Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI时代下人才的发展

Answer

在 AI 时代,人才的发展具有以下重要方面:

跨学科思维与知识整合能力: AI 善于单领域的深度计算,但跨领域的综合创新仍是人类的优势。能够将不同学科的知识串联,进行类比、迁移和融合,是产生创新思路的源泉之一。未来复杂问题往往涉及多方面因素,仅靠单一领域视角难以解决。人类大脑在跨域联想方面远胜机器,能把看似无关的点联系起来,这正是创造力的体现。 要培养跨学科思维,首先要建立广博的知识面,对主要学科门类有基本了解。其次要刻意练习融会贯通,面对问题时尝试多学科视角。学校和培训应鼓励跨学科项目、通识教育。可以采取“T 字型”发展,一方面在主攻领域深耕,另一方面广泛涉猎相关领域。培养该能力还需提高系统思考和抽象概括能力。长远看,这种跨界整合能力将非常抢手,因为创造性突破往往发生在学科交叉处。

适应 AI 时代的关键技能: 技术专业人士需要发展 AI 难以替代的技能,包括团队建设、跨文化交流、创新解决方案的设计等。AI 虽然可以输出代码,但无法建立团队、跨越文化界限交流或激发团队创造力。对于从事可能被 AI 取代风险工作的技术工作者,需要重新思考职业生涯规划,可能意味着学习新技能或转向更需要人类特质的工作领域。

总的来说,生成式人工智能正在重塑技术就业市场的未来,既带来挑战也提供机遇。关键在于理解并适应这一变化,发展 AI 无法替代的技能,并在新的技术生态中找到自己的位置。同时要注重人类的创造力和创新能力。

Content generated by AI large model, please carefully verify (powered by aily)

References

[趋势研究] Deep Research - AI时代的独立个体

如前文所述,AI善于单领域的深度计算,但跨领域的综合创新仍是人类的拿手好戏。能够将不同学科的知识串联,进行类比、迁移和融合,是产生创新思路的源泉之一。未来复杂问题往往涉及多方面因素,仅靠单一领域视角难以解决。人类的大脑在跨域联想方面远胜机器——我们能把看似无关的点联系起来,这正是创造力的体现。要培养跨学科思维,首先需要建立广博的知识面(博学)。这并不意味着每个领域都钻得很深,而是对主要学科门类都有基本了解,知道每个领域关注的问题和方法论。其次要刻意练习融会贯通。比如阅读一篇医学创新报道时,想想有没有经济学或社会学的因素;学习一项新技术时,思考能否应用到其他行业。这种习惯能逐渐强化我们大脑中不同知识板块的连接。“每个领域有其独特的思考模式,当这些体系相互交织,创新往往应运而生。”当面对问题时,尝试多学科视角是一个好策略。学校和培训也应鼓励跨学科项目、通识教育,帮助培养这方面能力。当然,跨学科的基础仍是至少有一门学科的扎实根基,否则容易变成表面杂而不精。因此可以采取“T字型”发展:一方面在主攻领域深耕(T的一竖),另一方面广泛涉猎相关领域(T的一横)。AI时代,这种跨界整合能力将非常抢手,因为创造性突破往往发生在学科交叉处。例如,人工智能本身就是计算机科学与认知科学、神经科学、数学等的交叉产物。未来个人若具备跨界思维,就更可能找到AI无法预见的创新方案。培养该能力除了涉猎知识外,还要提高系统思考和抽象概括能力,即善于从具体问题中抽取一般原理,再将其应用到另一情境中。长远看,跨学科思维让我们成为AI时代的“复合型人才”,这既是对AI的补充,也是人类智慧的高级体现。

[趋势研究] Deep Research - AI时代的独立个体

本文将从以下几个方面深入探讨AI如何长期促进个人成长,以及如何构建AI时代的个人成长路径:首先,我们将提出一个系统的成长框架,分阶段说明如何借助AI提升个人能力;接着分析AI在知识获取、跨学科学习、深度思考、创造性表达等方面对个人的助益;然后讨论如何防范对AI的过度依赖,培养独立思考能力;阐明AI时代不可被取代的核心能力及其培养方式;展望AI对社会结构和职业的长期影响,以及普通人应对之道;最后进行一些哲学层面的思考,审视AI对人类本质、学习模式和创造力的深远影响。希望通过这篇文章,勾勒出一条清晰可行的道路,帮助每一位身处AI洪流中的个人既能乘风破浪,成长为“超级个体”,又不迷失自我,在这场时代浪潮中稳健前行。

生成式人工智能:技术就业市场的新篇章

在AI时代,技术专业人士需要发展那些AI难以替代的技能。这包括团队建设、跨文化交流、创新解决方案的设计等。AI虽然可以输出代码,但它无法建立团队、跨越文化界限进行交流,或者激发团队的创造力。技术就业市场将始终为那些能够融合技术智慧和人际交往能力的人提供机会。同时,对于那些从事现在可能面临被AI取代风险的工作的技术工作者来说,他们需要重新思考自己的职业生涯规划。这可能意味着学习新技能,或者转向那些更需要人类特质的工作领域。[heading3]结语[content]总的来说,生成式人工智能正在重塑技术就业市场的未来。它既带来了挑战,也提供了新的机遇。对于技术专业人士来说,关键在于理解并适应这一变化,发展那些AI无法替代的技能,并在新的技术生态中找到自己的位置。随着AI技术的不断发展,我们将进入一个更加智能化、高效的未来,但同时也需要更加注重人类的创造力和创新能力。

Others are asking
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
学AI上钉钉
以下是在钉钉上学 AI 的相关内容: 从 AI 助教到智慧学伴的应用探索: 登录钉钉客户端,在右上角依次选择钉钉魔法棒、AI 助理、创建 AI 助理。进入创建 AI 助理页面后,填写 AI 助理信息,设置完成即可创建成功。 AI 领导力向阳乔木:未提及具体的在钉钉上学 AI 的操作方法。 基于 COW 框架的 ChatBot 实现步骤: 创建应用: 进入,登录后点击创建应用,填写应用相关信息。 点击添加应用能力,选择“机器人”能力并添加。 配置机器人信息后点击发布,发布后点击“点击调试”,会自动创建测试群聊,可在客户端查看。点击版本管理与发布,创建新版本发布。 项目配置: 点击凭证与基础信息,获取 Client ID 和 Client Secret 两个参数。 参考项目,将相关配置加入项目根目录的 config.json 文件,并设置 channel_type:"dingtalk",注意运行前需安装依赖。 点击事件订阅,点击已完成接入,验证连接通道,会显示连接接入成功。 使用:与机器人私聊或将机器人拉入企业群中均可开启对话。
2025-04-19
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
企业如何培养全员AI思维,将AI融入企业文化,驱动人才转型,推动AI驱动的创新。
企业培养全员 AI 思维、将 AI 融入企业文化、驱动人才转型并推动 AI 驱动的创新,可参考以下方面: 1. 组织管理转型:参考波士顿咨询公司发布的《》报告,AI 技术将推动组织从金字塔结构向松树型转变,需要人才具备创新、持续学习、透明和协作能力,组织文化应强调人的价值和认知多样性。为加速 AI 转型,建议采取自上而下的战略推动和自下而上的创新激活,培养关键人才,并重塑员工技能。 2. 构建 AI 监督与反馈机制: 建立异常监测机制,针对 AI 决策结果进行定期回顾,设立异常情况触发预警机制,避免因 AI 错误而导致决策失误。 在关键业务决策中设置人类干预节点,在 AI 给出初步建议后由人类进行审核和判断,特别是财务预测、市场扩展策略等核心业务决策应有清晰的人工复核流程。 企业可以引入“人机协作审查委员会”,由高层管理人员、业务线负责人和技术团队组成,每月审查 AI 关键决策的结果,设定触发条件(如连续三次异常预测)来判断是否需要人工干预。 3. 保留人类的创新与主导地位: 虽然 AI 能通过数据提供创新支持,但真正的突破性创新依然需要人类的参与,企业应明确 AI 是助力而非替代。在中国市场,创新是企业保持竞争优势的关键,过度依赖 AI 可能会削弱员工的创新力和主动性。 设立创新实验室,让 AI 提供背景数据和支持,员工在此基础上进行创意开发,AI 可以生成基础创意,员工进行拓展和跨领域应用。 进行跨部门协作,创建多样化团队,整合市场、技术和创意团队的力量,让 AI 提供洞察和辅助,具体决策由团队中的人类成员作出。 企业可以设立“AI 创新月”,每月让不同部门提出与 AI 相关的创新方案,要求员工结合 AI 的分析提出创意,而非直接采用 AI 方案,以培养团队的创新能力,避免 AI 的全权主导。
2025-03-12
《2024大模型人才报告》
以下是与您查询的相关报告: 2024 年 9 月 10 日: 《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案。报告提出了一个系统化的可信应用框架,强调了专业性、可控性、真实性和安全性四个核心要素,并从数据质量、模型能力、推理过程、系统安全等方面提供了具体的技术实现建议。 《》 《》 《》 《》 2024 年 7 月 10 日: 极客邦科技通过《》报告深入探讨 AIGC 技术在企业中的应用,提供实战经验和趋势洞察。这份报告集合了多篇文章和案例,覆盖互联网产品、企业生产、医疗、教育等行业,展现大模型应用潜力。 《》 《》 《》 《》 2024 年 9 月 18 日: 《》探讨了 AI 技术,尤其是大模型技术对劳动力市场的影响。 《》探讨了 AI 技术在营销领域的应用现状和发展趋势。 《》 《》 您可以通过相应的链接获取更详细的内容。
2024-10-29
大模型人才报告
以下是为您提供的大模型相关报告和指南: 《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案,提出了系统化的可信应用框架,并从多方面提供了技术实现建议。 其他相关报告发布在,包括: 《》 《》 《》 《》 大模型入门指南:原文地址为 https://mp.weixin.qq.com/s/9nJ7g2mo7nOv4iGXT_CPNg ,作者为写代码的西瓜。该指南主要介绍作者在搭建大模型过程中学到的知识,以及如何在 macOS 上运行大模型。
2024-10-15
2024大模型人才报告
以下是 2024 年部分大模型相关的人才报告及研究报告: 2024 年 9 月 10 日,《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案,提出了系统化的可信应用框架,并从多方面提供了技术实现建议。 2024 年 1 月 24 日,《》由中国社科院和腾讯研究院发布,通过实验观察到部分社会群体期待大模型有“人情味”。 2024 年 2 月 4 日,更新了多份研究报告文档,如《》等。 此外,还有以下相关报告: 《》 《》 《》 《》 您可以通过以下链接获取更多详细内容: 研究报告板块: 知识星球:
2024-10-08
AI对社会经济的影响,AI时代有哪些新的竞争机会
AI 对社会经济的影响主要体现在以下几个方面: 1. 引领新的服务模式:如“智能即服务”,重塑工作和生活,增强能力、实现自动化和改变交互方式。 2. 赋能相关行业:为芯片和云计算行业带来新机遇,推动其发展,GPU 需求预计持续增长。 3. 创造投资机会:企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额超过企业软件,有望成为重要爆发点。 4. 影响企业竞争策略:企业竞争策略分化,有的迅速成长为大型模型公司并寻找强大背书,有的保持小规模专注盈利并灵活应对市场变化。 5. 推动科技巨头合作:科技巨头通过资本控制 AI 模型公司,为其提供算力,加速行业发展。 在 AI 时代,新的竞争机会包括: 1. 成为大型模型公司并获得强大背书,以取得竞争优势。 2. 保持小规模,专注盈利和灵活应对市场变化。 3. 在特定领域如企业软件、金融服务、健康技术等,利用 AI 创新获得发展机会。 4. 适应权力格局变更,应对“AI 寡头”或“超级强国”的出现,寻找新的发展空间。 同时,AI 时代还具有以下特点和趋势: 1. 未来变化深远,人们会找到新的做事、服务彼此和竞争的方式。 2. 主动性、意志力和毅力将极其宝贵,韧性和适应能力值得培养。 3. AGI 将成为人类意志最大的杠杆,个人能产生更大影响。 4. AGI 的影响不均衡,科学进步速度可能更快,部分商品价格大幅下降,奢侈品和有限资源价格可能上涨。 5. AI 将渗透到经济和社会各领域,人们期待所有事物具有“智能”特质。 6. 权力金字塔可能重塑,率先开发或控制 AGI 的主体将获得巨大战略优势,可能出现“AI 寡头”或“超级强国”,威胁民主和公平竞争。
2025-04-01
在AI时代,我们还需要学英语吗?
很抱歉,知识库中的内容没有直接针对“在 AI 时代,我们还需要学英语吗?”这个问题的相关回答。但从 AI 发展的趋势来看,英语在很多方面仍然具有重要性。例如,许多先进的 AI 技术和研究成果往往首先以英文形式呈现,相关的学习资源和交流也多以英语为主。同时,一些 AI 工具,如 Grok 语音模式,虽然目前仅支持英文,但也说明了英语在利用此类工具进行学习和提升方面的作用。总之,在 AI 时代,学习英语仍有其必要性和价值。
2025-03-31
AI时代如何做好教学设计
在 AI 时代做好教学设计可以从以下几个方面入手: 1. 选题探索:当学生关注教学工具的选择时,如“听书软件对学生学习的好处有哪些”,可从提升阅读理解能力、拓展知识面、增强语言表达能力、促进想象力发展、培养学习兴趣等多个维度进行分析。 2. 工具分析:对于工具对比的问题,如“音频软件/听书软件可以从哪几个方面进行对比”,提供系统的比较维度,包括用户界面、功能特性、文件格式支持、价格策略、书库资源、阅读体验等,引导学生构建评估框架,进行系统思考。 3. 教学设计:针对具体课程,如“为八年级上册课文《中国石拱桥》进行学情分析”,从教学目标、教学内容、教学方法、教学流程、注意事项等方面进行全面分析,体现教育专业知识,提供教学设计指导。 4. 课堂情境:当学生思考课堂管理问题,如“描写一段学生打闹的场景”,生动描写课堂情境,并给出教师的适当管理策略,提供情境化的案例和解决方案。 此外,还包括以下方面: 1. 教材内容分析:包括基本教学内容和学习重难点。 2. 教学目标描述:涵盖知识与技能、过程与方法、态度与价值观。 3. 学习者特征分析:了解聪明学生的认知水平、学习特点、学习习惯、学习任务特点等。 4. 教学策略选择与设计:教学方法有讲解、演示、个别指导、练习、自主学习、小组讨论、全班交流、合作学习等;情境创设包括真实情境、问题性情境、虚拟情境等。资源应用方面,根据实际情境选择或组合,同时注意安排、资源、模版、量规,但可能缺少现场指导与顾问。 在具体的教学环节中: 1. 教学方法:对于“卖炭翁的教学模式与策略”,提供兴趣导向、实践引导、以小见大、激励自主等多种策略。 2. 教案编写:回答“教学设计的总流程”,提供引入、阅读理解、重点内容讲解、交流互动、拓展延伸、总结归纳等完整流程。 3. 教学创新:针对“怎么对一元二次方程组进行教材分析和学情分析”,从教材内容、学生认知特点、教学难点等方面进行分析。 4. 资源推荐:对于“评分高的教育电影”,推荐优质影片并简述其教育价值。 5. 班级管理:对于“有助于处理小学学生矛盾的教育类书籍”,推荐并分析相关书籍的实用价值。
2025-03-31
大模型时代组织和个人面临的挑战和应对策略是什么?
在大模型时代,组织和个人面临着以下挑战和应对策略: 挑战: 1. 算力投资风险:大规模算力投资使公司转变为重资产模式,可能影响公司估值和投资人收益。获取高性能算力成本高昂,包括 GPU 价格及后续部署、运营、调试和使用成本。 2. 估值泡沫风险:创业公司为抬高估值规避算力风险,可能成为突破的绊脚石,类似荷兰郁金香泡沫,当风口过去,真实收入将成为关键指标。 应对策略: 1. 对于创业公司: 挖掘新的价值点,如探索大模型在不同领域的应用,或开发中间层服务,如训练、数据处理、算力服务等。 避免盲目追逐原创大模型,根据自身情况选择合适的发展路径,如套壳开源大模型或拼装大模型时注重创新和突破。 2. 对于投资人: 保持独立判断,不人云亦云,吸取以往经验教训,专注于更有创意和机会的公司或项目。
2025-03-28
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13
一个尽可能完美的AGI时代的多Agents协同工作平台应该具备怎样的能力设计?
一个尽可能完美的 AGI 时代的多 Agents 协同工作平台通常应具备以下能力设计: 1. 融合 RL(强化学习)与 LLM(大型语言模型)思想:在多 Agent 情境下,形成复杂多轮会话及协作行动过程,为系统二进行大规模的过程学习提供路径。同时,LLM 能从 RL 过程中习得新的、足够新颖的策略,例如像 AlphaGO 那样通过自博弈创新策略并快速反馈奖励,最终达成任务目标。 2. 具备多项优势: 适配国内外主流开源及闭源大语言模型,支持多模型混合使用,构建企业级场景服务生态,提供场景化解决方案。 拥有灵活可视化无代码应用构建、TexttoAgent 技术,构建便捷,上手简单,操作高效。 能够即时发布上线,支持发布为网页/小程序/API 等多种形态,快速部署 Agent 应用。 提供企业级安全访问控制,依据 Agent 权限控制数据访问,通信过程加密,防止数据泄露风险。 支持多 Agents 协作,构建知识工作者的人机协作流水线,满足复杂业务场景需求。 3. 允许使用自然语言制定 Agent 及其交互规则,并引入低延时的 Realtime API:即使没有专业编程技能,只要能用清晰的自然语言描述出各个 Agents 具备的行为和功能,就可以快速制作多 Agents 应用或创建代理式工作流。例如在一个简单场景中,可设置接待员和写诗的 Agents 并实现交互。
2025-03-12
分析AI颠覆性发展的生产策略调查的研究情况综述
以下是关于企业构建和购买生成式 AI 方式的 16 个变化的研究情况综述: 生成式人工智能在 2023 年迅速席卷消费市场,创下超过 10 亿美元的消费支出纪录。预计 2024 年企业领域的收入机会将数倍于消费市场。去年,企业对 genAI 的参与多局限于少数明显用例,且以“GPTwrapper(GPT 套壳)”产品作为新的 SKU 交付,一些人对其在企业中的扩展持怀疑态度。 然而,在过去几个月,a16Z 与数十家财富 500 强和顶级企业领导人交谈并对 70 多位进行调查后发现,过去 6 个月里,企业对生成式 AI 的资源配置和态度有显著变化。尽管仍有保留,但企业领导人几乎将预算增加两倍,更多应用部署在较小的开源模型上,并将更多业务从早期实验转移到生产环境中。 这对创始人是巨大机遇。a16Z 认为,为客户“以 AI 为中心的战略计划”构建解决方案,能预见痛点,从重服务模式转向构建可扩展产品的人工智能初创公司,将抓住新投资浪潮并占据重要市场份额。 任何时候,为企业构建和销售产品都需深入了解客户预算、关注点和路线图。a16Z 根据访谈结果总结了 16 个最为关键的考虑因素,涉及资源、模型和应用。
2025-04-15
,当前AI数字人发展的新态势,以及新技术和成果
当前 AI 数字人的发展呈现出以下新态势,并取得了一系列新技术和成果: 数字人简介: 数字人是运用数字技术创造的,虽现阶段未达科幻作品中的高度智能,但已在生活多场景中出现且应用爆发。业界对其尚无准确定义,一般可按技术栈分为真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要用于影视和直播带货,其表现质量与建模精细度及动捕设备精密程度相关,不过视觉算法进步使在无昂贵动捕设备时也能通过摄像头捕捉关键点信息实现不错效果。 B 端变现与创业方向: B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。自媒体创业需具备内容创新和差异化,内容成本低且更新迭代快。游戏创业可做轻量化游戏,结合 AI 技术满足放松和社交需求,专注垂类赛道避免与大厂竞争。影视创业在 25 年将是拐点,更多内容会采用 AI 技术。广告营销创业重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: AI 虚拟人从早期以首位为核心的宅文化虚拟偶像,发展到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人。虚拟人产业链包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。未来 3 10 年,AI 虚拟人是 Web 3.0 的风口,提前布局有潜力的赛道可迎接机遇,但创业对创业者综合能力要求极高。 未来展望: 数字人未来有很多应用场景,如家庭中的数字人管家、学校中的数字人老师、商场里的数字人导购等。未来还会有很多技术突破,如将五感数据和躯壳控制参数作为输入,次世代算法可自我迭代升级和自行演化躯壳控制方式。通过 Dify 搭建数字人的开源项目可展现低门槛高度定制数字人的基本思路,数字人的核心在于 Agent 即灵魂,如何在 Dify 上编排专属数字人灵魂值得体验。期望随着数字人的多模态能力接入、智能化水平升级、模型互动控制更精确,AI 既能提供高质量信息,也能关注用户情绪。
2025-04-14
,AI agent 发展趋势,技术状态,商业模式
以下是关于 AI Agent 的发展趋势、技术状态和商业模式的相关信息: 发展趋势: 2024 年内,办公场景“AI 助手”开始有良好使用体验,实时生成的内容开始在社交媒体内容、广告中出现。 2025 2027 年,接近 AGI 的技术出现,人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 技术状态: 目标实现基于 ReAct、SFT、RAG、强化学习等实现自主规划能力的 AI Agent,构建具备认知、决策智能的 Agent 智能体框架。 专注文本/多模态大模型、AI Agent 技术创新与应用。 商业模式: 依据不同类型销售市场的特点,结合一站式 AI 搭建平台将销售部署的产品化和模版化,让企业更容易落地和应用 AI 能力。 销售智能体 Blurr.AI 占位交易环节,解决 2B 销售获客的痛点,且具有向前后端环节延展的势能。
2025-04-13
现在Ai已经发展到什么程度了
目前 AI 的发展已不再局限于单一的技术和应用范畴,而是融合了众多学科知识,并深入渗透到生活的各个层面,引发了一场生产力的革命。 有观点认为,AI 引领的是第四次工业革命的浪潮:继蒸汽机引发的机械化变革、电力驱动的电气化革新,以及电脑普及带来的信息化浪潮之后,AI 正推动着智能化时代的到来。 2025 开年 3 个月,AI 已经狂飙!R1 席卷全球,然后是 O3、Grok 3、Claude 3.7、GPT4.5 等,短短 3 个月内,AI 更新密集发布。然而很多人仍未察觉 AI 正在指数级加速,甚至抱怨 GPT4.5 表现不佳,但事实上,AI 发展已经是直线拉升状态,每天都在进步。 此外,Grok 语音模式已全面开放,支持 11 种模式(包括 2 种 18 禁),自带语音字幕,是学习英语的好工具,但目前仅支持英文。
2025-04-13