其在手机端应用方面,例如苹果等公司专注的方向,对开发者是利好。 5. 2024 下半年可能会有一批有代表性的 AI 应用跑出来,比如在社交和游戏中的 agent 智能体应用。 6. 可控核聚变技术相关的项目,由于 AI 对能源的强大需求,可能会加速攻克难题并实现商业化。
2024-10-08
2024大模型人才报告
以下是 2024 年部分大模型相关的人才报告及研究报告: 2024 年 9 月 10 日,《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案,提出了系统化的可信应用框架,并从多方面提供了技术实现建议。 2024 年 1 月 24 日,《》由中国社科院和腾讯研究院发布,通过实验观察到部分社会群体期待大模型有“人情味”。 2024 年 2 月 4 日,更新了多份研究报告文档,如《》等。 此外,还有以下相关报告: 《》 《》 《》 《》 您可以通过以下链接获取更多详细内容: 研究报告板块: 知识星球:
2024-10-08
量子位:2024中国AIGC广告营销产业全景报告
以下是关于《量子位:2024 中国 AIGC 广告营销产业全景报告》的相关信息: 生成式 AI 从供给端到需求端对广告营销各环节玩家造成冲击。在工作流程方面,AI 最先赋能策略洞察与内容生产,大模型加持的数字人带来全新交互体验。在典型场景中,创意生产工具呈平民化趋势,品牌可以为“一个人”量身定制广告。同时,生成式 AI 在创新广告形式、实现自动化营销、企业商业模式革新上重塑了广告营销格局。
2024-09-30
谈一下2024年aigc技术领域的进展
以下是 2024 年 AIGC 技术领域的一些进展: 飒姐团队希望 2024 年版报告能更详细展现 AIGC 在国内外的盛况,并期待更具想象力和突破性的发展。同时指出,AI 将改变人们生活的方方面面,很多生产关系会改变,法律也将受到“拷问”。 2024 年 1 月第四周,扎克伯格宣布 Meta 致力于实现 AGI,将两大 AI 研究团队合并,并投入超 90 亿美元采购英伟达显卡。Meta 正在开发 Llama 3 大语言模型,推动开源的通用人工智能开发方式。 2024 年 7 月第二周,快手发布可灵网页版及大量模型更新,阶跃星辰发布多款模型,商汤打造类似 GPT4o 的实时语音演示,微软开源新型 RAG 架构 GraphRAG。 2024 年 7 月第三周,Anthropic 新增分享和后台功能,出现 LLM 分布式训练框架 OpenDiLoCo,Odysseyml 重构 AI 视频生成技术。 2024 年 7 月第四周,AIGC 领域的重要动态包括 Open AI 发布 GPT4omini、Mistral 发布三个小模型等。
2024-09-23
某银行计划对外采购2024年分行内训师培训项目,现需要对采购内容做详细要求,培训内容以AI工具课程开发与设计,课程制作与实践,短视频制作,直播授课技巧等,我该如何对培训老师资质,授课经验,AI工具运用等技能做细化要求
以下是为您提供的关于银行采购 2024 年分行内训师培训项目中对培训老师资质、授课经验、AI 工具运用等技能的细化要求建议: 培训老师资质: 具备相关领域的专业教育背景,如计算机科学、人工智能等。 持有相关的行业认证或资格证书。 授课经验: 拥有丰富的企业内训经验,特别是在金融行业的培训经历。 成功完成过类似 AI 工具课程开发与设计、课程制作与实践等相关课程的授课。 AI 工具运用技能: 熟练掌握多种主流的 AI 工具,如常见的机器学习框架、自然语言处理工具等。 能够运用 AI 工具进行实际项目开发,并具有相关的案例成果。 熟悉短视频制作和直播授课中涉及的 AI 辅助技术,如智能剪辑工具、虚拟主播技术等。 希望以上建议对您有所帮助。
2024-09-13
如何能让大模型自动读取到微信上的聊天内容。
要让大模型自动读取到微信上的聊天内容,可以参考以下几种方法: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,并可白嫖大模型接口。 2. 搭建,这是一个知识库问答系统,将知识文件放入,并接入上面的大模型作为分析知识库的大脑,最后回答问题。若不想接入微信,搭建完成即可使用其问答界面。 3. 搭建,其中的cow插件能进行文件总结、MJ绘画等。 此外,还有作者张梦飞的方法,即把自己微信中的聊天记录导出,用自己的聊天记录去微调一个模型,最终将这个微调后的模型接入微信中替您回复消息。 另外,在创作方面,鉴于聊天记录属于绝对的个人隐私,不适合接入第三方大模型提取信息,可本地化部署LLM。例如采用百川2的国产大模型开源,如Baichuan2作为底模,先用提示工程对聊天记录进行信息提取,并在此基础上使用自有数据进行模型微调。
2024-10-31
sora模型不同于其他同类模型的优势
Sora 模型不同于其他同类模型的优势主要体现在以下几个方面: 1. 视频生成能力:能够根据文本提示生成长达 1 分钟的高质量视频,而早期模型通常只能生成短视频片段。生成的长视频具有高视觉质量和引人入胜的视觉连贯性,从第一帧到最后一帧有良好的视觉一致性。 2. 处理复杂指令:展示了准确解释和执行复杂人类指令的显著能力,能生成包含多个执行特定动作的角色以及复杂背景的详细场景。 3. 数据预处理:能够在原始尺寸上训练、理解和生成视频及图像,拥抱视觉数据的多样性,在从宽屏 1920x1080p 视频到竖屏 1080x1920p 视频以及之间的任何格式上采样,而不会损害原始尺寸。在原始尺寸上训练数据显著改善了生成视频的构图和框架,实现更自然和连贯的视觉叙事。 4. 符合规模化定律:作为大型视觉模型,符合规模化原则,揭示了文本到视频生成中的几种新兴能力,是第一个展示确认新兴能力的视觉模型,标志着计算机视觉领域的一个重要里程碑。此外,还展示了包括遵循指令、视觉提示工程和视频理解等显著能力。
2024-10-30
大模型下的数据生产和应用
大模型下的数据生产和应用主要包括以下方面: 整体架构: 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 数据层:包括企业根据自身特性维护的静态知识库和动态的三方数据集。 模型层:如 LLm(大语言模型),一般使用 Transformer 算法实现,还有多模态模型,如文生图、图生图等,其训练数据与 LLm 不同,为图文或声音等多模态数据集。 平台层:如大模型的评测体系或 langchain 平台等,是模型与应用间的组成部分。 表现层:即应用层,是用户实际看到的地方。 模型特点: 预训练数据量大,往往来自互联网上的论文、代码、公开网页等,通常以 TB 级别计。 参数众多,如 Open 在 2020 年发布的 GPT3 已达 170B 的参数。 架构方面,目前常见的大模型多为右侧只使用 Decoder 的 Decoderonly 架构,如 ChatGPT 等。 工作流程: 训练过程类似于上学参加工作,包括找学校(需要大量 GPU 等硬件支持)、确定教材(需要大量数据)、找老师(选择合适算法)、就业指导(微调)、搬砖(推导)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,输入文本会被分割并数字化形成词汇表。
2024-10-30
大模型的数字资产管理系统
大模型的数字资产管理系统涉及以下方面: 大模型的整体架构: 1. 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 2. 数据层:包括静态的知识库和动态的三方数据集,是企业根据自身特性维护的垂域数据。 3. 模型层:包含 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)或多模态模型(如文生图、图生图等模型,训练数据与 llm 不同,用的是图文或声音等多模态的数据集)。 4. 平台层:如大模型的评测体系或 langchain 平台等,是模型与应用间的组成部分。 5. 表现层:即应用层,是用户实际看到的地方。 大模型的通俗理解: 大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练、使用过程: 1. 找学校:训练 LLM 需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练大模型。 2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 3. 找老师:用合适算法让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 企业大模型的误区: 1. 总想搞一个宏大的产业大模型:目前大模型能力不足以支持,更适合在场景里解决专业问题。 2. 总想用一个万能大模型解决所有企业问题:企业不同场景可能需要不同的大模型。 3. 认为有了大模型,原来的 IT 系统就淘汰了:大模型需要与原业务系统连接协同工作,原数字化搞得越好,大模型效果越好。 4. 认为大模型不用做数字化,直接一步到位弯道超车:企业没有基本的 IT 系统、数字化系统,没有数据积累和知识沉淀,无法做大模型。
2024-10-30
在一个设定中,使用阿里千问模型,设定角色为“美嘉”,知识库为《爱情公寓》全季剧情,实现问答。
在一个设定中,使用阿里千问模型,将角色设定为“美嘉”,知识库设定为《爱情公寓》全季剧情来实现问答。 大语言模型就像一个学习过无数本书、拥有无穷智慧的人,对公共知识、学识技能、日常聊天很擅长,但在工作场景中需要提示词来告诉它角色和专注技能,变成所需的“员工”。知识库则相当于给这个“聪明员工”发放的工作手册,比如知道老板娘吃饭要打三折等特定信息。 这里的设定为:AI 模型使用阿里千问模型,提示词设定的角色是“美嘉”,按照其人设、背景和对话风格设定,知识库是《爱情公寓》全季剧情,让“美嘉”拥有过往“记忆”。 例如,提问“你是谁?你和子乔在台球厅吵架那次是为了什么吵架?”,回复是“我是陈美嘉,那次在台球厅和吕子乔吵架是因为他约会被人撞见,我讽刺他脸大影响信号,他还反击我。后来谈到过去的事情,我指责他忘恩负义,他就说我平。最后,我伤心地说要分手,因为他之前甩过我。” 然而,有时回答会不准确,比如提问“一菲为美嘉找了一份助教工作”,AI 可能未根据正确的知识库内容回答,这是常见的错误场景,在严肃场景中不能接受。优化 AI 更准确回答问题的过程称为 RAG(RetrievalAugmented Generation),即检索增强生成,由检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统,能提供详细准确的回答。
2024-10-29
目前最先进的算法模型是什么
目前较为先进的算法模型包括: 1. GPT4:是 OpenAI 最新且最强大的模型。 2. GPT3.5Turbo:为 ChatGPT 提供支持,专为对话模式优化。 大模型具有以下特点: 1. 预训练数据量大:往往来自互联网,包括论文、代码、公开网页等,先进的大模型通常用 TB 级别的数据进行预训练。 2. 参数众多:如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。 在模型架构方面: 1. encoderonly 模型:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 2. encoderdecoder 模型:结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 Google 的 T5。 3. decoderonly 模型:更擅长自然语言生成任务,如故事写作和博客生成,众多熟知的 AI 助手基本采用此架构。 在模型部署方面: 由于大模型参数众多,如 GPT2 有 1.5B 参数,LLAMA 有 65B 参数,因此在实际部署时会进行模型压缩。在训练中,CPU 与内存之间的传输速度往往是系统瓶颈,减小内存使用是首要优化点,可使用内存占用更小的数据类型,如 16 位浮点数,英伟达在其最新一代硬件中引入了对 bfloat16 的支持。
2024-10-29
大模型人才报告
以下是为您提供的大模型相关报告和指南: 《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案,提出了系统化的可信应用框架,并从多方面提供了技术实现建议。 其他相关报告发布在,包括: 《》 《》 《》 《》 大模型入门指南:原文地址为 https://mp.weixin.qq.com/s/9nJ7g2mo7nOv4iGXT_CPNg ,作者为写代码的西瓜。该指南主要介绍作者在搭建大模型过程中学到的知识,以及如何在 macOS 上运行大模型。
2024-10-15
如何用AI辅助人才招聘
以下是关于如何用 AI 辅助人才招聘的相关信息: 拜登签署的 AI 行政命令: 为确保政府负责任地部署 AI 并现代化联邦 AI 基础设施,总统指示采取以下行动: 1. 为各机构使用 AI 发布指导,包括明确保护权利和安全的标准,改进 AI 采购,并加强 AI 部署。 2. 通过更快速和高效的合同,帮助各机构更快速、更便宜、更有效地获取特定的 AI 产品和服务。 3. 由人事管理办公室、美国数字服务、美国数字军团和总统创新奖学金领导,加速快速招聘 AI 专业人员,作为政府范围内 AI 人才激增的一部分。各机构将为各级相关领域的员工提供 AI 培训。 人工智能在招聘中的潜在风险与应对策略: 潜在风险包括歧视和不安全的决策等。 应对策略包括: 1. 更新人力资源程序,以限制潜在的不同影响。 2. 对人力资源技术提供商进行尽职调查。 3. 修改当前的人力资源隐私声明,以符合国家隐私或 AI 相关法规。 4. 对 AI 的训练数据进行审查,确保其质量并无偏差。 5. 告知申请人有关数据收集和 AI 筛选流程的细节,保障其信息透明度。 6. 提供合理的便利措施,确保残障申请人和其他少数群体不会被排除在外。 7. 定期评估 AI 筛选结果,发现任何潜在的歧视并及时优化。 AI 面试官的相关产品: 1. 用友大易 AI 面试产品:具有强大的技术底座、高度的场景贴合度、招聘全环节集成的解决方案、先进的防作弊技术以及严密的数据安全保障。能帮助企业完成面试,借助人岗匹配模型,自主完成初筛,并对符合企业要求的候选人自动发送面试邀约。 2. 海纳 AI 面试:通过在线方式、无需人为干预完成自动面试、自动评估,精准度高达 98%,面试效率比人工方式提升 5 倍以上。同时候选人体验也得到改善、到面率比之前提升最高达 30%。 3. InterviewAI:在线平台,提供与面试职位相关的问题和由 AI 生成的推荐答案。候选人可以使用设备上的麦克风回答每个问题,每个问题最多回答三次。对于每个答案,候选人将收到评估、建议和得分。 使用这些产品时,企业需要考虑到数据安全性和隐私保护的问题。
2024-10-03
复合型ai人才培养
以下是关于复合型 AI 人才培养的相关内容: 在医疗保健领域,预医学生成为医生需要从化学和生物学基础课程学起,科学家设计新疗法也需经历多年学习和指导,这种方式培养了处理细微差别决策的直觉。开发具有潜在空间层次结构的堆叠 AI 模型,能帮助 AI 模型理解模式和关系,其发展可能最初平行于人类教育范例,之后会专门发展以培养新型专业知识,比如 AI 可能会拥有生物皮层和药物设计皮层等针对特定任务的神经架构。 另外,拜登签署的 AI 行政命令提到,AI 能帮助政府为美国人民提供更好的结果,但使用 AI 可能带来风险。为确保政府负责任地部署 AI 并现代化联邦 AI 基础设施,总统指示采取以下行动:发布机构使用 AI 的指导,包括明确保护权利和安全的标准、改进 AI 采购和加强 AI 部署;通过更快速高效的合同帮助机构更快速、更便宜、更有效地获取特定的 AI 产品和服务;由人事管理办公室、美国数字服务、美国数字军团和总统创新奖学金领导,加速快速招聘 AI 专业人员,作为政府范围内 AI 人才激增的一部分,各机构将为各级相关领域的员工提供 AI 培训。
2024-08-27
人才在人工智能发展中的作用
人才在人工智能发展中的作用至关重要。从数据收集到模型部署,人们参与了 AI 开发的各个方面。他们的决策基于他们自己的价值观,因此每个决策点都需要考虑和评估,以确保所有选择从概念到部署和维护都是负责任的。 在企业中建构人工智能,需要不同类型的人才,包括软件工程师、机械学习工程师、机械学习研究员、应用机械学习科学家、数据科学家、数据工程师和 AI 产品经理。这些人才需要相互合作,共同完成人工智能项目的开发和实施。 人工智能的发展也对技术专业人士提出了新的要求。在 AI 时代,技术专业人士需要发展那些 AI 难以替代的技能,包括团队建设、跨文化交流、创新解决方案的设计等。同时,对于那些从事可能面临被 AI 取代风险的工作的技术工作者来说,他们需要重新思考自己的职业生涯规划,学习新技能,或者转向那些更需要人类特质的工作领域。 此外,人工智能的发展还需要解决一些问题,例如偏见和透明度。为了避免复制危险的偏见,需要让专家 AI 接触到顶级从业人员的多样化视角。同时,通过构建系统以深入探索专家 AI 的内部工作机制,我们将创造一个学习的飞轮,最终专家 AI 可能超越领域专家的角色,成为下一代专家——无论是人类还是 AI——的教师。 总之,人才在人工智能发展中扮演着至关重要的角色。他们需要具备不同的技能和知识,相互合作,共同推动人工智能的发展。同时,人工智能的发展也对技术专业人士提出了新的要求,需要他们不断学习和适应,以应对人工智能时代的挑战。
2024-05-07
Ai上中下游报告
以下是为您提供的关于 AI 上中下游的相关报告内容: 2024 年人工智能发展状况: 在上一届 SOAI 发布后不久,斯坦福大学发布了其首个基础模型透明度指数。模型开发者的平均得分起初为 37 分,中期更新时攀升至 58 分。2024 年 5 月的最新一期基于 100 项指标,评估了 14 家领先的基础模型开发者的透明度,涵盖“上游”因素数据、劳动力、计算、“模型级”因素(围绕能力和风险)、“下游”标准(围绕分布)以及社会影响。其中,计算和使用政策的评分改善强劲,而“上游”评分仍较疲弱。 AI 产业的产业链结构: 大致分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。对于上中下游分别有哪些值得重点关注的企业(或产品),经过大量的信息收集和汇总工作,并结合几家知名咨询机构的文档,绘制了相关图谱,但为避免广告嫌疑,未展开详细说明。 生成式 AI 季度数据报告(2024 年 1 3 月): 经讨论,根据 a16z 榜单重新整理分类,从原有红杉模态分类改为从用户特性出发的分类,如生产力、社交、教育、创意内容等。部分赛道如 LLM 基础设施/开发者生态、垂类分类、Agent 赛道等的热度参考存在局限性。同时提到了一些相关的公众号,如 aiwatch.ai 等。
2024-10-29
AI 分析调查结果并生成洞察报告
以下是关于 AI 分析调查结果并生成洞察报告的相关内容: User Evaluation: 这是一个利用人工智能(AI)来提升用户研究和数据分析的工具。 功能特点包括: AI 驱动的转录:支持 57 种以上语言的转录功能,能够即时转录视频和音频内容。 AI 洞察:从数据中快速生成有用的洞察,每个洞察都附有数据来源。 集合管理:使用直观的看板(Kanban)板来组织和分享洞察,添加标签和笔记。 AI 生成报告:生成包含文本、表格和图表的行为分析报告等。 AI 生成演示文稿:一键生成包含 AI 洞察和数据可视化的 PPTX 演示文稿。 多样化数据源:分析来自音频、视频、文本或 CSV 文件的信息以改进产品用户体验。 洞察模板:提供多种洞察模板,帮助提取最有价值的数据洞察。 情感分析:解释音频和视频文件中的客户情感,识别情绪趋势以优化策略。 FeaturesVote: 这是一个帮助企业通过用户反馈来驱动产品增长的工具。 主要功能有: 用户投票板:用户可以发布和投票他们希望看到的功能,企业可以根据投票结果优先开发这些功能。 快速设置:只需 2 分钟即可完成设置,并提供免费计划。 无缝集成:可以将投票小部件无缝添加到应用中,用户无需再次登录即可发布和投票,减少摩擦并增加反馈。 定制化:支持内置的浅色/深色模式,用户识别和配置。 透明度和信任:通过展示不断交付和构建用户需要的功能来增加用户信任和留存率。 中小企业利用人工智能(AI)进行转型: 在数据驱动决策方面,特别是数据分析和洞察部分: 目标是通过使用人工智能(AI)工具来分析大量的客户和市场数据,为企业决策提供有力支持。 首先,利用 AI 工具分析客户数据、市场数据,深入理解客户行为、市场趋势和业务机会。根据企业需求选择能处理大数据并提供深度分析的工具,如数据挖掘、机器学习模型等。收集不同渠道数据,进行分析,识别模式、趋势和相关性。 其次,为营销、产品开发等部门提供基于数据的建议和指导。利用数据分析结果指导企业策略,如市场定位、产品优化等。理解 AI 分析提供的洞察和建议,将其转化为实际业务策略。与相关部门紧密合作,确保数据洞察被有效利用。基于数据洞察制定或调整策略,实施后持续监控效果并收集数据,反馈到 AI 分析中形成闭环,不断优化数据分析和业务决策。 邬嘉文:AI 做用户研究|Claude 3 Opus 可以直接输出用户研究报告: 报告范例中包含了优势和劣势的相关内容及对应的频次。例如优势方面,高质量显示被提及 44 次等;劣势方面,兼容性问题被提及 68 次等。同时提到 GPT 有一定幻觉问题。
2024-10-29
可以实现测试用例设计、测试脚本、测试执行、测试报告 的AI 有哪些?
以下是一些可以实现测试用例设计、测试脚本、测试执行和测试报告的 AI 工具和方法: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 相关工具和平台: Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。
2024-10-24
LLM解决方案报告
以下是关于 LLM 解决方案的相关内容: 对抗性提示的防御策略:可利用 LLM 检测对抗提示并过滤,如 Armstrong 和 Gorman(2022)提出的方案,需先定义提示评估器,已准备相关笔记本供尝试。 Apple Intelligence 中智能应用的提示词:包括帮助回复邮件的提示词和总结邮件的提示词,其中 Apple 解决 LLM 幻觉问题的方式是在提示词中加“Do not hallucinate”,其效果存疑。 LLM 应用程序的新兴架构:原文地址为 https://a16z.com/2023/06/20/emergingarchitecturesforllmapplications/,发表于 2023 年 6 月 20 日。文中分享了新兴 LLM 应用程序堆栈的参考架构,此工作基于与相关人员的对话。
2024-10-21
AI 行业报告
以下是为您提供的 AI 行业报告相关信息: 2024 年 3 月 13 日在同步更新了数份 AI 相关报告,包括: 《》 《》 《》 《》 《》 此外,还有关于“行业调研报告”怎么写的内容,作者 JessieZTalk 大厂产品出身,理工科+商科背景,关注商业、AI 科技、互联网营销。本文结合【AI 工具】与【作者自己的“行业调研报告”专业知识】,一步步拆解“行业调研报告”方法论和技巧,对于写“各个行业研究报告”都有参考意义。原文链接:
2024-10-15