Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

企业如何培养全员AI思维,将AI融入企业文化,驱动人才转型,推动AI驱动的创新。

Answer

企业培养全员 AI 思维、将 AI 融入企业文化、驱动人才转型并推动 AI 驱动的创新,可参考以下方面:

  1. 组织管理转型:参考波士顿咨询公司发布的《2024 未来以来,AI 组织进化论》报告,AI 技术将推动组织从金字塔结构向松树型转变,需要人才具备创新、持续学习、透明和协作能力,组织文化应强调人的价值和认知多样性。为加速 AI 转型,建议采取自上而下的战略推动和自下而上的创新激活,培养关键人才,并重塑员工技能。
  2. 构建 AI 监督与反馈机制:
    • 建立异常监测机制,针对 AI 决策结果进行定期回顾,设立异常情况触发预警机制,避免因 AI 错误而导致决策失误。
    • 在关键业务决策中设置人类干预节点,在 AI 给出初步建议后由人类进行审核和判断,特别是财务预测、市场扩展策略等核心业务决策应有清晰的人工复核流程。
    • 企业可以引入“人机协作审查委员会”,由高层管理人员、业务线负责人和技术团队组成,每月审查 AI 关键决策的结果,设定触发条件(如连续三次异常预测)来判断是否需要人工干预。
  3. 保留人类的创新与主导地位:
    • 虽然 AI 能通过数据提供创新支持,但真正的突破性创新依然需要人类的参与,企业应明确 AI 是助力而非替代。在中国市场,创新是企业保持竞争优势的关键,过度依赖 AI 可能会削弱员工的创新力和主动性。
    • 设立创新实验室,让 AI 提供背景数据和支持,员工在此基础上进行创意开发,AI 可以生成基础创意,员工进行拓展和跨领域应用。
    • 进行跨部门协作,创建多样化团队,整合市场、技术和创意团队的力量,让 AI 提供洞察和辅助,具体决策由团队中的人类成员作出。
    • 企业可以设立“AI 创新月”,每月让不同部门提出与 AI 相关的创新方案,要求员工结合 AI 的分析提出创意,而非直接采用 AI 方案,以培养团队的创新能力,避免 AI 的全权主导。
Content generated by AI large model, please carefully verify (powered by aily)

References

2024 年历史更新(归档)

《[2024未来以来,AI组织进化论](https://waytoagi.feishu.cn/record/Ayq0r3ggIeBT5Lcinr9cI82jniX)》报告由波士顿咨询公司发布,探讨了AI时代组织管理的转型。报告预测,AI技术将推动组织从金字塔结构向松树型转变,需要人才具备创新、持续学习、透明和协作能力。组织文化将强调人的价值和认知多样性。为加速AI转型,报告建议采取自上而下的战略推动和自下而上的创新激活,培养关键人才,并重塑员工技能。其它推荐报告,也[可在知识星球下载](https://t.zsxq.com/18DnZxlrl):《[2024爱分析·大模型+知识库厂商全景报告](https://waytoagi.feishu.cn/record/OFGSrGxxueeL2ycFp7qcOSqGnmd)》报告指出,企业知识库经历了从数字知识库到智能知识库1.0,再到融合大模型能力的智能知识库2.0的演变。特别强调了金融、政务、电信三大行业在大模型+知识库应用上的领先地位。《[第一性原理prompt:复活亚里士多德的古老智慧](https://waytoagi.feishu.cn/wiki/V5HQwSuitiNe1ykwvzNcV5lUnyg)》来自蓝衣剑客的投稿,“第一性原理”的概念源于亚里士多德的哲学,强调从基本原理出发思考问题。与归纳法和演绎法对比,归纳法基于经验,存在局限性;而演绎法通过严密逻辑推理得出结论,但依赖前提的真实性。书写Prompt怎么应用第一性原理,文章给出了作者的观点。

AI决策背后的黑箱:企业如何避免陷入智能陷阱,重塑决策流程

AI决策过程的透明性和可解释性是企业极少关注的问题,但对实际运营影响巨大的问题。企业可以通过构建反馈机制,对AI决策的结果进行持续追踪和优化。此处并不需要复杂的伦理审查,而是以实际绩效为核心,通过以下方法强化监督:建立异常监测机制:针对AI决策结果进行定期回顾,设立异常情况触发预警机制,避免因AI错误而导致决策失误。人类干预节点:在关键业务决策中,加入明确的人类干预节点,在AI给出初步建议后,由人类进行审核和判断。特别是财务预测、市场扩展策略等核心业务决策,应有清晰的人工复核流程。实操提示:企业可以引入一个“人机协作审查委员会”,由高层管理人员、业务线负责人和技术团队组成。每月审查AI关键决策的结果,设定触发条件(如连续三次异常预测)来判断是否需要人工干预。[heading2]保留人类的创新与主导地位[content]虽然AI能通过数据提供创新支持,但真正的突破性创新依然需要人类的参与。因此,企业需要明确:AI是助力,而非替代。这在中国市场特别重要,创新是企业保持竞争优势的关键,而过度依赖AI可能会削弱员工的创新力和主动性。创新实验室与“人机合作”:设立创新实验室,让AI提供背景数据和支持,员工在此基础上进行创意开发。AI可以生成基础创意,员工则利用这些创意进行拓展和跨领域应用。跨部门协作:创建多样化团队,整合市场、技术和创意团队的力量,让AI提供洞察和辅助,而具体决策由团队中的人类成员作出。实操提示:企业可以设立“AI创新月”,每月让不同部门提出与AI相关的创新方案,要求员工结合AI的分析提出创意,而非直接采用AI方案。通过这种方式,培养团队的创新能力,避免AI的全权主导。

AI决策背后的黑箱:企业如何避免陷入智能陷阱,重塑决策流程

AI决策过程的透明性和可解释性是企业极少关注的问题,**但对实际运营影响巨大的问题**。企业可以通过构建**反馈机制**,对AI决策的结果进行持续追踪和优化。此处并不需要复杂的伦理审查,而是以实际绩效为核心,通过以下方法强化监督:建立异常监测机制:针对AI决策结果进行定期回顾,设立异常情况触发预警机制,避免因AI错误而导致决策失误。人类干预节点:在关键业务决策中,加入明确的人类干预节点,在AI给出初步建议后,由人类进行审核和判断。特别是财务预测、市场扩展策略等核心业务决策,应有清晰的人工复核流程。实操提示:企业可以引入一个“人机协作审查委员会”,由高层管理人员、业务线负责人和技术团队组成。每月审查AI关键决策的结果,设定触发条件(如连续三次异常预测)来判断是否需要人工干预。[heading2]保留人类的创新与主导地位[content]虽然AI能通过数据提供创新支持,但真正的突破性创新依然需要人类的参与。因此,企业需要明确:**AI是助力,而非替代**。这在中国市场特别重要,创新是企业保持竞争优势的关键,而过度依赖AI可能会削弱员工的创新力和主动性。创新实验室与“人机合作”:设立创新实验室,让AI提供背景数据和支持,员工在此基础上进行创意开发。AI可以生成基础创意,员工则利用这些创意进行拓展和跨领域应用。跨部门协作:创建多样化团队,整合市场、技术和创意团队的力量,让AI提供洞察和辅助,而具体决策由团队中的人类成员作出。实操提示:企业可以设立“AI创新月”,每月让不同部门提出与AI相关的创新方案,要求员工结合AI的分析提出创意,而非直接采用AI方案。通过这种方式,培养团队的创新能力,避免AI的全权主导。

Others are asking
我现在正在使用fedora操作系统,日常场景是办公、学习和一些简单的编程。有哪些ai工具适合我
以下是一些适合您在 Fedora 操作系统上用于办公、学习和简单编程场景的 AI 工具: 1. GitHub Copilot:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手。它支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,该工具基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,该工具借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 7. Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。希望这些信息对您有所帮助!
2025-03-12
必看ai行业研报
以下是为您推荐的必看 AI 行业研报: 2024 年 6 月 18 日更新的研报: 《》:讨论了生成式人工智能的潜力和银行业的探索,预测了 AI 在支付处理效率和创造新收入流方面的关键作用。 华西证券:AIGC 行业深度报告(14)《》:介绍了英伟达新一代 GPU 架构带来的零部件升级,以及华为的昇腾 910C 芯片和 Atlas 900 SuperCluster 展示的国产算力集群潜力。 《》:通过访谈 30 余位专家,分析了端到端技术的发展、参与者、驱动力和挑战,预计 2025 年模块化端到端系统将商业化应用。 《》:来自微软,指出英国科技行业和数字优势,以及面临的基础设施、数字技能和数字技术采用的瓶颈。 关于行业调研报告撰写的指导: 步骤:包括让 AI 阅读学习优秀报告总结方法论、询问 AI 收集行业数据的一手和二手数据及靠谱网站、要求 AI 推荐行业信息网站和微信公众号并输出框架、丰富框架章节内容等。 注意事项:“有深度”可通过自身对行业了解或深度咨询 AI 实现。 操作示例:获取“kimi 对话原文”链接: 2023 年 11 月 15 日更新的研报: 《》:基于对 235 家企业数字化负责人的调研,63.5%的企业已把 AIGC 列入发展战略。 《》:结合华为实践和面向智能世界 2030 的展望,与各界进行万场以上座谈研讨。 《》:从零开始介绍越狱、提示攻击、与传统安全的关系以及大语言模型的安全问题。 如需下载部分报告,。
2025-03-12
如何与AI对话
以下是关于如何与 AI 对话的相关内容: 在 Trae 中指定上下文进行 AI 对话的方式有以下几种: 1. 方式一:将编辑器内的内容作为上下文 当编辑器中有正在编辑的代码文件时,AI 助手默认能看到当前文件,可直接提问与当前文件相关的问题。 若对文件中的某段代码提问:选中代码,点击悬浮菜单中的添加到对话按钮,将选中内容作为上下文添加至侧边对话框。指定的上下文会显示在侧边对话底部的输入框,还可继续添加编辑器中的其他内容片段或其他来源的上下文,然后在上下文旁输入问题并发送给 AI 助手。 2. 方式二:将终端中的内容作为上下文 若对终端中的输出内容提问(如修复报错):在终端中点击输出内容片段,在内容片段区域的右上角点击添加到对话按钮,将选中内容作为上下文添加至侧边对话框。指定的上下文会显示在侧边对话底部的输入框,还可继续添加终端中的其他内容片段或其他来源的上下文,然后在上下文旁输入问题并发送给 AI 助手。 3. 方式三:使用键添加上下文 在侧边对话的输入框中,可通过符号添加多种类的上下文,包括代码、文件、文件夹和工作区。通常情况下,列表中将展示与编辑器中当前打开文件相关的内容作为推荐的上下文,但仍可自行搜索所需的上下文并添加到输入框中。基于问题,可以组合添加各种来源的相关上下文(例如同时添加代码和文件)。 通过Code,可将函数或类的相关代码作为与 AI 助手对话的上下文。列表中默认展示当前编辑器内打开的文件中的函数或类。选择前,可预览列表中推荐的函数或类的相关代码。若推荐的内容非所需,可通过关键词搜索所需的函数或类。 若 Trae 中不存在对应语言的 LSP,请提前安装,否则可能导致无法识别代码符号。具体步骤为:在输入框中输入,或直接点击输入框左下角的引用按钮,输入框上方显示上下文类型选择列表;在列表中选择 Code(或在符号后手动输入 Code),然后按下回车键,列表将展示编辑器中当前打开的文件中存在的函数和类。将鼠标悬浮在列表中的某个条目后,左侧会展示该函数或类的代码内容,供预览;若推荐的函数和类非所需,在Code:后输入想要的函数或类的名称或关键词;从列表中选择需指定为上下文的函数或类,在输入框的代码标识后,输入问题并发送。 此外,关于文本补全(Text completion): API 非常擅长与人类甚至自己进行对话。只需几行指令,就能看到 API 作为智能客服聊天机器人,能智能地回答问题,或作为机智的对话伙伴制造笑话和双关语。关键在于告诉 API 它应该如何行事,然后提供一些例子。创建一个能够进行对话的聊天机器人,要告诉 API 意图和如何行事,还要给 API 赋予一个身份。为创建有趣且有用的聊天机器人,可提供几个问题和答案示例,向 API 展示如何回复。 API 是一种语言模型,熟悉各种用于表达信息的单词和字符的方式,包括自然语言文本、代码以及英语以外的其他语言,还能够理解内容,从而进行总结、转换并以不同的方式表达。在此示例中,展示了如何将 API 从英语转换为法语、西班牙语和日本语。若将英文翻译成 API 不熟悉的一种语言,则需要提供更多示例甚至微调模型才能流利地完成。
2025-03-12
我想用ai动漫人物唱歌
以下是一些可以帮助您实现用 AI 动漫人物唱歌的相关信息和资源: 在 AI 图像处理方面,有一些项目可以将图像进行动漫化处理,例如卡通头像制作等。 在音频与音乐制作方面,有专属歌曲创作、声音克隆、AI 唱歌等项目。比如制作专属歌曲、声音克隆/视频对口型等。 腾讯 AniPortrait 可以根据音频和静态人脸图片生成逼真的动态视频,支持多种语言、面部重绘、头部姿势控制。相关链接:https://github.com/ZejunYang/AniPortrait 、https://arxiv.org/abs/2403.17694 、https://x.com/imxiaohu/status/1772965256220045659?s=20 。 Hedra Studio 推出的 Character3 AI 支持全身动态与情感控制,能唱歌、说话甚至表演。
2025-03-12
普通人除了卖课,如何能够搭乘ai快车,进行变现
对于普通人而言,除了卖课,还有以下几种方式可以搭乘 AI 快车实现变现: 1. 利用 AI 工具进行内容创作,如写作、绘画、视频制作等,并在相关平台上获取收益。 2. 为企业提供基于 AI 的数据分析和处理服务。 3. 开发简单的 AI 应用程序或小程序,通过收费使用或广告盈利。 4. 利用 AI 优化电商运营,例如精准选品、智能客服等,从而提高销售业绩。 5. 参与 AI 项目的众包工作,如数据标注、模型测试等获取报酬。
2025-03-12
请你推荐适合做计划的AI工具
以下是一些适合做计划的 AI 工具推荐: 营销计划: 1. Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频,提供多种定价计划,可用于制作营销视频、产品演示等。 2. HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频,适合制作营销视频和虚拟主持人等。 3. Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等,提供多种语气和风格选择,写作质量较高。 4. Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容,有免费和付费两种计划。 5. Writesonic:专注于营销内容创作,如博客文章、产品描述、视频脚本等,提供多种语气和行业定制选项。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。总的来说,这些 AI 工具能够帮助营销人员高效创作各种营销内容,提高工作效率。用户可根据实际需求选择合适的工具。 软件项目计划: 1. 项目管理和任务跟踪工具:如 Jira、Trello 等已经开始集成 AI 功能,可以辅助项目经理制定计划、分配任务、跟踪进度等。 2. 文档和协作工具:微软的 Copilot 可以集成到 Office 套件中,为项目文档撰写、编辑等提供 AI 助手功能。一些云存储服务如 Google Drive 也开始提供 AI 驱动的文档管理和协作功能。 3. 风险管理和决策支持工具:一些 AI 工具可以帮助项目经理识别和分析项目风险,并提供决策建议。 4. 沟通和协作工具:AI 助手可以辅助项目经理进行团队沟通协调、客户关系维护等。 5. 创意生成工具:一些 AI 绘画工具如文心一格、Vega AI 等,可以帮助项目经理快速生成创意图像素材。 总的来说,随着 AI 技术的发展,越来越多的工具正在为软件项目经理提供智能化的辅助功能,涵盖项目管理的各个环节。这些 AI 工具有助于提高项目经理的工作效率和决策能力。 网站制作计划: 1. 目标和需求:确定您的网站目标(例如个人博客、商业网站、在线商店)和功能需求。 2. 预算:有些工具提供免费计划或试用版,但高级功能可能需要付费订阅。 3. 易用性:选择一个符合您技术水平的工具,确保您能够轻松使用和管理网站。 4. 自定义选项:检查工具是否提供足够的自定义选项,以满足您的设计和功能需求。 5. 支持和资源:查看是否有足够的客户支持和学习资源(如教程、社区论坛),帮助您解决问题。 通过这些 AI 驱动的工具,您可以更轻松地创建和管理一个功能丰富、外观专业的网站。
2025-03-12
实时驱动 ai直播
以下是关于实时驱动 AI 直播的相关信息: AI 数字人直播盈利方式: 1. 直接销售数字人工具软件,分为实时驱动和非实时驱动两类。实时驱动在直播时能改音频话术,真人可接管,市面价格一年 4 6 万往上(标准零售价)。非实时驱动一个月 600 元,效果差,类似放视频的伪直播,市场价格混乱,存在靠发展代理割韭菜的情况。 2. 提供数字人运营服务,按直播间成交额抽佣。 AI 直播卖货适用品类和场景: 1. 适用于不需要强展示的商品,如品牌食品饮料,不适用于服装,因过品快且衣服建模成本高。 2. 适用于虚拟商品,如门票、优惠券等。 3. 不适用于促销场景,涉及主播话术、套路及调动直播间氛围能力等。 4. 电商直播分为达播跟店播,数字人直播效果最好的是店播,数据基本能保持跟真人一样。 AI 直播的壁垒和未来市场格局: 1. 从长期看,技术上没壁垒,但目前仍有技术门槛,单纯靠开源算法拼的东西,实时性、可用性不高,如更真实的对口型、更低的响应延迟等。 2. 不会一家独大,可能 4 5 家一线效果,大多二三线效果公司,因为它只是工具,迁移成本低。 3. 真正把客户服务好,能规模化扩张的公司更有价值。疯狂扩代理割韭菜,不考虑客户效果的公司,售后问题很麻烦。 4. 有资源、有业务的大平台下场,可能会带来降维打击,例如剪映马上要做,如果不仅提供数字人,还提供货品供应链、数据复盘分析等等,全环节打通会绑定商家,很难打。 虚拟主播在电商直播间的情况: 欧莱雅、YSL、兰蔻、李宁、北面等品牌会选择使用 AI 驱动的虚拟主播进行自播,但由于技术尚未达到真人直播的水平,所以通常只在午夜时段排期。阿里云提供的品牌智能直播间基础版售价为 99000 元/(年×路),其中每个店铺视为一路,该服务提供多种功能。虚拟形象有 3D 卡通风格和 2D 拟真人风格,预设了丰富的动作库和真实的语音表现,但商品展示以图片为主,虚拟主播无法与产品有接触,纯粹只能动嘴皮,商品只能放在一旁,这样的测评结果缺乏真实性,容易引起用户反感。目前,AI 驱动的虚拟主播更像是一个花瓶,能够吸引一些好奇的用户,再负责一些基础性的产品介绍和互动问答。 11 月 11 日和 10 日的 AI 相关动态: 11 月 11 日:Google 在 iPhone 上测试独立的「Google Gemini」应用,新应用支持 iOS 用户使用 Gemini Live,通过语音命令与 AI 互动,功能类似 ChatGPT 的高级语音交流。包含视觉识别功能,并已在 2024 年 9 月对 Android 用户开放,预计将随 Gemini 2.0 的发布正式上线。 11 月 10 日:Google 发布 Gemini AI 驱动的视频演示工具 Vids,通过简单提示或 Google Drive 文档,自动生成视频故事板,包含场景、脚本和背景音乐。支持语音旁白和滚动式提词器,便于自然流畅的录制,应用于客户支持、培训视频、公司公告、会议回顾等多种场景。NVIDIA AI Blueprint 是长视频内容总结与问答解决方案,能快速总结数小时视频的关键事件和对话,省去逐帧观看的时间,支持长视频的搜索、问答和实时事件检测,适用于监控、教育、客户服务等场景,为开发者提供构建视频理解和摘要功能的框架。
2025-03-11
给我一些关于数据驱动的免费的优质的课程
以下是为您找到的关于数据驱动的免费优质课程相关信息: 一、数字营销方面 1. 2025 年数字营销十大趋势 Bridging the AI skills gap:具备 AI 技能的团队可以制定更加精准、数据驱动的营销策略,提高效率和效果,使品牌在快速适应市场变化和消费者需求方面具备优势。 Advanced Personalization:借助 AI,营销人员可以实时分析消费者行为,从而提供高度个性化的体验,提升客户参与度,加强品牌忠诚度。 Resource Optimization:通过培训现有员工而不是依赖外部招聘,公司可以最大化利用内部资源,降低招聘成本,并为 AI 驱动的项目建立可持续的基础。 许多公司正在投资于 AI 培训项目,以提升其营销团队的技能。例如,Google 提供免费的 AI 和机器学习认证课程,而像 IBM 这样的公司为员工提供高级 AI 培训和导师项目。这些项目涵盖了数据分析、AI 驱动的客户细分和预测建模等关键技能,帮助公司在不断发展的数字领域保持竞争力。 二、智能导购方面 智能导购的 100 个创意方向中的数据驱动场景(20 个方向): 1. 用户生命周期价值分析:预测客户长期贡献并制定维护策略。 2. 关联购买推荐:分析历史订单推荐互补商品(如包包+丝巾)。 3. 社交媒体舆情分析:抓取小红书/微博数据生成品牌健康报告。 4. 客户分群策略:按消费频率、客单价等维度自动划分群体。 5. 促销效果模拟器:预测不同折扣方案对利润的影响。 6. 天气关联销售预测:结合天气数据推荐应季商品(如雨天推伞具)。 7. 门店选址分析:通过人流、竞品分布数据推荐新店位置。 8. 客户旅程地图:可视化用户从认知到复购的全链路行为。 9. A/B 测试自动化:自动分配流量并对比页面转化率。 10. 实时销售看板:整合多渠道数据生成动态业绩仪表盘。 11. 会员续费预测:通过行为数据预测会员卡续费概率。 12. 商品评论情感分析:从评价中提取用户满意度与改进点。 13. 滞销品组合促销:捆绑低动销率商品提升整体销量。 14. 客户等待时间优化:通过排队数据调整导购资源配置。 15. 个性化折扣券:根据用户偏好发放差异化优惠券。 16. 新品接受度预测:通过历史数据预测新品上市成功率。 17. 流失客户召回:自动触发短信/邮件推送挽回策略。 18. 供应链风险预警:监控原材料价格波动触发备选方案。 19. 跨渠道库存同步:实现官网、门店、仓库库存实时共享。 20. 客户反馈聚类分析:自动归类投诉建议并分配处理部门。
2025-02-26
音频驱动视频人物口型
以下是关于音频驱动视频人物口型的相关信息: PixVerse V3 : 本次更新内容丰富,包括已有能力升级,提供更精准的提示词理解能力和更惊艳的视频动态效果。 支持多种视频比例,如 16:9、9:16、3:4、4:3、1:1。 Style风格化功能重新回归升级,支持动漫、现实、粘土和 3D 四种风格选择,同时支持文生视频和图生视频的风格化。 全新上线了 Lipsync 功能,在生成的视频基础上,允许用户输入文案或上传音频文件,PixVerse 会自动根据文案或音频文件内容,对视频中的人物口型进行适配。 还有 Effect 功能,提供 8 个创意效果,包括变身僵尸、巫师帽、怪兽入侵等万圣节主题模板,一键实现创意构思。并且 Extend 功能支持将生成的视频再延长 5 8 秒,且支持控制延长部分的内容。 字节跳动开源的 LatentSync : 是精准唇形同步工具,能够自动根据音频调整角色嘴型,实现精准口型同步,无需复杂中间步骤。 提出“时间对齐”技术,解决画面跳动或不一致问题,效果显著。 具有开箱即用的特点,预训练模型加持,操作简单,支持高度定制化训练。 GitHub 链接:https://github.com/bytedance/LatentSync 论文链接:https://arxiv.org/pdf/2412.09262
2025-02-16
如果想用几张照片,驱动自己的数字人视频,有哪个平台可以搞
以下是一些可以用照片驱动生成数字人视频的平台及使用方法: 1. HEYGEN: 优点:人物灵活,五官自然,视频生成很快。 缺点:中文的人声选择较少。 使用方法: 点击网址注册后,进入数字人制作,选择Photo Avatar上传自己的照片。 上传后效果如图所示,My Avatar处显示上传的照片。 点开大图后,点击Create with AI Studio,进入数字人制作。 写上视频文案并选择配音音色,也可以自行上传音频。 最后点击Submit,就可以得到一段数字人视频。 2. DID: 优点:制作简单,人物灵活。 缺点:为了防止侵权,免费版下载后有水印。 使用方法: 点击上面的网址,点击右上角的Create vedio。 选择人物形象,你可以点击ADD添加你的照片,或者使用DID给出的人物形象。 配音时,你可以选择提供文字选择音色,或者直接上传一段音频。 最后,点击Generate vedio就可以生成一段视频。 打开自己生成的视频,可以下载或者直接分享给朋友。 3. KreadoAI: 优点:免费(对于普通娱乐玩家很重要),功能齐全。 缺点:音色很AI。 使用方法: 点击上面的网址,注册后获得120免费k币,这里选择“照片数字人口播”的功能。 点击开始创作,选择自定义照片。 配音时,你可以选择提供文字选择音色,或者直接上传一段音频。 打开绿幕按钮,点击背景,可以添加背景图。 最后,点击生成视频。 4. 出门问问Mobvoi:提供了照片数字人的工作流及语音合成(TTS)API,可参考相关效果展示及工作流作者、创意策划等信息。 5. 剪映数字人“个性化”: 尽管剪映有很多公模数字人,但私模数字人更受欢迎。 使用方法: 第一步打开谷歌浏览器,点击链接https://github.com/facefusion/facefusioncolab 并点击open colab就进到程序主要运行界面,在右上角点击“代码执行程序”选择“全部运行”就行,无需安装,无需付费。点击红框对应的URL就会打开操作界面。 第二步,点击“source”上传自己的照片和“target”上传之前的剪映数字人视频,保持默认参数,点击“START”就能生成。 第三步:等着自己专属的数字人视频出炉。
2025-02-07
音频驱动视频
以下是关于音频驱动视频的相关信息: INFP:字节二元交互的新型音频驱动头部动画生成技术 用户输入一段对话音频,可以自动驱动两个数字人头像自然对话,不需要手动区分对话。AI 可以动态地在说话和聆听状态之间交替,实现自然的口型同步和头部与面部表情动作。它适应多种画风图像,支持歌唱、采访、对话(可以实现多 Agent 实时对话)等场景环境。 地址:https://grisoon.github.io/INFP/ LTX Studio:Face Expression 控制角色表情 LTX Studio 的新功能 Face Expression 可轻松完全控制角色的面部表情。可以从预设情绪中快速选择,在几秒钟内调整角色的表情,也可以使用自定义控件微调眼睛、嘴巴或眉毛等特定特征,打造所需的确切情感。 【TecCreative】帮助手册中的相关内容 音频驱动多场景数字人:支持音频和场景数字人一键合成,快速生成数字人口播视频。操作指引:上传音频链接——选择数字人角色和场景——选择输出类型——点击开始生成。音频文件支持 MP3 和 WAV 格式,文件大小上限 5M。 谷歌 Generating audio for video 为了生成更高质量的音频,并增加引导模型生成特定声音的能力,在训练过程中添加了更多信息,包括人工智能生成的注释,其中包含声音的详细描述和口语对话誊本。通过对视频、音频和附加注释进行训练,技术可以学会将特定音频事件与各种视觉场景联系起来,同时对注释或文本中提供的信息做出响应。
2025-01-24
从评审导师的角度优化“人工智能驱动企业供应链效率影响研究——基于专精特新中小企业的实证数据”这个工商学术研究生学位论文题目
作为评审导师,以下是对这个论文题目的一些优化建议: “人工智能对专精特新中小企业供应链效率的驱动作用及影响研究——基于实证数据分析” 这样的表述更加清晰地突出了人工智能的驱动作用,并且明确了是基于实证数据进行的分析。您觉得如何?
2025-01-08
修改以下内容,降低论文查重率:  首先需要高层管理者的重视和支持,为社交媒体营销提供必要的资源和政策支持。其次,要加强员工培训,提高全员的社交媒体素养和营销能力。再次,要建立完善的社交媒体管理制度,规范员工行为,防范潜在风险。最后,要注重技术创新,积极应用人工智能、大数据等新技术,提高社交媒体营销的智能化水平
以下是为您修改后的内容,以降低论文查重率: 首先,高层管理者的重视与支持不可或缺,应为社交媒体营销给予必需的资源及政策支撑。其次,强化员工培训工作,提升全体员工的社交媒体素养与营销能力。再次,构建完备的社交媒体管理体制,对员工行为加以规范,预防潜在风险。最后,注重技术的创新,积极运用人工智能、大数据等新型技术,增强社交媒体营销的智能化程度。
2025-03-07
大模型企业落地方案有哪些
大模型企业落地方案主要包括以下几个方面: 1. 提高内容可信: 做具备通用能力的大模型,通过商业交付应用、反馈和评测来解决内容可信问题。 不断优化数据以解决实际应用问题,如自我学习能力等。 走向垂直化,结合场景用一个模型和框架提高内容精准度。 2. 解决算力成本高、训练重复和资源紧缺的问题: 以 GPT3 模型为例,现有千卡集群训练一个月,单次训练周期一个月,总成本超过 1200 万美金,且全行业训练卡持续涨价。 目前仍无人能用商业化的国产芯片做大模型训练。 3. 降低大模型价格或使用垂直领域模型落地。 4. 以百度智能云为例: 在 IaaS 层,百舸 AI 异构计算平台解决算力问题,提供从集群创建到模型训练、推理的完整算力管理方案,提升算力管理能力和模型训练效率,确保高达 99.5%的有效训练时间,为大模型应用落地提供强大算力支撑。 在 Paas 层,千帆大模型平台解决大模型的调用、开发和应用开发问题,支持调用文心大模型全系列模型,提供全面工具链,支持定制化模型开发,通过 AppBuilder 提供企业级 Agent 和企业级 RAG 开发能力,还能将企业应用数据反馈到模型中形成良性循环,持续优化模型性能。 在 SaaS 层,提供丰富的常用应用供客户选择,如数字人平台曦灵、智能客服应用客悦等。 此外,大模型在实际应用中存在一些问题,如知识的局限性、幻觉问题和数据安全性问题,而 RAG 是解决上述问题的一套有效方案,它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。RAG 可以和微调结合使用,两者并不冲突。
2025-03-12
适合企业的AI AGENT
以下是一些适合企业的 AI Agent 相关信息: 影刀 RPA + AI Power: 功能亮点:集成丰富的 AI 组件及技能组件,如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现自动化操作,突破大模型的限制。 无缝多样的使用方式:提供网页分享、对话助理、API 集成等嵌入方式,方便企业在不同业务场景下灵活选择接入方式,打通分散的系统,实现便捷交互。 贴身的企业级服务支持:提供教学培训、技术答疑、场景共创等贴身服务,帮助企业把产品用起来,实现 AI 落地。 其他 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具拓展 Bot 能力边界。 Microsoft 的 Copilot Studio:具备外挂数据、定义流程、调用 API 和操作等功能,并能将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 在智变时代,Microsoft 也推出了 Copilot 产品的升级,如 Copilot Team 与 Studio,让 Agent 融入企业内部,自动化日常工作。软件应用范式已转移,AI Agent 成为新 SaaS。您可以根据自身需求选择适合的平台。
2025-03-11
构建企业智能客服的方案有哪些
构建企业智能客服的方案主要包括以下几种: 1. 帮助企业快速建立产品智能客服体系,通过用户意图识别、知识库检索答案、AI 大模型总结输出答案、多轮对话沟通、对话分析打标、自动更新知识库 FAQ 以及客服效果分析,提供全面的 AI 客服解决方案,提高 AI 客服回答的准确率,降低企业商用 AI 客服的门槛。 2. 采用开源或者国内智谱、文心、百川等企业提供的 13B 级模型,本地部署在自己的内部系统中,并结合大模型企业提供的技术服务,基于大模型搭建 LangChain、RAG 框架,在智能客服上实现 RPA 自动流程。 3. 可以转化为 LLM 技术支持方,专注发力 LLM 的工程化应用方向,为企业提供更好的 LLM 本地部署和工程化,走 IBM 的企业服务道路。 4. 转变赛道,例如像智齿客服一样,借助国内出海的兴起以及中东、东南亚需求的旺盛,提供在这个方向的智能客服国内服务。 5. 转向 LMops 方向,虽然当前挺有用,比如做复杂 prompt 的多模型效果测试,做 langchain 的可视化设计,但也存在一些隐患点需要思考。 以下是一些具体的应用案例: 1. 如 Grammarly、秘塔写作猫等 AI 智能写作助手,利用自然语言处理技术辅助用户进行高质量写作。 2. 淘宝拍照搜商品,通过图像识别为用户推荐相似商品。 3. 小爱同学、Siri 等 AI 语音助手定制开发,采用语音识别、自然语言理解技术,为不同需求定制专属语音助手。 4. Keep 智能训练计划,利用数据分析、机器学习技术,根据用户数据制定个性化健身方案。 5. 大众点评智能推荐,基于数据挖掘、自然语言处理技术,基于用户口味偏好推荐美食。 6. 阿里小蜜等电商客服,通过自然语言处理、机器学习技术,为企业提供智能客服解决方案。
2025-03-11
AI可以协助制造业企业做哪些工作
AI 可以协助制造业企业完成以下工作: 1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:通过分析设备运行数据,预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,自动生成个性化的客户回复,提升客户体验。 此外,在制造业中,AI 还能用于预测性维护,帮助工厂避免停机;进行质量控制,检测产品缺陷以提高产品质量;优化供应链,提高效率和降低成本;控制工业机器人,提高生产效率;以及协助生产计划和供应链计划状态查询、产线预测性维保辅助、产品质量分析与溯源等工作。
2025-03-10
我是IVD企业的技术中心主任,我想构建我们技术中心的知识库,有什么AI工具可以帮我实现
以下是一些可以帮助您构建技术中心知识库的 AI 工具及相关步骤: Dify 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建新的数据集,上传准备好的文档,并为数据集编写清晰的描述,说明其包含的内容和特点。 3. 配置索引方式:Dify 提供了高质量模式、经济模式和 Q&A 分段模式三种索引方式,您可根据实际需求选择,如追求更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库,增加新内容以保持时效性。 其他相关场景和应用 1. 提示词帮您规划 PARA 分类模式:PARA 代表项目(Projects)、领域(Areas)、资源(Resources)和档案(Archives)。AI 可通过分析您的工作模式和内容类型,自动生成提示词,帮助您将信息和知识分类到 PARA 的相应部分,简化分类过程,更快组织和检索信息。 2. 提示词帮您设计笔记标签系统:AI 能通过分析您的笔记内容和使用习惯,推荐合适的标签和标签结构,提高笔记管理和检索效率。 3. 知识助手 Bot 帮您渐进式积累领域知识:例如基于 dify.ai 将数百个思维模型整合成一个知识库,根据不同的对话和条件判断为用户选择适用的思维模型分析工具,封装成一个智能分析的 Bot,能根据您的学习进度和兴趣点,定期推送相关文章、论文和资源,持续扩展知识边界并确保知识及时更新。
2025-03-09
企业级rag系统开发框架
企业级 RAG 系统开发框架如下: 首先,通过数据预处理引擎(如 Unstructured)将企业无结构文件(如 PDF、幻灯片、文本文件)从数据孤岛(如 Google Drive 和 Notion)加载、转换为 LLM 可查询格式,并将这些文件“分块”成更小的文本块,以实现更精确的检索,然后作为向量嵌入和存储在数据库(如 Pinecone)中。 当用户提出问题时,系统会检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM。LLM 会从检索到的上下文中合成答复返回给用户。 在实际生产中,AI 应用程序具有更复杂的流程,包含多个检索步骤和“提示链”,不同类型的任务并行执行多个“提示链”,然后将结果综合在一起生成最终输出。 RAG 是检索增强生成(Retrieval Augmented Generation)的简称,概括起来是知识检索+内容生成,主要组成包括数据提取、embedding(向量化)、创建索引、检索、自动排序(Rerank)、LLM 归纳生成。其核心在于能否将内容检索得又快又准。 RAG 的优势在于: 大语言模型技术存在输出结果不可预测、知识有截止日期、无法满足实际业务需求等问题,而 RAG 可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。 RAG 可以和微调结合使用,两者并不冲突。微调适用于模型需要复制特定的结构、样式或格式时,RAG 适用于模型需要回答特定的询问或解决特定的信息检索任务。但 RAG 不适合教模型来理解广泛的领域或学习新的语言、格式或样式。 同时,通用的基础大模型无法满足实际业务需求的原因包括: 知识的局限性:模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。 幻觉问题:大模型基于数学概率的文字预测,存在提供虚假、过时、通用或低可信度信息的情况。 数据安全性:企业重视数据安全,不愿承担数据泄露风险将私域数据上传第三方平台训练。
2025-03-08