Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

2024大模型人才报告

Answer

以下是 2024 年部分大模型相关的人才报告及研究报告:

  • 2024 年 9 月 10 日,《大模型行业可信应用框架研究报告》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案,提出了系统化的可信应用框架,并从多方面提供了技术实现建议。
  • 2024 年 1 月 24 日,《调教最暖大模型》由中国社科院和腾讯研究院发布,通过实验观察到部分社会群体期待大模型有“人情味”。
  • 2024 年 2 月 4 日,更新了多份研究报告文档,如《IBM:把握 AI 和自动化的机遇-时不我待》等。

此外,还有以下相关报告:

您可以通过以下链接获取更多详细内容:

Content generated by AI large model, please carefully verify (powered by aily)

References

4.4 历史更新

[title]4.4历史更新[heading2]2024年9月[heading3]9月10日《[大模型行业可信应用框架研究报告](https://waytoagi.feishu.cn/record/Z9evrpRl6ezkSwcdOyPcDiffn2d)》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案。报告提出了一个系统化的可信应用框架,强调了专业性、可控性、真实性和安全性四个核心要素,并从数据质量、模型能力、推理过程、系统安全等方面提供了具体的技术实现建议。其它一些报告发布在[研究报告板块](https://waytoagi.feishu.cn/wiki/WvhZwk16WiEnSvk8AcpcdZetnMe)和[知识星球](https://t.zsxq.com/18DnZxlrl):《[InfoQ:中国AI Agent应用研究报告2024](https://waytoagi.feishu.cn/record/Y45LrXJiwe4SgYc5tMZcVVtqn6b)》《[新战略:2024人形机器人产业半年研究报告](https://waytoagi.feishu.cn/record/CMtPrA26ReWXCBcrc6HcHC1ynHo)》《[脉脉:2024大模型人才报告](https://waytoagi.feishu.cn/record/BaV7rrxQneDbSmcGAYCcsyKPnrd)》《[2024人工智能术语研究阶段性成果报告](https://waytoagi.feishu.cn/record/UeYSrwRKsehI4acgKR5cqIfPnvb)》

4.4 历史更新

[title]4.4历史更新[heading2]2024年1月[heading3]1月24日《[调教最暖大模型](https://waytoagi.feishu.cn/record/LQ9VrdYJGeLjrvchmRMcGkClnYf)》是由中国社科院和腾讯研究院发布的非常特别的报告,通过prompt调试并比较国内外大模型“人情味”的小实验,他们观察到,有相当一部分社会群体,除了关注大模型能否提供实用信息,也期待大模型的回答能温暖心灵、提供关怀,通俗来讲,他们期待大模型亦能有“人情味”的涌现,于是同样带着这样的期待,开始设计这场小小的实验。ProductHunt发布了[ProductHunt 2023年度最佳产品榜单](https://waytoagi.feishu.cn/wiki/Hf7DwcWq7i7FJMkRPE1cXrgVnef),不出意料地GPT-4荣登榜首,紧随其后的是Arc浏览器、Notion笔记和谷歌Gemini,每个分类都有详细的榜单,值得一看。

4.4 历史更新

[title]4.4历史更新[heading2]2024年2月[heading3]2月4日更新多份研究报告文档:《[IBM:把握AI和自动化的机遇-时不我待](https://waytoagi.feishu.cn/record/MqlFrCYYzeGEN3crRiIc8q83ncc)》、《[data.ai:2023年AIGC移动市场洞察报告](https://waytoagi.feishu.cn/record/TMbOrgHyWeQQ9McIWCKcKHuxnQb)》、《[大模型安全与伦理研究报告2024:以负责任AI引领大模型创新](https://waytoagi.feishu.cn/record/XexZr7IAbeaf5UcEMi9crC16n9b)》……推荐其中一份《[德勤:自主创新,数智赋能-2023中国高科技高成长50强及明日之星报告](https://waytoagi.feishu.cn/record/ESg1rBy3ce2lI4cILJ4cVMBXn3c)》,其中有大幅篇章提到了中国的AI落地实践:前端基础设施部署及后端应用开发,落地实体经济的场景应用结合AI原生应用的组合布局初见端倪。

Others are asking
明略科技:2024年中国AI Agent行业研究
以下是关于 2024 年中国 AI Agent 行业的相关研究报告: 2024 年 9 月: 《》 《》 2024 年 8 月: 《》深入分析了 AI Agent 的市场定义、发展阶段、核心组件及其在企业用户场景中的应用。 《》指出企业实施 AI Agent 的主要目标是降低运营成本,尤其是在知识库管理、数据分析、营销与客户服务等领域。 2024 年 5 月: 《》提到 AI Agent 市场处于早期阶段,其商业价值在于提升工作均值、实现行业知识库构建、改变工作流程及生产关系。未来,AI Agent 将作为数字生产力,通过与工作流的结合,成为企业知识资产积累与复用的关键角色,推动技术革命。
2025-02-10
告诉我最新的国际ai资讯(比如从2024年有什么ai被发明了,国际上一共有什么大的ai公司,中国的ai发展的怎么样了(deepseek怎么样))
以下是为您整理的最新国际 AI 资讯: 2024 年 2 月 5 日:百度智能云成功点亮昆仑芯三代万卡集群,这是国内首个正式点亮的自研万卡集群。 在 Lex Fridman 的播客中,Dylan Patel 和 Nathan Lambert 深入探讨了中国的 DeepSeek AI 模型,特别是 DeepSeekV3 和 DeepSeekR1。Nathan 强调 DeepSeek 是最开放的模型之一,采用 MIT 许可,鼓励商业用途,推动行业走向开源。 2025 年 AI 语音助手研究显示,语音技术是 AI 应用的关键,企业和用户都将受益。2024 年将是语音助手快速发展的时期,技术不断升级,市场竞争加剧,涌现出多种创业公司。未来,AI 语音将成为服务的“万能钥匙”,应用场景广泛,从医疗到教育,推动行业变革与创新。 2024 年 1 月 17 日:随着预训练技术遭遇瓶颈,GPT5 迟迟未能问世,从业者开始从不同角度寻找突破。以 o1 为标志,大模型正式迈入“PostTraining”时代;开源发展迅猛,Llama 3.1 首次击败闭源模型;中国本土大模型 DeepSeek V3,在 GPT4o 发布仅 7 个月后,用 1/10 算力实现了几乎同等水平。同时,大模型的日渐成熟也让产业重心从基础模型转向应用落地。AI 在编程领域爆发,“数字员工”崛起。 李飞飞在访谈中探讨了 AI Agent 的发展及其未来。她强调 AI Agent 应作为工具和赋能者,而非主导者,确保人们的自主性。李飞飞回顾了 ImageNet 的创立背景,并提到正在推动的“空间智能”概念,旨在理解和融合物理与数字三维世界。她认为,未来这两者的界限将逐渐模糊,从而带来更大变革。
2025-02-08
2024 AI工具排行榜
以下是 2024 年部分 AI 工具的相关信息: 开发者工具: 23 年 12 月至 24 年 3 月的访问量排行榜中,非大厂的 Top1 公司是 Langchain,其 3 月 PV 为 356 万,单 PV 价值为 56.18 美元。 赛道方面,天花板潜力 TAM 为 120 亿美元,总体趋势平稳增长,月平均增速为 82 万 PV/月,原生产品占比高。 竞争方面,Top1 占 19%,Top3 占 54%,马太效应弱,网络效应强,大厂已入局,技术门槛中。 教育工具: 23 年 12 月至 24 年 3 月的访问量排行榜中,非大厂的 Top1 公司是 Quizlet,其 3 月 PV 为 1.3 亿。 赛道方面,天花板潜力 TAM 约为 30 亿,总体趋势快速增长,月平均增速为 1793 万 PV/月,原生产品占比低。 竞争方面,Top1 占 45%,Top3 占 76%,马太效应弱,网络效应弱,大厂未入局,技术门槛中。 此外,在展望 2025 时,AI 行业的创新机会方面,2024 年 9 月 OpenAI 发布了新一代语言模型 o1,业界推测其采用了全新的训练与推理方案,结合强化学习技术,显著增强了推理能力,可能借鉴了下围棋的 AlphaGo Zero 的技术思路。
2025-01-26
2024年视频换脸技术
2024 年视频换脸技术面临一些挑战和发展趋势: 挑战方面: 可控性和一致性存在挑战,如人脸转动中保持观感不变形、多个生成片段保持人物一致性、遵循生成指令等,目前视频生成的体感仍需改进,需要底层模型的进步。 成本较高,生成一段 5 秒视频的成本最低约为 1 元人民币,限制了 C 端玩法和大规模应用。 发展趋势: 原生多模态成为 AI 架构的主流选择,从 OpenAI 的 GPT4V 到 Anthropic 的 Claude3V 和 xAI 的 Grok1.5V 等,行业正从简单的模态叠加向真正的多模态融合迈进。原生多模态模型采用统一的编码器解码器架构,在预训练阶段完成多模态信息的深度融合,提升了模型的理解能力,实现了模态间的无缝转换和互补增强,能够处理更复杂的任务。 自 2023 年末开始,Runway、Pika、Meta、Google 等不断推出视频生成/编辑工具,2024 年是 AI 视频技术逐渐成熟并开始商用的一年,下半年或 2025 年可能会看到 AI3D 技术的突破。抖音的成功证明音频、视频加入泛社交/娱乐产品会带来质的飞跃,AI 陪聊赛道中视频、音频技术的加入也将带来内容生产和社交方式的质变。
2025-01-24
2024大模型典型应用案例集
以下是 2024 大模型的一些典型应用案例及相关信息: 《2024 大模型典型示范应用案例集》汇集了 97 个优秀案例,展示了大模型技术在教育、医疗、金融、政务等多个行业和领域的应用。案例由阿里云、百度、华为等领先企业实施,上海成为应用落地的热点地区,大中型企业是主要试验场。AI 智能体和知识库成为提升大模型落地实效的关键手段。 在智能终端行业,中国超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 整体来看,在主流大模型厂商中,百度表现突出,拿下最关键的中标项目数量、中标金额两项第一。截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%,其增长主要由互联网、教育、金融等行业对模型训练和推理的高需求带动。 企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。 相关报告: 《信达证券:AI 行业设计领域专题报告:Adobe AI 功能覆盖全面,Canva、美图等力争上游》 《中国信通院:大模型基准测试体系研究报告(2024 年)》 《埃森哲:人工智能行业:2024 在生成式人工智能时代重塑工作、劳动力和员工》 此外,还有一些相关活动,如: 2024 年是国内大模型技术加速落地的关键年份,各大厂商如百度、阿里、字节等在 AI 大模型领域展开激烈竞争。百度凭借 40 个中标项目和 2.74 亿元中标金额在行业中处于领先地位。尤其在金融、智能终端等行业,百度文心大模型的应用广泛,表现亮眼。 🏮「非遗贺春」魔多蛇年春节 AI 模型创作大赛,大赛时间 2024 年 12 月 24 日2025 年 1 月 15 日。大赛奖池【¥12000】现金奖励+官方高含金量荣誉证书+会员与算力激励+流量激励。双赛道同时开启,赛道一【春节】+赛道二【爱非遗 AI 传承】。本次活动由浙江省非遗保护中心(浙江省非遗馆)指导×浙江省非遗保护基金会主办×魔多 AI 联合承办,由提供社区传播支持。
2025-01-16
2024年人工智能指数报告 下载
以下是为您提供的 2024 年人工智能指数报告的相关下载信息: 1. 《》由微软和领英联合发布,揭示了人工智能(AI)在工作场所的快速增长和深远影响。 2. 可在知识星球下载的报告: 《》深入分析了 AI Agent 的市场定义、发展阶段、核心组件及其在企业用户场景中的应用。 《》企业实施 AI Agent 的主要目标是降低运营成本,尤其是在知识库管理、数据分析、营销与客户服务等领域。 3. 《》数据处理应从模型为中心转向数据为中心,并强调向量数据库在提升模型服务能力中的核心作用。 4. 斯坦福大学发布的基础模型透明度指数相关报告:在上一届 SOAI 发布后不久,斯坦福大学发布了其首个基础模型透明度指数,模型开发者的平均得分为 37 分。在团队的中期更新中,这一分数攀升至 58 分。2024 年 5 月,该指数的最新一期基于 100 项指标,评估了 14 家领先的基础模型开发者的透明度,这些指标涵盖“上游”因素数据、劳动力、计算、围绕能力和风险的“模型级”因素、围绕分布的“下游”标准以及社会影响。计算和使用政策的评分出现了最强劲的改善,而“上游”评分仍然疲弱。 5. 《2024 年人工智能现状:辉煌、戏谑和“牛市”》报告链接:
2025-01-11
大模型评测
以下是关于大模型评测的相关信息: FlagEval(天秤)大模型评测体系及开放平台: 地址: 简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval:构造中文大模型的知识评估基准: 地址: 简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb:SuperCLUE 琅琊榜 地址: 简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。 此外,还有小七姐对文心一言 4.0、智谱清言、KimiChat 的小样本测评,测评机制包括: 测评目标:测评三家国产大模型,以同组提示词下 ChatGPT 4.0 生成的内容做对标参照。 能力考量:复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次:第一轮是复杂提示词理解和执行,包括 Markdown+英文 title 提示词测试、Markdown+中文 title 提示词测试、中文 title+自然段落提示词测试;第二轮是推理能力(CoT 表现);第三轮是文本生成能力(写作要求执行);第四轮是提示词设计能力(让模型设计提示词);第五轮是长文本归纳总结能力(论文阅读)。 测试大模型质量好坏时,常用的问题包括检索和归纳、推理性、有日期相关历史事件等。以下是几个专业做模型测评的网站:
2025-02-17
ai大模型
AI 大模型是一个复杂但重要的概念。以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因层数多而称深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。
2025-02-17
我是一个ai小白,请给我推荐一个语言大模型的提示词优化工具
以下为您推荐两个语言大模型的提示词优化工具: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言和单个词组输入,中英文均可。 启用提示词优化后可扩展提示词,更生动描述画面内容。 小白用户可点击提示词上方官方预设词组进行生图。 写好提示词需内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 可调整负面提示词,利用“加权重”功能让 AI 明白重点内容,还有翻译、删除所有提示词、会员加速等辅助功能。 2. Prompt Perfect: 能够根据输入的 Prompt 进行优化,并给出优化前后的结果对比。 适合写论文、文章的小伙伴,但使用该能力需要消耗积分(可通过签到、购买获得)。 访问地址:
2025-02-17
开源模型和闭源模型
开源模型和闭源模型的情况如下: 专有模型(闭源模型):如 OpenAI、Google 等公司的模型,需访问其官方网站或平台(如 ChatGPT、Gemini AI Studio)使用。 开源模型: 可使用推理服务提供商(如 Together AI)在线体验和调用。 可使用本地应用程序(如 LM Studio)在个人电脑上运行和部署较小的开源模型。 例如 DeepSeek、Llama 等开源模型。 Qwen 2 开源,具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进性能,超越目前所有开源模型和国内闭源模型,在代码和数学性能等方面显著提高。 金融量化领域的大模型正趋向闭源,几个巨头的核心模型如 OpenAI 最新一代的 GPT4、Google 的 Bard 以及未来的 Gemini 短时间内不会公开。Meta 的 LLaMA 目前开源,但未来可能改变。OpenAI 未来可能开源上一代模型。
2025-02-17
大模型的基本原理
大模型的基本原理如下: 1. 模仿人类大脑结构,表现出人的特征,应对大模型回答不及预期的解决之道与人与人交流沟通的技巧相似。 2. GPT 全称是生成式预训练转换器模型(Generative Pretrained Transformer): 生成式(Generative):大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,从提示词“How”开始,依次推理计算出“are”“you”等,直到计算出下一个词是的概率最大时结束输出。 3. 通俗来讲,大模型通过输入大量语料来让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可类比为上学参加工作: 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:用合适算法讲述“书本”内容,让大模型更好理解 Token 之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后进行推导(infer),如进行翻译、问答等。 4. 在 LLM 中,Token 被视为模型处理和生成的文本单位,可代表单个字符、单词、子单词等,在将输入进行分词时会对其进行数字化,形成词汇表。 5. 相关技术名词及关系: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签自主发现规律,强化学习从反馈里学习。 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可生成多种内容形式,LLM 是大语言模型,生成只是大语言模型的一个处理任务。 6. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,基于自注意力机制处理序列数据,不依赖 RNN 或 CNN。
2025-02-17
千帆大模型开发平台
百度智能云的千帆大模型平台在解决大模型的调用、开发和应用开发方面表现出色。它支持调用文心大模型全系列模型,并提供全面的工具链,支持定制化的模型开发。在应用开发上,通过 AppBuilder 提供企业级 Agent 和企业级 RAG 开发能力,还能将企业应用中产生的数据经过评估和对齐进一步反馈到模型中,形成良性循环,持续优化模型性能。 2024 年上半年,百度智能云在 MaaS 市场和 AI 大模型解决方案市场中均获得第一名,市占率分别为 32.4%和 17%。MaaS 业务主要依托百度智能云千帆大模型平台提供服务,AI 大模型解决方案方面沉淀了八大行业解决方案。在 2024 百度世界大会上,百度智能云千帆大模型平台发布了工作流 Agent 能力,有助于企业更稳定、高效地实现多任务分解和执行。
2025-02-17
《2024大模型人才报告》
以下是与您查询的相关报告: 2024 年 9 月 10 日: 《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案。报告提出了一个系统化的可信应用框架,强调了专业性、可控性、真实性和安全性四个核心要素,并从数据质量、模型能力、推理过程、系统安全等方面提供了具体的技术实现建议。 《》 《》 《》 《》 2024 年 7 月 10 日: 极客邦科技通过《》报告深入探讨 AIGC 技术在企业中的应用,提供实战经验和趋势洞察。这份报告集合了多篇文章和案例,覆盖互联网产品、企业生产、医疗、教育等行业,展现大模型应用潜力。 《》 《》 《》 《》 2024 年 9 月 18 日: 《》探讨了 AI 技术,尤其是大模型技术对劳动力市场的影响。 《》探讨了 AI 技术在营销领域的应用现状和发展趋势。 《》 《》 您可以通过相应的链接获取更详细的内容。
2024-10-29
大模型人才报告
以下是为您提供的大模型相关报告和指南: 《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案,提出了系统化的可信应用框架,并从多方面提供了技术实现建议。 其他相关报告发布在,包括: 《》 《》 《》 《》 大模型入门指南:原文地址为 https://mp.weixin.qq.com/s/9nJ7g2mo7nOv4iGXT_CPNg ,作者为写代码的西瓜。该指南主要介绍作者在搭建大模型过程中学到的知识,以及如何在 macOS 上运行大模型。
2024-10-15
如何用AI辅助人才招聘
以下是关于如何用 AI 辅助人才招聘的相关信息: 拜登签署的 AI 行政命令: 为确保政府负责任地部署 AI 并现代化联邦 AI 基础设施,总统指示采取以下行动: 1. 为各机构使用 AI 发布指导,包括明确保护权利和安全的标准,改进 AI 采购,并加强 AI 部署。 2. 通过更快速和高效的合同,帮助各机构更快速、更便宜、更有效地获取特定的 AI 产品和服务。 3. 由人事管理办公室、美国数字服务、美国数字军团和总统创新奖学金领导,加速快速招聘 AI 专业人员,作为政府范围内 AI 人才激增的一部分。各机构将为各级相关领域的员工提供 AI 培训。 人工智能在招聘中的潜在风险与应对策略: 潜在风险包括歧视和不安全的决策等。 应对策略包括: 1. 更新人力资源程序,以限制潜在的不同影响。 2. 对人力资源技术提供商进行尽职调查。 3. 修改当前的人力资源隐私声明,以符合国家隐私或 AI 相关法规。 4. 对 AI 的训练数据进行审查,确保其质量并无偏差。 5. 告知申请人有关数据收集和 AI 筛选流程的细节,保障其信息透明度。 6. 提供合理的便利措施,确保残障申请人和其他少数群体不会被排除在外。 7. 定期评估 AI 筛选结果,发现任何潜在的歧视并及时优化。 AI 面试官的相关产品: 1. 用友大易 AI 面试产品:具有强大的技术底座、高度的场景贴合度、招聘全环节集成的解决方案、先进的防作弊技术以及严密的数据安全保障。能帮助企业完成面试,借助人岗匹配模型,自主完成初筛,并对符合企业要求的候选人自动发送面试邀约。 2. 海纳 AI 面试:通过在线方式、无需人为干预完成自动面试、自动评估,精准度高达 98%,面试效率比人工方式提升 5 倍以上。同时候选人体验也得到改善、到面率比之前提升最高达 30%。 3. InterviewAI:在线平台,提供与面试职位相关的问题和由 AI 生成的推荐答案。候选人可以使用设备上的麦克风回答每个问题,每个问题最多回答三次。对于每个答案,候选人将收到评估、建议和得分。 使用这些产品时,企业需要考虑到数据安全性和隐私保护的问题。
2024-10-03
复合型ai人才培养
以下是关于复合型 AI 人才培养的相关内容: 在医疗保健领域,预医学生成为医生需要从化学和生物学基础课程学起,科学家设计新疗法也需经历多年学习和指导,这种方式培养了处理细微差别决策的直觉。开发具有潜在空间层次结构的堆叠 AI 模型,能帮助 AI 模型理解模式和关系,其发展可能最初平行于人类教育范例,之后会专门发展以培养新型专业知识,比如 AI 可能会拥有生物皮层和药物设计皮层等针对特定任务的神经架构。 另外,拜登签署的 AI 行政命令提到,AI 能帮助政府为美国人民提供更好的结果,但使用 AI 可能带来风险。为确保政府负责任地部署 AI 并现代化联邦 AI 基础设施,总统指示采取以下行动:发布机构使用 AI 的指导,包括明确保护权利和安全的标准、改进 AI 采购和加强 AI 部署;通过更快速高效的合同帮助机构更快速、更便宜、更有效地获取特定的 AI 产品和服务;由人事管理办公室、美国数字服务、美国数字军团和总统创新奖学金领导,加速快速招聘 AI 专业人员,作为政府范围内 AI 人才激增的一部分,各机构将为各级相关领域的员工提供 AI 培训。
2024-08-27
人才在人工智能发展中的作用
人才在人工智能发展中的作用至关重要。从数据收集到模型部署,人们参与了 AI 开发的各个方面。他们的决策基于他们自己的价值观,因此每个决策点都需要考虑和评估,以确保所有选择从概念到部署和维护都是负责任的。 在企业中建构人工智能,需要不同类型的人才,包括软件工程师、机械学习工程师、机械学习研究员、应用机械学习科学家、数据科学家、数据工程师和 AI 产品经理。这些人才需要相互合作,共同完成人工智能项目的开发和实施。 人工智能的发展也对技术专业人士提出了新的要求。在 AI 时代,技术专业人士需要发展那些 AI 难以替代的技能,包括团队建设、跨文化交流、创新解决方案的设计等。同时,对于那些从事可能面临被 AI 取代风险的工作的技术工作者来说,他们需要重新思考自己的职业生涯规划,学习新技能,或者转向那些更需要人类特质的工作领域。 此外,人工智能的发展还需要解决一些问题,例如偏见和透明度。为了避免复制危险的偏见,需要让专家 AI 接触到顶级从业人员的多样化视角。同时,通过构建系统以深入探索专家 AI 的内部工作机制,我们将创造一个学习的飞轮,最终专家 AI 可能超越领域专家的角色,成为下一代专家——无论是人类还是 AI——的教师。 总之,人才在人工智能发展中扮演着至关重要的角色。他们需要具备不同的技能和知识,相互合作,共同推动人工智能的发展。同时,人工智能的发展也对技术专业人士提出了新的要求,需要他们不断学习和适应,以应对人工智能时代的挑战。
2024-05-07
能对数据表格进行分析,生成分析报告的ai软件
以下是一些能够对数据表格进行分析并生成分析报告的 AI 软件及相关信息: 1. 在撰写专业区域经济报告方面: 信息收集:可利用 AI 搜索与权威网站结合获取关键数据,AI 能辅助提取结构化表格数据或编写抓取程序。 内容拆分:针对报告需求拆分内容,避免 AI 单次处理任务过长。 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。但需注意,AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 2. 在金融服务领域: 生成式 AI 可以帮助金融服务团队从更多的数据源中获取数据,并自动化突出趋势、生成预测和报告的过程。 预测方面:生成式 AI 可以帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析的自动化,还能帮助发现模式,并从更广泛、更复杂的数据集中为预测建议输入。 报告方面:生成式 AI 可以帮助自动创建文本、图表、图形等内容,并根据不同的示例调整此类报告,无需手动将数据和分析整合到外部和内部报告中。 会计和税务方面:生成式 AI 可以帮助综合、总结,并就税法和潜在的扣除项提出可能的答案。 采购和应付账款方面:生成式 AI 可以帮助自动生成和调整合同、采购订单和发票以及提醒。 3. 在法律风险方面: 以菲林诉百度网讯案为例,北京互联网法院认为计算机软件智能生成的报告不构成著作权法意义上的作品,不受著作权法的保护。但该分析报告仍具备传播价值,被认定为“法人作品”。软件开发者(所有者)可通过收取软件使用费用等方式获得利益,软件使用者不能以作者的身份在分析报告上署名,但可以采用合理方式表明其享有相关权益。
2025-02-14
如何设计报告总结提示词
以下是关于设计报告总结提示词的相关内容: 一、学术场景数据处理 (一)论文内容总结 大模型结合有效的提示词可迅速总结概括文档,节省时间。例如 GLM4Plus 结合良好的提示词能帮助学生快速总结论文内容,提高梳理效率。 (二)论文内容翻译 大模型能弥补翻译软件的不足,帮助学生更好地理解原文。GLM 结合良好的提示词能够快速翻译论文内容,提高阅读效率。 (三)论文内容扩写润色 将论文内容转化为社交媒体的科普内容时,精心设计的润色提示词可根据特定场景调整,生成多样化润色结果。如针对小红书的使用场景,调整提示词以匹配其口语化、轻松愉快的氛围。 二、卓 sir:2 小时帮同学干完了 3 篇调研报告 实现思路: 1. 确定调研报告的大纲目录,可通过手机识别老师发的示例报告目录截图。 2. 确定整体的语言风格和特色,如“逻辑清晰,层层递进,条理分明”,可让 Claude 2 总结范文的语言风格。 3. 让 GPT4 按照目录逐步生成章节内容,设置循环结构,在生成一段章节内容后,经同意再进行下一章节,对于需要调用 webpolit 插件查询信息的章节打上标签,让 GPT4 自主搜索信息后生成内容。 三、年底了,惊艳一次,用 Claude Artifacts 生成年终总结 制作过程与思考: 1. 设计灵感来源于一泽火出圈的社交名片和年底做年终总结的需求。 2. 提示词可 DIY 美化和润色,Claude 能给出迭代建议,但需具备基本美感,平时可参考设计网站。 3. 年终总结框架由基本信息、核心成果、相关展示、复盘总结、规划展望五个模块构成。 4. 提示词在 Claude 里一遍生成,但模型不稳定,不理想时可明确指出让其修改调试。
2025-02-13
能帮我写一份deepseek的洞察分析报告吗
以下是关于 DeepSeek 的洞察分析报告: 一、用户体验 用户 May 第一次使用 DeepSeek 后,有以下感受: 1. 深度思考过程展示:将如何写白皮书的思考过程全程展示,与习惯的 ChatGPT 黑盒子模式不同,这种坦白的方式体验良好。 2. 回答的白皮内容和排版: 有引用链接:答案的每一句话都标注了引用的网站,方便用户判断出处的严谨性。 有参考文献:直接在文末列出参考的白皮书,为用户查找相关资料提供便利。 回答内容质量:质量不错,没有明显的 AI 痕迹。 二、华尔街分析师的反应 DeepSeek 展示出媲美领先 AI 产品性能的模型,成本仅为一小部分,并在全球主要市场的 App Store 登顶。但也有不同观点,Jefferies 警告其技术可能打破资本开支狂热,Citi 对其技术突破提出质疑,高盛预测其可能改变科技巨头与初创公司的竞争格局,降低 AI 行业进入门槛。 三、实际使用表现 1. 文字能力:在中文场景中高度符合日常和写作习惯,但在专业论文总结方面稍弱。 2. 数学能力:经过优化,表现不错。 3. 编程能力:略逊于 GPT,据用户反馈。 4. 技术创新:采用 GRPO 算法替代传统 PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。 四、相关动态 复旦大学 OpenMOSS 发布实时语音交互模型。
2025-02-01
查看deepseek v3 技术报告
以下是关于 DeepSeek V3 的相关信息: Andrej Kaparthy 赞扬 Deepseek 的技术报告值得一读。 很多中国人将 DeepSeekV3 视作“国货之光”,它对高性能算力的依赖小,将训练和推理当作一个系统,给出诸多新的技术思路,注重用工程思维高效解决算法和技术问题。 DeepSeek 的创始人梁文锋出生于 1980 年代,来自广东省的一个五线城市,毕业于浙江大学,主修软件工程,本硕,人工智能方向,非常低调。 阅读 DeepSeek V3 的技术报告列出的研发人员名单近 200 人,均为本土 CS,很多核心是清北及大学应届的 CS 硕博,即便核心人员也是毕业 3 5 年 CS 博士,研发人员充分信任不断自我选择,这是中国最像 OpenAI 研发组织分工和氛围的 AI 研究机构。 您可以通过以下链接获取相关技术报告:
2025-01-31
你这里有AI报告的合集吗
以下是为您提供的部分 AI 报告合集: 2024 年 5 月 9 日: 《》 《》 《》 《》 《》 2023 年 11 月 15 日: 《》 《》 《》 2024 年 12 月 23 日: 《 Fastdata 极数:《》 《》 清华大学五道口金融学院:《》 国盛证券:《》 托尼·布莱尔全球变化研究所:《》 腾讯云:《》 您可以在以下链接查看更多详细内容:
2025-01-22
我需要一个能帮助写年终报告的AI
以下是一些关于利用 AI 帮助写年终报告的信息: 在金融服务业中,生成式 AI 能够帮助金融服务团队改进内部流程,简化财务团队的日常工作。它可以从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。例如,在预测方面,能帮助编写公式和查询,发现模式并为预测建议输入;在报告方面,能自动创建文本、图表等内容,并根据不同示例调整报告。此外,在会计和税务、采购和应付账款方面也能提供帮助,如综合总结税法和潜在扣除项,自动生成和调整合同等。 安迪分享了一个实战案例,通过将过去写的文章发给 AI 总结写作特点,编写提示词来克隆自己的写作风格,从而让 AI 代替自己写“手写信”,大大提高了效率。 对于个人博客,在接触 AI 之前输出困难,而 AI 提供了不同的思路和视角,让写作变得可执行可操作。当 AI 能在几分钟内生成详细报告时,能节省大量时间和精力。但在与 AI 合作中也会面临一些问题,如如何掌控 AI 使其成为得力助手,如何应对超出理解范围的解决方案等。
2025-01-22