Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI时代下人才的发展

Answer

在 AI 时代,人才的发展具有以下重要方面:

跨学科思维与知识整合能力: AI 善于单领域的深度计算,但跨领域的综合创新仍是人类的优势。能够将不同学科的知识串联,进行类比、迁移和融合,是产生创新思路的源泉之一。未来复杂问题往往涉及多方面因素,仅靠单一领域视角难以解决。人类大脑在跨域联想方面远胜机器,能把看似无关的点联系起来,这正是创造力的体现。 要培养跨学科思维,首先要建立广博的知识面,对主要学科门类有基本了解。其次要刻意练习融会贯通,面对问题时尝试多学科视角。学校和培训应鼓励跨学科项目、通识教育。可以采取“T 字型”发展,一方面在主攻领域深耕,另一方面广泛涉猎相关领域。培养该能力还需提高系统思考和抽象概括能力。长远看,这种跨界整合能力将非常抢手,因为创造性突破往往发生在学科交叉处。

适应 AI 时代的关键技能: 技术专业人士需要发展 AI 难以替代的技能,包括团队建设、跨文化交流、创新解决方案的设计等。AI 虽然可以输出代码,但无法建立团队、跨越文化界限交流或激发团队创造力。对于从事可能被 AI 取代风险工作的技术工作者,需要重新思考职业生涯规划,可能意味着学习新技能或转向更需要人类特质的工作领域。

总的来说,生成式人工智能正在重塑技术就业市场的未来,既带来挑战也提供机遇。关键在于理解并适应这一变化,发展 AI 无法替代的技能,并在新的技术生态中找到自己的位置。同时要注重人类的创造力和创新能力。

Content generated by AI large model, please carefully verify (powered by aily)

References

[趋势研究] Deep Research - AI时代的独立个体

如前文所述,AI善于单领域的深度计算,但跨领域的综合创新仍是人类的拿手好戏。能够将不同学科的知识串联,进行类比、迁移和融合,是产生创新思路的源泉之一。未来复杂问题往往涉及多方面因素,仅靠单一领域视角难以解决。人类的大脑在跨域联想方面远胜机器——我们能把看似无关的点联系起来,这正是创造力的体现。要培养跨学科思维,首先需要建立广博的知识面(博学)。这并不意味着每个领域都钻得很深,而是对主要学科门类都有基本了解,知道每个领域关注的问题和方法论。其次要刻意练习融会贯通。比如阅读一篇医学创新报道时,想想有没有经济学或社会学的因素;学习一项新技术时,思考能否应用到其他行业。这种习惯能逐渐强化我们大脑中不同知识板块的连接。“每个领域有其独特的思考模式,当这些体系相互交织,创新往往应运而生。”当面对问题时,尝试多学科视角是一个好策略。学校和培训也应鼓励跨学科项目、通识教育,帮助培养这方面能力。当然,跨学科的基础仍是至少有一门学科的扎实根基,否则容易变成表面杂而不精。因此可以采取“T字型”发展:一方面在主攻领域深耕(T的一竖),另一方面广泛涉猎相关领域(T的一横)。AI时代,这种跨界整合能力将非常抢手,因为创造性突破往往发生在学科交叉处。例如,人工智能本身就是计算机科学与认知科学、神经科学、数学等的交叉产物。未来个人若具备跨界思维,就更可能找到AI无法预见的创新方案。培养该能力除了涉猎知识外,还要提高系统思考和抽象概括能力,即善于从具体问题中抽取一般原理,再将其应用到另一情境中。长远看,跨学科思维让我们成为AI时代的“复合型人才”,这既是对AI的补充,也是人类智慧的高级体现。

[趋势研究] Deep Research - AI时代的独立个体

本文将从以下几个方面深入探讨AI如何长期促进个人成长,以及如何构建AI时代的个人成长路径:首先,我们将提出一个系统的成长框架,分阶段说明如何借助AI提升个人能力;接着分析AI在知识获取、跨学科学习、深度思考、创造性表达等方面对个人的助益;然后讨论如何防范对AI的过度依赖,培养独立思考能力;阐明AI时代不可被取代的核心能力及其培养方式;展望AI对社会结构和职业的长期影响,以及普通人应对之道;最后进行一些哲学层面的思考,审视AI对人类本质、学习模式和创造力的深远影响。希望通过这篇文章,勾勒出一条清晰可行的道路,帮助每一位身处AI洪流中的个人既能乘风破浪,成长为“超级个体”,又不迷失自我,在这场时代浪潮中稳健前行。

生成式人工智能:技术就业市场的新篇章

在AI时代,技术专业人士需要发展那些AI难以替代的技能。这包括团队建设、跨文化交流、创新解决方案的设计等。AI虽然可以输出代码,但它无法建立团队、跨越文化界限进行交流,或者激发团队的创造力。技术就业市场将始终为那些能够融合技术智慧和人际交往能力的人提供机会。同时,对于那些从事现在可能面临被AI取代风险的工作的技术工作者来说,他们需要重新思考自己的职业生涯规划。这可能意味着学习新技能,或者转向那些更需要人类特质的工作领域。[heading3]结语[content]总的来说,生成式人工智能正在重塑技术就业市场的未来。它既带来了挑战,也提供了新的机遇。对于技术专业人士来说,关键在于理解并适应这一变化,发展那些AI无法替代的技能,并在新的技术生态中找到自己的位置。随着AI技术的不断发展,我们将进入一个更加智能化、高效的未来,但同时也需要更加注重人类的创造力和创新能力。

Others are asking
能 自动生成原型图的国内AI工具有哪些
以下是一些能够自动生成原型图的国内 AI 工具: 1. 即时设计:https://js.design/ 这是一款可在线使用的“专业 UI 设计工具”,为设计师提供更加本土化的功能和服务,相较于其他传统设计工具,更注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 2. V0.dev:https://v0.dev/ Vercel Labs 推出的 AI 生成式用户界面系统。每个人都能通过文本或图像生成代码化的用户界面,它基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 3. Wix:https://wix.com/ Wix 是一款用户友好的 AI 工具,可让您在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供您选择,以及移动优化和集成电子商务功能等功能。Wix 建站工具通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 4. Dora:https://www.dora.run/ 使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。 此外,目前还有一些基于人工智能生成内容的工具(AIGC)可以用于产品原型设计,例如: 1. UIzard:是一个利用 AI 技术生成用户界面的工具,它可以根据设计师提供的信息快速生成 UI 设计。 2. Figma:是一个基于云的设计工具,它提供了自动布局和组件库,可以帮助团队快速协作并迭代产品设计。Figma 的社区也开发了一些 AI 插件,用于增强设计流程。 3. Sketch:是另一款流行的矢量图形设计工具,它提供了插件系统,其中一些插件利用 AI 技术来辅助设计工作,例如自动生成设计元素等。 与思维导图相关的 AI 工具包括: 1. GitMind:一款免费的跨平台 AI 思维导图软件,可以通过 AI 自动生成思维导图。支持提问、回答、自动生成等多种模式。 2. ProcessOn:国内思维导图+AIGC 的工具,可以利用 AI 生成思维导图。 3. AmyMind:一个轻量级的在线 AI 思维导图工具,无需注册登录即可使用,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可以一键拓展思路,生成文章大纲。 5. TreeMind:一款“AI 人工智能”思维导图工具,可以输入需求由 AI 自动完成思维导图生成。 6. EdrawMind:提供了一系列 AI 工具,包括 AI 驱动的头脑风暴功能,帮助用户提升生产力。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-18
自动生成原型图的国内AI工具或网站有哪些
以下是一些国内可用于自动生成原型图的 AI 工具或网站: 1. 即时设计:https://js.design/ 这是一款可在线使用的“专业 UI 设计工具”,为设计师提供更加本土化的功能和服务,相较于其他传统设计工具,更注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 2. V0.dev:https://v0.dev/ Vercel Labs 推出的 AI 生成式用户界面系统。每个人都能通过文本或图像生成代码化的用户界面。它基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 3. Wix:https://wix.com/ Wix 是一款用户友好的 AI 工具,可让您在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供您选择,以及移动优化和集成电子商务功能等功能。Wix 建站工具通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 4. Dora:https://www.dora.run/ 使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。 此外,还有一些用于产品原型设计的 AIGC 工具,如: 1. UIzard:是一个利用 AI 技术生成用户界面的工具,它可以根据设计师提供的信息快速生成 UI 设计。 2. Figma:是一个基于云的设计工具,它提供了自动布局和组件库,可以帮助团队快速协作并迭代产品设计。Figma 的社区也开发了一些 AI 插件,用于增强设计流程。 3. Sketch:是另一款流行的矢量图形设计工具,它提供了插件系统,其中一些插件利用 AI 技术来辅助设计工作,例如自动生成设计元素等。 如果您想要使用 AI 绘制示意图,以下工具和平台可供选择: 1. Lucidchart:是一个强大的在线图表制作工具,集成了 AI 功能,可以自动化绘制流程图、思维导图、网络拓扑图等多种示意图。具有拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。官网:https://www.lucidchart.com/ 2. Microsoft Visio:是专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可以帮助自动化布局和优化图表设计。集成 Office 365,方便与其他 Office 应用程序协同工作;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 3. Diagrams.net:http://diagrams.net/ 这是一个免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。支持本地和云存储(如 Google Drive、Dropbox);多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。官网:https://www.diagrams.net/
2025-03-18
国产的ai工具有哪些
以下是一些国产的 AI 工具: 图像类: 可灵:由快手团队开发,可生成高质量的图像和视频,但价格相对较高,重度用户年费可达几千元,轻度用户有每日免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁,用户友好度高,目前免费,每天签到获取灵感值即可,但在某些方面存在局限性。 思维导图类: GitMind:免费跨平台,支持多种模式,可通过 AI 自动生成思维导图。 ProcessOn:国内的思维导图+AIGC 工具,能利用 AI 生成思维导图。 AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 Xmind Copilot:Xmind 推出的基于 GPT 的助手,可一键拓展思路,生成文章大纲。 TreeMind:输入需求即可由 AI 自动完成思维导图生成。 EdrawMind:提供一系列 AI 工具,包括头脑风暴功能。 其他类: 传音智库:公司内部的 AI 平台,功能类似于 Poe,仅内网可访问,可用 kimi 替代。 Kimichat:https://kimi.moonshot.cn/ 秘塔 AI:https://metaso.cn/
2025-03-18
有哪些自动绘制流程图或原型图的AI工具
以下是一些可以自动绘制流程图或原型图的 AI 工具: 1. Lucidchart: 简介:强大的在线图表制作工具,集成了 AI 功能,可绘制多种示意图。 功能:拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 2. Microsoft Visio: 简介:专业的图表绘制工具,适用于复杂的流程图等。 功能:集成 Office 365,方便与其他 Office 应用程序协同工作;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 3. Diagrams.net: 简介:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能:支持本地和云存储(如 Google Drive、Dropbox);多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。 官网:https://www.diagrams.net/ 4. Creately: 简介:在线绘图和协作平台,利用 AI 功能简化图表创建过程。 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用。 官网:https://creately.com/ 5. Whimsical: 简介:专注于用户体验和快速绘图的工具,适合创建多种示意图。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作。 官网:https://whimsical.com/ 6. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成。 官网:https://miro.com/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:若需要团队协作,可邀请团队成员一起编辑。完成后导出并分享图表。 示例:假设需要创建一个项目管理流程图,可以按照以下步骤使用 Lucidchart: 1. 注册并登录:https://www.lucidchart.com/ 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-18
AI广告
以下是关于 AI 广告的相关信息: 分众传媒携手阿里通义大模型,开拓品牌广告 AI 营销新模式,具有以下业务价值: 品牌营销 AI 化:赋能品牌客户利用 AI 大模型技术进行品牌定位分析和策略制定,在存量博弈市场中找到差异化优势,高效利用线下流量建立品牌势能。 降低营销门槛:降低中小广告主投放门槛,通过一键生成广告语、一键 AI 设计等应用,帮助快速高效制作广告创意素材。 业务价值回报:众智 AI 大模型将为分众拓宽客户边界,提高服务能力,通过对供给侧的生产效率变革提高传媒行业新质生产力。 AI 小智助手:通过“AIchat”对话交互方式进行品牌洞察分析和营销策略制定,基于通义千亿大模型进行准确的语义理解和意图分类,并根据用户具体提问场景调用“众智 AI 大模型”回答问题并多轮交互。 AI 广告语:基于分众高质量广告语数据和方法论,模拟营销专家创作思路搭建的 Agent 生成应用,使用 Cot 思维链技术模拟人脑推理过程增强广告生成的准确性。 【已结束】AIPO:校园 AI 创投活动 10 月 8 日10 月 20 日,相关课程和回放信息如下: 10 月 16 日 20:00,视频,讲师 EM7 南柒,课程标题“AI 视频创作指南商业片制作”,课程回放链接:https://www.bilibili.com/video/BV1j2mTYrEsw/?spm_id_from=333.999.0.0 ,上课请提前准备商业片实战经验分享,相关资料:老师课件,作业提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnRkQhbAQgtaRYZCtRSDrJmh 。 10 月 17 日 20:00,模型训练,讲师忠忠,课程回放链接:https://www.bilibili.com/video/BV1yCy7YkEyW/ 。 10 月 18 日 20:00,comfyUI+建站,讲师海辛/阿文,课程回放链接:https://www.bilibili.com/video/BV1yCy7YkEmX/ 。 10 月 20 日 14:0018:00,校园 AIPO,线下路演。 10 月 21 日 20:00,颁奖。 《引导式创作:AI 视觉艺术的多维工作流与创意实践分享》中包含案例展示与创作心得,其中案例一为 AI 广告视频,是帮朋友做的眉笔广告,使用 FLUX、即梦、PS、可灵等工具,未写脚本,靠对大牌美妆广告的印象直接生成图片和视频并加入自己创意;案例二为国风动画视频,参加成都熊猫文创比赛,基本用四套提示词制作,加入自己想法,从创意到成片约 4 天。
2025-03-18
我想用AI写论文,我应该怎么做
利用 AI 写论文可以参考以下步骤和建议: 1. 确定论文主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成论文的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果论文涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写论文的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查论文的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保论文的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。 在论文写作领域,一些常用的 AI 工具和平台包括: 1. 文献管理和搜索: Zotero:结合 AI 技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。 Semantic Scholar:一个由 AI 驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。 Quillbot:一个基于 AI 的重写和摘要工具,可以帮助研究人员精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽然不是纯粹的 AI 工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式。 Overleaf:一个在线 LaTeX 编辑器,提供丰富的模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:一个广泛使用的抄袭检测工具,帮助确保论文的原创性。 Crossref Similarity Check:通过与已发表作品的比较,检测潜在的抄袭问题。 使用 AI 来做事,特别是写东西方面: 1. 草拟初稿:可以让 AI 撰写博客文章、论文、宣传材料、演讲、讲座、剧本、短篇小说等的初稿。 2. 优化写作:将文本粘贴到 AI 中,要求它改进内容,或就如何为特定受众提供更好的建议,还可以要求它以不同风格创建多个草稿,使其更生动或添加例子,以激发自己做得更好。 3. 协助完成任务:像使用实习生一样,让 AI 写邮件、创建销售模板、提供商业计划的下一步等。 4. 解锁自己:当在任务中遇到困难挑战而分心时,AI 能提供让自己保持动力的方式。
2025-03-18
企业如何培养全员AI思维,将AI融入企业文化,驱动人才转型,推动AI驱动的创新。
企业培养全员 AI 思维、将 AI 融入企业文化、驱动人才转型并推动 AI 驱动的创新,可参考以下方面: 1. 组织管理转型:参考波士顿咨询公司发布的《》报告,AI 技术将推动组织从金字塔结构向松树型转变,需要人才具备创新、持续学习、透明和协作能力,组织文化应强调人的价值和认知多样性。为加速 AI 转型,建议采取自上而下的战略推动和自下而上的创新激活,培养关键人才,并重塑员工技能。 2. 构建 AI 监督与反馈机制: 建立异常监测机制,针对 AI 决策结果进行定期回顾,设立异常情况触发预警机制,避免因 AI 错误而导致决策失误。 在关键业务决策中设置人类干预节点,在 AI 给出初步建议后由人类进行审核和判断,特别是财务预测、市场扩展策略等核心业务决策应有清晰的人工复核流程。 企业可以引入“人机协作审查委员会”,由高层管理人员、业务线负责人和技术团队组成,每月审查 AI 关键决策的结果,设定触发条件(如连续三次异常预测)来判断是否需要人工干预。 3. 保留人类的创新与主导地位: 虽然 AI 能通过数据提供创新支持,但真正的突破性创新依然需要人类的参与,企业应明确 AI 是助力而非替代。在中国市场,创新是企业保持竞争优势的关键,过度依赖 AI 可能会削弱员工的创新力和主动性。 设立创新实验室,让 AI 提供背景数据和支持,员工在此基础上进行创意开发,AI 可以生成基础创意,员工进行拓展和跨领域应用。 进行跨部门协作,创建多样化团队,整合市场、技术和创意团队的力量,让 AI 提供洞察和辅助,具体决策由团队中的人类成员作出。 企业可以设立“AI 创新月”,每月让不同部门提出与 AI 相关的创新方案,要求员工结合 AI 的分析提出创意,而非直接采用 AI 方案,以培养团队的创新能力,避免 AI 的全权主导。
2025-03-12
《2024大模型人才报告》
以下是与您查询的相关报告: 2024 年 9 月 10 日: 《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案。报告提出了一个系统化的可信应用框架,强调了专业性、可控性、真实性和安全性四个核心要素,并从数据质量、模型能力、推理过程、系统安全等方面提供了具体的技术实现建议。 《》 《》 《》 《》 2024 年 7 月 10 日: 极客邦科技通过《》报告深入探讨 AIGC 技术在企业中的应用,提供实战经验和趋势洞察。这份报告集合了多篇文章和案例,覆盖互联网产品、企业生产、医疗、教育等行业,展现大模型应用潜力。 《》 《》 《》 《》 2024 年 9 月 18 日: 《》探讨了 AI 技术,尤其是大模型技术对劳动力市场的影响。 《》探讨了 AI 技术在营销领域的应用现状和发展趋势。 《》 《》 您可以通过相应的链接获取更详细的内容。
2024-10-29
大模型人才报告
以下是为您提供的大模型相关报告和指南: 《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案,提出了系统化的可信应用框架,并从多方面提供了技术实现建议。 其他相关报告发布在,包括: 《》 《》 《》 《》 大模型入门指南:原文地址为 https://mp.weixin.qq.com/s/9nJ7g2mo7nOv4iGXT_CPNg ,作者为写代码的西瓜。该指南主要介绍作者在搭建大模型过程中学到的知识,以及如何在 macOS 上运行大模型。
2024-10-15
2024大模型人才报告
以下是 2024 年部分大模型相关的人才报告及研究报告: 2024 年 9 月 10 日,《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案,提出了系统化的可信应用框架,并从多方面提供了技术实现建议。 2024 年 1 月 24 日,《》由中国社科院和腾讯研究院发布,通过实验观察到部分社会群体期待大模型有“人情味”。 2024 年 2 月 4 日,更新了多份研究报告文档,如《》等。 此外,还有以下相关报告: 《》 《》 《》 《》 您可以通过以下链接获取更多详细内容: 研究报告板块: 知识星球:
2024-10-08
如何用AI辅助人才招聘
以下是关于如何用 AI 辅助人才招聘的相关信息: 拜登签署的 AI 行政命令: 为确保政府负责任地部署 AI 并现代化联邦 AI 基础设施,总统指示采取以下行动: 1. 为各机构使用 AI 发布指导,包括明确保护权利和安全的标准,改进 AI 采购,并加强 AI 部署。 2. 通过更快速和高效的合同,帮助各机构更快速、更便宜、更有效地获取特定的 AI 产品和服务。 3. 由人事管理办公室、美国数字服务、美国数字军团和总统创新奖学金领导,加速快速招聘 AI 专业人员,作为政府范围内 AI 人才激增的一部分。各机构将为各级相关领域的员工提供 AI 培训。 人工智能在招聘中的潜在风险与应对策略: 潜在风险包括歧视和不安全的决策等。 应对策略包括: 1. 更新人力资源程序,以限制潜在的不同影响。 2. 对人力资源技术提供商进行尽职调查。 3. 修改当前的人力资源隐私声明,以符合国家隐私或 AI 相关法规。 4. 对 AI 的训练数据进行审查,确保其质量并无偏差。 5. 告知申请人有关数据收集和 AI 筛选流程的细节,保障其信息透明度。 6. 提供合理的便利措施,确保残障申请人和其他少数群体不会被排除在外。 7. 定期评估 AI 筛选结果,发现任何潜在的歧视并及时优化。 AI 面试官的相关产品: 1. 用友大易 AI 面试产品:具有强大的技术底座、高度的场景贴合度、招聘全环节集成的解决方案、先进的防作弊技术以及严密的数据安全保障。能帮助企业完成面试,借助人岗匹配模型,自主完成初筛,并对符合企业要求的候选人自动发送面试邀约。 2. 海纳 AI 面试:通过在线方式、无需人为干预完成自动面试、自动评估,精准度高达 98%,面试效率比人工方式提升 5 倍以上。同时候选人体验也得到改善、到面率比之前提升最高达 30%。 3. InterviewAI:在线平台,提供与面试职位相关的问题和由 AI 生成的推荐答案。候选人可以使用设备上的麦克风回答每个问题,每个问题最多回答三次。对于每个答案,候选人将收到评估、建议和得分。 使用这些产品时,企业需要考虑到数据安全性和隐私保护的问题。
2024-10-03
复合型ai人才培养
以下是关于复合型 AI 人才培养的相关内容: 在医疗保健领域,预医学生成为医生需要从化学和生物学基础课程学起,科学家设计新疗法也需经历多年学习和指导,这种方式培养了处理细微差别决策的直觉。开发具有潜在空间层次结构的堆叠 AI 模型,能帮助 AI 模型理解模式和关系,其发展可能最初平行于人类教育范例,之后会专门发展以培养新型专业知识,比如 AI 可能会拥有生物皮层和药物设计皮层等针对特定任务的神经架构。 另外,拜登签署的 AI 行政命令提到,AI 能帮助政府为美国人民提供更好的结果,但使用 AI 可能带来风险。为确保政府负责任地部署 AI 并现代化联邦 AI 基础设施,总统指示采取以下行动:发布机构使用 AI 的指导,包括明确保护权利和安全的标准、改进 AI 采购和加强 AI 部署;通过更快速高效的合同帮助机构更快速、更便宜、更有效地获取特定的 AI 产品和服务;由人事管理办公室、美国数字服务、美国数字军团和总统创新奖学金领导,加速快速招聘 AI 专业人员,作为政府范围内 AI 人才激增的一部分,各机构将为各级相关领域的员工提供 AI 培训。
2024-08-27
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13
一个尽可能完美的AGI时代的多Agents协同工作平台应该具备怎样的能力设计?
一个尽可能完美的 AGI 时代的多 Agents 协同工作平台通常应具备以下能力设计: 1. 融合 RL(强化学习)与 LLM(大型语言模型)思想:在多 Agent 情境下,形成复杂多轮会话及协作行动过程,为系统二进行大规模的过程学习提供路径。同时,LLM 能从 RL 过程中习得新的、足够新颖的策略,例如像 AlphaGO 那样通过自博弈创新策略并快速反馈奖励,最终达成任务目标。 2. 具备多项优势: 适配国内外主流开源及闭源大语言模型,支持多模型混合使用,构建企业级场景服务生态,提供场景化解决方案。 拥有灵活可视化无代码应用构建、TexttoAgent 技术,构建便捷,上手简单,操作高效。 能够即时发布上线,支持发布为网页/小程序/API 等多种形态,快速部署 Agent 应用。 提供企业级安全访问控制,依据 Agent 权限控制数据访问,通信过程加密,防止数据泄露风险。 支持多 Agents 协作,构建知识工作者的人机协作流水线,满足复杂业务场景需求。 3. 允许使用自然语言制定 Agent 及其交互规则,并引入低延时的 Realtime API:即使没有专业编程技能,只要能用清晰的自然语言描述出各个 Agents 具备的行为和功能,就可以快速制作多 Agents 应用或创建代理式工作流。例如在一个简单场景中,可设置接待员和写诗的 Agents 并实现交互。
2025-03-12
最近想要出一本书,书籍的主题是“Deepseek的应用革命:打造AI时代的竞争力”主要是面相企业家和企业高管,希望能够将知识库内容中关于企业应用的部分提炼成书,请根据知识库素材,输出一个图书内容规划和重点参考资料
以下是为您规划的图书内容和重点参考资料: 一、图书内容规划 1. 引言 介绍 AI 时代的背景和企业面临的挑战与机遇。 阐述 DeepSeek 在塑造企业竞争力方面的重要性。 2. DeepSeek 的技术创新 详细介绍 DeepSeek 最新模型 V3 与 R1 的架构创新,如混合专家(MoE)架构、多头潜注意力(MLA)等。 解释其如何提升计算效率和推理能力,打破算力壁垒。 3. 多领域的应用案例 字节跳动的新技术 OmniHuman 在视频生成方面的突破。 Coinbase 全面推动 AI 应用的实践,如在欺诈预防和客户支持等领域的应用。 4. 对企业管理的影响 探讨善于沟通上下文、明晰 AI 能力边界、合理授权并监督等管理经验如何提升 AI 协作效率。 5. 行业趋势与挑战 分析 AI 基础大模型参数量的变化趋势。 讨论初级程序员面临的职业挑战以及编程领域的颠覆性变化。 6. 未来展望 预测 DeepSeek 及相关技术在未来的发展方向和可能的创新。 二、重点参考资料 1. 《》 2. 《》 3. 《》 4. 《》 5. 《》 6. 《[零基础掌握 Deepseek》》 7. 日报 8. 日报
2025-03-08
当前DEEPSEEK发展壮大情况下,个人应具备AI方面什么能力避免被时代淘汰,如何提升这些能力,细化具体可执行的步奏
在 DEEPSEEK 发展壮大的情况下,个人为避免被时代淘汰,应具备以下 AI 方面的能力并通过以下具体可执行的步骤来提升: 1. 善用工具: 历史表明,使用工具的人通常表现更优,人类发展就是工具演化的过程。 不会用 AI 工具自动化重复性任务,可能面临被淘汰,应适应这种转变。 因自动化效率提升,可腾出时间进行高层次思考。 具体步骤:积极学习和掌握 AI 工具的使用方法,将重复性工作交给工具处理,培养利用工具提升效率的习惯。 2. 抽象与整合: “大语言模型”压缩了大量知识,可快速回放,无需直接学习所有知识细节,要在更高层次学习并抽象更多细节。 AI 能使人类更易学习技能或知识,技术进步使“整合”而非专业化成为可能,人们在更高层次工作,为 AI 提供方向并作选择。 具体步骤:锻炼高层次的思维能力,学会从复杂信息中提炼关键要点,不断提升整合能力,将精力集中于制定“策略”,把执行细节交给自动化系统。
2025-02-24
普通人和小企业在大企业垄断的ai时代该如何破局
在大企业垄断的 AI 时代,普通人和小企业可以考虑以下破局方式: 1. 对于普通人: 关注并参与关于在 AGI 降临的世界中个体如何生存、创造价值以及新的分配方式的思考、讨论和争取。 2. 对于小企业: 利用欧盟的相关政策,如监管沙盒等措施降低合规成本,促进科技创新。具体包括制约单方面强加给中小企业和初创企业的不公平合同条款,采取规制格式合同的方式使显著不公平的条款无效,促进监管沙盒广泛而平等的参与,并减免参加费用和提供部署前服务等增值服务,适当降低评估费用或其他合规要求,在处罚规定中考虑中小企业的利益和经济活力,相关准则的制定充分考虑中小企业需求以降低合规负担。 在 AI 产业链中,应用层存在超级机会和巨大发展空间,小企业可以重点思考和布局应用层。但基础设施层入行资源门槛较高,需谨慎入局,可考虑“合作生态”的切入机会;技术层迭代速度快,规模不大的团队须慎重考虑“技术迭代风险”,基础的通用大模型非巨无霸公司不建议考虑。
2025-02-19
怎么学python,以适应AI时代趋势为导向
以下是一些关于以适应 AI 时代趋势为导向学习 Python 的建议: 1. 学习资源: 微信机器人教程,其中介绍了在 Linux 环境安装 Python 以及 Python 虚拟环境的相关知识。 吴恩达的 AI Python 初学者课程,这是一系列四门短期课程,适合任何技术水平的人。 2. 基础知识: 掌握 Python 的安装和编程基础,包括变量、数据类型、控制结构、函数等。 了解 Python 虚拟环境,它是一个独立的 Python 运行空间,用于隔离不同项目的依赖库,避免与系统的 Python 版本形成冲突。 3. 数学和理论基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 了解人工智能、机器学习、深度学习的定义及其之间的关系,以及 AI 的发展历程和重要里程碑。 4. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 神经网络基础:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN),以及常用的激活函数,如 ReLU、Sigmoid、Tanh。 5. 实践和应用: 学会向 AI 提供线索,这对于快速修复问题非常重要。 可以使用 Cursor 的菜单 Open in intergrated Terminal 直接切换到对应目录,也可以使用 cd 命令。 参考 Cursor 提示词网站:https://cursor.directory/,学习和参考其中大量网友实践后上传的提示词。 通过构建 AI 应用程序进行学习,例如编写与大型语言模型交互的代码,以快速创建有趣的应用程序来定制诗歌、编写食谱和管理待办事项列表。 总之,强烈推荐在 AI 时代掌握 Python 这门编程语言,不断学习和实践,以适应时代的发展趋势。
2025-02-17
AI如何助力职业发展
AI 可以从以下几个方面助力职业发展: 1. 职业规划: 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来趋势。 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 职业匹配与推荐:根据兴趣、技能和目标,推荐适合的职业路径和职位,提供个性化建议。 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 2. 成为“超级个体”: 效率提升与技能拓展:个人借助 AI 工具学会新技能,参与跨职能工作,成为“全能型人才”。 专注深耕专业技能:AI 接管浅层、重复工作,让人有更多时间修炼深层次专业技能。 提高绩效与解锁可能性:掌握 AI 辅助技能,不仅提高当下绩效,还为自己创造更多发展机会。 放大个人价值:在效率革命推动下,个人利用 AI 成倍放大时间和精力价值,如个人创业者完成全链条工作,教师扩大授课规模,科研人员产出更多数据等。 3. 技术应用与转型: 企业运营:将 AI 前沿技术应用于企业运营,帮助企业完成数字化转型,优化运营效率。 个人成长:协助个人利用 AI 重构知识体系,实现个人成长,在 AI 时代轻松前行。
2025-03-18
AI发展时间线
AI 的发展有着较长的时间线,以下是其主要历程: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科确立下来。 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,引发全球 AI 浪潮。 2024 年 AI 关键进展时间线: 2 月,OpenAI 发布视频生成模型 Sora,首次实现高质量文本生成视频,开创 AI 视频生成新纪元。 3 月,Suno 发布 V3 版本,AI 音乐生成方向进入生产力可用状态。 4 月,Meta 发布高性能开源大模型 Llama3,降低了 AI 技术的准入门槛。 5 月,GPT4 发布。 5 月,RayBan 与 Meta 合作的智能眼镜销量突破百万。 5 月,字节上线即梦 AI。 6 月,快手发布可灵。 6 月,Apple Intelligence 发布。 9 月,OpenAI 发布 o1 预览版。 10 月,Rosetta 和 AlphaFold 算法的研发者因在蛋白质结构设计和预测中的突破性贡献获得诺贝尔化学奖;约翰·霍普菲尔德和杰弗里·辛顿因人工神经网络和深度学习的开创性贡献获诺贝尔物理学奖;Anthropic 大模型 Claude 3.5 Sonnet 获得“computer use”功能。 12 月,OpenAI 发布 o3 系列模型。 AI 技术发展历程还包括: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点有: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。
2025-03-18
请介绍一下中国AI发展历史
中国 AI 的发展历史可以追溯到二十世纪中叶。 最初,AI 领域的符号推理较为流行,也取得了一些重要进展,如专家系统。但由于从专家提取知识并以计算机可读形式表现和保持知识库准确性的任务复杂且成本高,20 世纪 70 年代出现了“人工智能寒冬”。 对于大众来说,对 AI 领域的使用在近 20 年随着国内互联网的发展才开始普及。最初的应用主要是基于 NLP 技术的聊天机器人和客服机器人。随后,中英文翻译、语音识别、人脸识别等技术取得突破,在日常生活中的应用广泛,如语音助手、智能翻译设备、人脸识别支付系统等。但此前这些技术突破大多限于特定领域,模型应用范围相对狭窄。 近年来,随着计算资源变得更便宜、可用数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。在过去十年中,“人工智能”一词常被用作“神经网络”的同义词。 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT ,引发全球 AI 浪潮。AI 的起源最早可追溯到 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续神经网络奠定基础。1950 年,图灵最早提出图灵测试作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出并确立为一门学科。此后近 70 年,AI 的发展起起落落。
2025-03-18
AI发展大事记与 时间线
以下是 AI 发展的大事记与时间线: 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT。 2024 年 3 月,AI 发展持续升温,潞晨科技发布 OpenSora,Suno 发布 V3 版本爆火。 2024 年 4 月,英伟达发布硬件股价飙升。 2024 年 5 月,苹果发布 AI 芯片,张吕敏发布 IC light,AI 竞争白热化,伊莉雅离开 OpenAI 并成立新公司,估值超五亿美金。 2024 年 7 月,快手开源 LivePortrait 模型,表情迁移。 2024 年 8 月,StabilityAI 老板成立新公司发布 flux 大模型。 2024 年 9 月,阿里云发布模型,海螺 AI 参战,Google 发布 GameGen 实时生成游戏,通义千问 2.5 系列全家桶开源,华为发布 cloud matrix 云计算基础设施,GPT 高级语音模式上线,Meta 发布 AI 眼镜 Orion,AI 代码编辑器 cursor 爆火。 2024 年 10 月,Pika 发布 1.5 模型,诺奖颁发给 AI 奠基人,特斯拉发布机器人,Adobe 发布 Illustrator+Al 生成矢量图,智谱 AI 发布 autoGLM,腾讯混元开源 3D 模型。 在更早的时间: 1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。 1950 年,伟大的计算机先驱图灵最早提出了图灵测试,做为判别机器是否具备智能的标准。 1956 年,在美国一个小镇的达特茅斯学院中,马文·明斯基和约翰·麦凯西拉着香农大佬站台背书,共同发起召开了著名的达特茅斯会议,在这次会议上,人工智能 Artifical Intelligence 一词被正式提出,并做为一门学科被确立下来。 2024 年的其他进展: 2 月,OpenAI 发布视频生成模型 Sora,首次实现高质量文本生成视频,开创 AI 视频生成新纪元。 3 月,Suno 发布 V3 版本,AI 音乐生成方向进入生产力可用状态。 4 月,Meta 发布高性能开源大模型 Llama3,降低了 AI 技术的准入门槛。 5 月,GPT4 发布,RayBan 与 Meta 合作的智能眼镜销量突破百万,字节上线即梦 AI。 6 月,快手发布可灵。 9 月,OpenAI 发布 o1 预览版。 10 月,Rosetta 和 AlphaFold 算法的研发者因在蛋白质结构设计和预测中的突破性贡献获得诺贝尔化学奖,约翰·霍普菲尔德和杰弗里·辛顿因人工神经网络和深度学习的开创性贡献获诺贝尔物理学奖,Anthropic 大模型 Claude 3.5 Sonnet 获得“computer use”功能。 12 月,OpenAI 发布 o3 系列模型。
2025-03-17
ai的发展问题
AI 的发展是一个多方面且不断演进的过程。 从历史角度来看,图灵作为计算机科学和人工智能之父,提出了“图灵测试”来判断机器是否具有智能。如今,像 ChatGPT 这样的产品在与人类交流方面已经取得了令人震惊的进展,虽然学术界对其是否通过图灵测试仍存在争议,但也引发了关于新的判定标准如自主意识的思考。 在未来的发展预测方面,2024 年内,预计会在图片超短视频的精细操控、AI 音频、“全真 AI 颜值网红”、游戏 AI NPC、AI 男/女朋友聊天、实时生成内容、AI Agent、AI 的商业模式、可穿戴全天候 AI 硬件等方面有明确进展。同时,也面临着 AI 造成的 DeepFake、诈骗、网络攻击等问题,以及 AI 立法、伦理讨论落后于技术进展的情况。 到 2025 2027 年,AI 3D 技术、全真 AI 虚拟人、AR/VR 技术有望成熟,人与 AI 配合的工作方式将成为常态,同时也会带来如结构性失业等社会问题。 红杉资本的 Sonya Huang 认为,当前人工智能在各个行业的影响不断扩大,AI 产品越来越契合市场需要,生成式人工智能快速增长,但也存在如“AI 的$200B 问题”等挑战。她预测 2024 年将是真正的 AI 应用从“副驾驶”转变为“代理”的一年,未来人工智能将更有能力完成更高层次的认知任务,计算平衡将从预训练转向推理。但目前人工智能公司的融资环境不均衡,关键挑战在于提高用户保留率和缩小期望与现实之间的差距,产品与市场的契合度也需要进一步提升。
2025-03-17
AI的发展历史
AI 的发展历史如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论等。 2. 知识驱动时期(1970s 1980s):以专家系统、知识表示、自动推理为主要特点。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前 AI 的前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 AI 的起源最早可追溯到 1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科被确立下来。此后近 70 年,AI 的发展起起落落。 最初,符号推理流行,带来了专家系统等重要进展,但因方法局限,20 世纪 70 年代出现“人工智能寒冬”。随着计算资源便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中,“人工智能”一词常被用作“神经网络”的同义词。
2025-03-17