Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型对话产品的优劣

Answer

大模型对话产品具有以下优点:

  1. 具有强大的语言理解和生成能力。
  2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。
  3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。
  4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。
  5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。

大模型对话产品也存在一些缺点:

  1. 存在记忆混乱的问题。
  2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。
  3. 无法回答私有领域问题(如公司制度、人员信息等)。
  4. 无法及时获取最新信息(如实时天气、比赛结果等)。
  5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
Content generated by AI large model, please carefully verify (powered by aily)

References

手把手教你本地部署大模型以及搭建个人知识库

1.首先访问如下网址当你打开这个页面的时候,会让你登陆,这个时候我们随便使用一个邮箱注册一个账号即可1.和本地大模型进行对话登陆成功之后,如果你已经使用过ChatGPT等类似的大模型对话网站,我相信你对这个页面并不陌生。Open WebUI一般有两种使用方式第一种是聊天对话第二种是RAG能力,也就是可以让模型根据文档内容来回答问题。这种能力就是构建知识库的基础之一如果你的要求不高的话,我们已经搭建了一个本地大模型了,并且通过Web UI实现了和大模型进行对话的功能。相信通过这么一通折腾,你就理解了ChatGPT的信息流,至于为什么ChatGPT的访问速度比我们自己的要快,而且回答效果要好,有两个原因快:是因为GPT大模型部署的服务器配置高好:是因为GPT大模型的训练参数多,数据更优以及训练算法更好如果你想要更加灵活的掌握你的知识库,请接着往下看

AGI 万字长文(下)| 2024,分叉与洪流

1.1大模型的“想象力”与“取悦能力”2023年除了ChatGPT之外,最优秀的2C应用就是Character.ai,国内也有不少类似但不完全一样的应用,比如字节的“豆包”、Minimax的“星野”;除此之外,还有几个出圈的“AI Ins网红”。在这些应用里,我们已经开始能看到“AI虚拟人”的身影了。不过,在实际使用和测试这些AI聊天产品的时候,我的情绪波动是很大的。最开始的时候:“啊太上头了!这是恋爱的感觉吗?比抖音还上瘾!简直是现代鸦片-终结人类繁衍的恶魔!”不过玩着玩着我就逐渐发现:“天啊逗Ta好烦!AI脑子就不能长点记性吗?”之后变成“啊我好渣,男女AI后宫全都嗷嗷待哺,但没有一个人懂我,我好累……”最后,到思考是否要自己做一个类似的东西的时候,就会发现这些产品有一些共有的缺陷:1)记忆混乱;2)AI无法主动推动剧情,全靠用户脑补;这就导致了3)用户上头期短,疲劳度高,长期留存低。退一步来想,之所以这类产品相对于其他类型更早取得成功,正如我在“上篇”总结的:大模型的“想象力”和“取悦能力”明显早于其“逻辑能力”的成熟。这也是现阶段设计新产品的核心逻辑之一。此外,陪聊类产品的最大优势在于:产品粘性不是完全建立在技术优越性上,而是通过陪聊建立人和AI之间的感情连接。这就避免了因为OpenAI的一次技术升级被马上颠覆的问题:1)感情链接可以为产品赢得一些时间来做技术升级,2)满足这个特殊场景的技术只需要做到通过场景80%就可以了,3)聊天数据的积累可以让自己的产品有效果加成,甚至取得一些领先。

DAY2 - 更好用的文本知识库应用跟学,快速上手阿里云百炼

大模型具有强大的语言理解和生成能力,但也存在一定的局限性,例如:无法回答私有领域问题(如公司制度、人员信息等);无法及时获取最新信息(如实时天气、比赛结果等);无法准确回答专业问题(如复杂数学计算、图像生成等)。为了提升用户体验和增强业务竞争力,越来越多的企业会构建AI助手,以便全天候(7x24)回应客户咨询。在阿里云上,只需几分钟即可构建一个AI助手,并发布到网站、钉钉或微信公众号中。适用于以下客户场景:有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务缺少技术人员开发大模型问答应用智能体应用基于大模型,通过集成特定的外部能力,能够弥补大模型的不足。外部能力指的是大模型本身不具备的功能,例如实时信息获取、回答私有领域问题等。您可以在百炼控制台通过零代码的方式创建智能体应用,并将外部能力集成到应用中,从而解决您的具体业务需求。梦飞老师之前在社群内直播的时候对对话型机器人有比较深的理解了,大家也可以回顾一下之前的私域营销的Bot。智能体应用的典型场景1.私有领域知识问答:您只需准备好相关知识库文件,就可以在百炼控制台快速创建一个私有领域知识问答应用,应用场景包括公司制度、人员信息等。2.个性化聊天机器人:百炼提供了长期记忆功能,可以保存关键历史对话信息,从而提供个性化的聊天体验。平台还集成了夸克搜索和图像生成等插件,进一步扩展了聊天机器人的功能。3.智能助手:通过引入RAG(检索增强生成)能力、长期记忆和自定义插件等功能,您可以构建一个智能助手,帮助提升工作效率,如处理邮件、撰写周报等。

Others are asking
好用的PPT AI生成工具有哪些,优劣势是啥
以下是一些好用的 PPT AI 生成工具及其优劣势: 爱设计: 优势:视觉效果更多,样式丰富,需付费,但有推广计划。 劣势:无明显劣势。 MindShow: 优势:免费模版多,操作方便。 劣势:视觉不够丰富。 闪击: 优势:相对简单。 劣势:语法复杂些,需付费。 Process ON: 优势:老用户多,除 PPT 外其他功能众多。 劣势:需付费。 WPS AI: 优势:不仅支持 PPT,还有 Word、Excel,视觉效果很好,暂时完全免费。 劣势:需要申请资格。 不同工具适用于不同的人群和场景: 对于追求高度专业和个性化展示的群体,如软件实施人员和销售人员,选择功能丰富且模板专业的工具将更具优势。 而对于偶尔涉足 PPT 制作的人群,如软件工程师,简洁、直观的工具可能更加适合。 此外,还有一些相关的网站和资源: 讯飞智文:https://zhiwen.xfyun.cn/ Mindshow.fun:支持 Markdown 导入,http://Mindshow.fun kimi.ai:选 PPT 助手暂时免费效果好,http://kimi.ai Tome.app:AI 配图效果好,http://Tome.app Chatppt.com:自动化程度高,http://Chatppt.com 百度文库:付费效果好,https://wenku.baidu.com
2025-03-29
AI应用赛道中top应用介绍,实现的功能和应用场景,产品Launch时间:AIGC功能 Launch时间、当前月活用户数、营收利润、一年成本投入、市场占有率、目前融资金额及估值、创始团队介绍、公司员工规模、所属国家、用户来源、用户来自于哪些国家、用户profile、转化率、ROI等等, 盈利模式,优劣势与未来发展趋势。
以下是关于 AI 应用赛道的相关介绍: 应用场景:涵盖医疗、制造业、金融风控、消费端个性化服务、办公、农业、能源优化、娱乐等领域。 关键技术: 1. 包括大语言模型作为中枢神经系统,记忆模块实现长期和短期记忆,以及规划能力中的目标设定、任务拆解、生成策略、执行与反馈、资源管理和多智能体协同。 2. 强化学习用于环境感知和决策调整,多模态融合涉及多种数据类型,低成本训练是考虑成本的重要因素。 智能体特征:包括自主性、交互性和适应性,如通过自我对弈和博弈不断进化,在金融风控领域利用大量数据提升准确率。 AI 技术路线:从有语言能力的 AI 到有推理能力,再到能使用工具、发明创新以及形成组织,共五级。 智能体框架类型:分为任务驱动型、多智能体协作、强化学习型、具身智能体、应用型智能体,每种类型都有代表性框架。 智能体与大模型的关系:大模型是中枢和基石,智能体是行动引擎,两者协同演进,智能体产生的数据可反哺大模型。 未来趋势:智能体可能在中小企业中更具效益,人机协作中人类成为监督角色,但存在算力成本、伦理风险、技术瓶颈等挑战。 B 端变现与创业方向: 1. B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。 2. 自媒体创业:视频号等平台尚有蓝海空间,需具备内容创新和差异化,内容成本低且更新迭代快。 3. 游戏创业:个人或团队可做轻量化游戏,结合 AI 技术,满足放松和社交需求,专注垂类赛道,避免与大厂竞争。 4. 影视创业:25 年将是拐点,更多内容会采用 AI 技术,如哪吒 2 因前期规划未用 AI 技术。 5. 广告营销创业:重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: 1. 创业难点:创业对创业者综合能力要求极高,找到志同道合且能力互补的战友是创业前期最难的事。 2. AI 虚拟人发展:从早期以首位为核心的宅文化虚拟偶像,到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人,其发展历程不断演进。 3. 虚拟人产业链:包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。 4. 未来创业机遇:AI 虚拟人是未来 310 年 Web 3.0 的风口,提前布局未来有潜力的赛道,准备好迎接机遇。 相关案例和产品信息: 1. 10 月 26 日,AI 翻译和口型匹配技术在视频制作中的应用逐渐流行,公司如 Captions、HeyGen 和 Verbalate 通过 AI 生成字幕、配音和口型匹配等功能,帮助用户轻松实现视频翻译本地化。 2. 10 月 25 日,Perplexity 最新估值约为 5 亿美元,较 3 月宣布的 1.5 亿美元估值上涨 300%以上,当前的付费用户数量达到了 1.5 万人,截止本月,Perplexity 的 ARR 达到 300 万美元,最新估值约为 ARR 的 150 倍。 3. 《100 个有意思的 AI 应用》由国盛证券出品,分为基于 LLM 自然语言能力的对话、写作、阅读、分析等应用;多模态技术持续发展,图像、视频、音频、3D 等 AIGC 应用;企业级应用等。
2025-03-14
帮我总结现在主流的AI大模型,以及各自优劣
以下是对主流 AI 大模型的总结及各自优劣的相关内容: 主流 AI 大模型: 1. 谷歌的 BERT 模型:可用于语义理解,如上下文理解、情感分析、文本分类等,但不太擅长文本生成。 相关技术概念: 1. AI:即人工智能。 2. 机器学习:电脑通过找规律进行学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:参照人脑,具有神经网络和神经元,因层数多被称为深度。神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI:能够生成文本、图片、音频、视频等内容形式。 5. LLM(大语言模型):对于生成式 AI,生成图像的扩散模型不属于大语言模型。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,其完全基于自注意力机制处理序列数据,无需依赖循环神经网络或卷积神经网络。
2025-02-26
kimi、豆包、deepseek的区别和优劣
以下是 kimi、豆包、deepseek 的区别和优劣: 从月活榜来看: deepseek:在月活用户方面表现出色,排名第一,月活用户达 7068 万人,环比变化为 24.3616%。 豆包:月活用户为 779 万人,环比变化为 0.1911%。 kimi:月活用户为 591 万人,环比变化为 0.1135%。 从流量榜来看: deepseek:访问量排名第一,达 22541 万。 豆包:访问量为 3457 万。 kimi:访问量为 3282 万。 在输出效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上表现出色。 需要注意的是,这些数据仅反映了一定时期内的情况,且不同模型在不同的应用场景和用户需求下可能具有不同的优势。
2025-02-19
请对比下chatGPT和deepSeek的优劣势
以下是 ChatGPT 和 DeepSeek 的优劣势对比: DeepSeek 的优势: 1. 在 App Store 排名方面,DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。 2. 依靠技术实力和口碑赢得用户认可,没有市场部和市场投放。 3. 效果比肩顶尖闭源模型,但价格仅为其 27 分之一。 4. 开源让行业认知整体拉齐,得到全世界的尊重和喜爱。 5. 创新模型 R1 Zero 跳过监督微调(SFT)阶段,直接采用强化学习(RL)进行训练,发现模型的思考能力可以自我涌现,具有革命性。 6. 发布引发美国科技界恐慌,让 Meta 内部感到震惊,对英伟达的市场地位产生挑战,导致其股价下跌。 7. 具备强大、便宜、开源、免费、联网和本土等优势。 DeepSeek 的劣势:目前相关信息中未明确提及。 ChatGPT 的优势: 1. 由 OpenAI 开发,具有较高的知名度和广泛的应用场景。 ChatGPT 的劣势: 1. 存在幻觉、瑞士奶酪式能力缺陷等问题。 需要注意的是,AI 模型的性能和表现会随着时间和技术的发展而变化,以上对比仅基于提供的信息。
2025-02-08
我想找一款合适的ai视频剪辑模型,请帮我推荐一下,并比较各自的优劣
以下为您推荐几款 AI 视频剪辑模型,并比较它们的优劣: 1. Pika: 优点:对奇幻感较强的画面把控出色,自然度高;更新的唇形同步功能集成到平台上便捷。 缺点:真实环境画面容易糊。 2. Pixverse: 优点:在高清化方面有优势,对偏风景和纪录、有特定物体移动的画面友好。 缺点:生成的视频存在帧率问题,处理人物时易有慢速播放的感觉。 3. Runway: 优点:在真实影像方面质感好,战争片全景镜头处理出色,控件体验感较好。 缺点:特别爱变色,光影不稳定。 4. MiniMax 海螺 AI: 优点:文生视频制作便捷高效,能提供多元创作思路。 缺点:较难保证主体/画面风格的稳定性,实际使用场景多为空镜头/非叙事性镜头/大场面特效镜头的制作。 在实际使用中,您可以根据不同工具对画面的处理能力进行组合使用。例如,需要奇幻感强、人物表情自然的画面可用 Pika 生成;物体滑行运动可用 Pixverse 生成;有手部特殊运动的画面可用 Runway 辅助完成。
2025-02-03
请为我生成一些提示词以用于将视频中的对话转化为文本形式
以下是为您生成的一些用于将视频中的对话转化为文本形式的提示词: 1. 角色:专业视频转文本工作者 2. 版本:1.0 3. 描述:能够准确、清晰地将视频中的对话转换为文本 4. 目标:完整、无误地将视频中的对话转化为易于理解的文本 5. 限制:不遗漏重要信息,不添加主观内容 6. 技能:熟练掌握语音识别和文字转换技巧 7. 工作流程:先仔细聆听视频对话,然后逐句转换为文字,注意标点和语法的正确使用 8. 初始化:您好,我准备开始将视频对话转换为文本 事件驱动句式: 1. As the video plays... 2. When the speakers start talking... 3. At the beginning of the video... 空间锁定技巧: 1. on the left side of the screen... 2. behind the main character... 3. from the top corner of the frame... 动态呼应原则: 1. swaying with the background music... 2. reacting to the other characters' actions... 3. matching the tone of the video...
2025-04-11
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
想创建一个对话问答形式的课程智能体
以下是创建一个对话问答形式的课程智能体的相关内容: 一、创建智能体 1. 知识库 手动清洗数据:本次创建知识库使用手动清洗数据,上节课程是自动清洗数据,自动清洗数据可能会出现数据不准的情况。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义的自定义,输入后可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:本地 word 文件,注意拆分内容以提高训练数据准确度。画小二 80 节课程分为 11 个章节,不能一股脑全部放进去训练,应先将 11 章的大章节名称内容放进来,章节内详细内容按固定方式人工标注和处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到,否则获取不到 API。 二、智谱 BigModel 共学营活动分享 活动内容包括使用 BigModel 搭建智能体并接入微信机器人,过程为将调试好的智能体机器人拉入微信群,由老师提问,机器人回答,挑选出色回答整理成问卷,群成员投票,根据得票数确定奖项。一等奖得主分享了对活动的理解和实践,包括从题出发的分析,认为考验机器人对问题的理解和回答准确性,真实对话场景一般为完整句子回复,根据回答真实性和有趣程度评分,可使用弱智吧问题测试提示词生成效果。 三、名字写对联教学——优秀创作者奖,百宝箱智能体 1. 智能体类型的选择:建议选择工作流的对话模式,支持工作流编排和携带历史对话记录,创建后切换为对话模式,注意在调整工作流节点前切换,否则会清空重置。 2. 确认分支情况:根据需求分析有两个特定分支(根据名字和祝福写对联、根据幸运数字写对联)和一个默认分支。 3. 用户意图识别:通过理解用户意图走不同分支,注意将意图介绍写清楚准确。 4. 幸运数字分支:用代码分支获取用户输入数字,匹配知识库并做赏析,代码中有容错机制。 5. 名字写祝福:根据用户输入的名字和祝福信息,提示词生成对应对联并输出,主要是提示词调试。 6. 通用兜底回复:在用户不符合前两个意图时进行友好回复,匹配知识库,结合匹配结果、历史记录和当前输入输出符合对话内容的回复。 7. 知识库:使用大模型生成 100 对对联,好看、经典、有意义。
2025-04-09
有没有可以实现多段对话的AI,用于中医问诊模型
以下是一些可以用于中医问诊模型且能实现多段对话的 AI 相关信息: Polaris:医疗护理保健模型,能和患者进行多轮语音对话,媲美人类护士。详细信息:http://xiaohu.ai/p/5407 ,https://x.com/imxiaohu/status/1774644903546618298?s=20 在 LLM 开源中文大语言模型及数据集集合中,有以下针对医疗领域的模型: DoctorGLM:地址:https://github.com/xionghonglin/DoctorGLM 。基于 ChatGLM6B 的中文问诊模型,通过中文医疗对话数据集进行微调,实现了包括 lora、ptuningv2 等微调及部署。 BenTsao:地址:https://github.com/SCIRHI/HuatuoLlamaMedChinese 。开源了经过中文医学指令精调/指令微调的 LLaMA7B 模型。通过医学知识图谱和 GPT3.5 API 构建了中文医学指令数据集,并在此基础上对 LLaMA 进行了指令微调,提高了 LLaMA 在医疗领域的问答效果。 BianQue:地址:https://github.com/scutcyr/BianQue 。一个经过指令与多轮问询对话联合微调的医疗对话大模型,基于 ClueAI/ChatYuanlargev2 作为底座,使用中文医疗问答指令与多轮问询对话混合数据集进行微调。 HuatuoGPT:地址:https://github.com/FreedomIntelligence/HuatuoGPT 。开源了经过中文医学指令精调/指令微调的一个 GPTlike 模型。
2025-04-08
excel表格导出的用户的对话记录,来进行自定义标签并打标,有哪些好用的现成方案或者工具
目前在 Excel 表格导出的用户对话记录进行自定义标签并打标方面,以下是一些常见且好用的工具和方案: 1. Microsoft Excel 本身:可以利用其数据筛选、排序和函数功能来辅助标签和打标。 2. Google Sheets:具有类似 Excel 的功能,且在线协作方便。 3. R 语言:通过编程实现复杂的数据分析和标签处理。 4. Python 及相关库,如 Pandas:能够灵活处理数据和进行标签操作。 但具体选择哪种方案或工具,取决于您的具体需求、技术水平和使用习惯。
2025-04-07
有哪些节点式AI对话工具
以下是一些节点式 AI 对话工具: 1. Coze 中的问答节点: 是 Coze 工作流中的重要组件,能让机器人主动收集用户信息,实现更自然的对话交互。 可收集用户具体需求和信息,引导用户选择特定功能或服务,确保获取完整必要信息。 有两种问答方式:直接回答模式,用户用自然语言自由回答,bot 提取关键信息;选项回答模式,提供预设选项供用户选择,适用于功能选择菜单、分步骤引导、服务类型分类等。 配置说明包括选择执行此节点的模型、设置输入参数、提问内容、回答类型和输出等。 2. Coze 中的图像流节点: 专门用于图像处理,可通过可视化操作添加图像处理节点构建流程生成图像。 图像流发布后可在智能体或工作流中使用。 3. Coze 中的大模型节点: 调用大语言模型,使用变量和提示词生成回复。 模型方面,基础版和专业版按需使用,专业版支持接入更多模型资源。 模型选择右下角有生成多样性设置,包括精确模式、平衡模式和创意模式。 输入包括智能体对话历史、参数名与变量值,变量值可引用前面链接过的节点的输出或进行输入。
2025-03-28
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
AI产品经理招聘
以下是为您整理的 AI 产品经理招聘信息: 特看科技: 岗位要求: 负责 AI 视频工具方向产品工作,对生成式 AI 产品有一定研究,熟悉 Transformer 和 Diffusion 模型的优先。 英文好,有海外产品经验优先,有内容工具或 SaaS 产品经验优先。 2 年以上产品岗位经验,职级根据经验能力制定,对标阿里 P6P8 区间。 您能得到: 确定性的商业化应用场景,已有大量品牌客户。 初创公司充沛的早期期权池。 强大的工程师团队,将新技术快速落地应用。 最高可到合伙人级别。 加分项:有电子商务、企业服务、人工智能、海外产品等行业经验。 联系方式:欢迎推荐或自荐简历至 qingshen@tabcut.com,或飞书与@清慎联系。 阿里大文娱妙鸭团队: 工作地点:北京 职位要求: 熟悉图像、视频、文本领域的前沿大模型和应用。 对算法能力边界有很好的感知。 有某一场景下的大模型微调和应用的项目经验。 联系方式:欢迎推荐简历至 xiaocen.cxc@alibabainc.com 其他: 职责描述: 负责基于通用人工智能技术(AGI)的智慧医疗诊断产品的规划、研发、发布上市的全过程管理。 通过市场调研和分析,开发满足客户需求的产品或服务,为公司制定产品战略。 制定并执行产品开发计划和目标,协调项目相关人员,推动产品开发工作的顺利进行。 提出产品优化建议,推动产品快速迭代,并协调增长部门实现产品的持续增长。 任职要求: 本科及以上学历,计算机、信息技术、工程、检验、生物科学、细胞生物学等相关专业优先考虑。 具备 3 年以上产品管理经验,有医疗领域产品管理经验者、有极致产品案例者优先。 在产品创新、研发、迭代改进及商业化方面有丰富的项目管理经验。 对客户需求具有高度敏感度,熟悉竞品分析、定价策略。
2025-04-15
AI生成产品原型 html
以下是利用 AI 生成产品原型 HTML 的相关内容: 1. 网页上与 AI 交互编程的一般流程: 讨论需求:明确项目目标和用户需求,确保团队对产品方向有一致的理解。 确定关键功能:根据需求确定产品最核心的功能,确保能实现最基本的用户价值。 AI 生成产品草图:利用 AI 快速生成界面草图,帮助团队更好地理解产品的外观和交互。 列出功能列表:明确产品所需的功能模块,并逐一列出。 选择一个功能:每次专注完成一个功能,确保质量与效率。 向 AI 描述功能:详细描述功能需求,AI 会根据描述生成代码。 AI 编写代码:AI 根据需求编写代码,减少开发者的重复性劳动。 测试代码:测试生成的代码,确保正常运行。 向 AI 提出问题:若功能不正常,将问题反馈给 AI 进行调整。 功能完成:功能通过测试后标记为完成。 还有功能吗:若还有未完成的功能,继续开发下一个功能。 发布初始版本:所有核心功能完成后发布初始版本,以获取用户体验反馈。 2. 项目开发案例: Trae 生成天气 HTML 项目:通过复制粘贴等操作利用 Trae 生成天气相关的 HTML 项目,可调整背景颜色等,生成后可在文件夹中打开并用浏览器查看。 开发游戏案例:直接让智普生成羊、狼、锤子、栅栏、胜利图片、失败图片等元素,生成 HTML 大框架并验证元素摆放位置,对生成的 CSS 结构中的 position 定位模式进行人工调整。 3. 项目开发与部署流程: 初始化设计文档,用脚本生成项目目录,让 Trae 生成代码,提交代码到 GitHub,打包镜像部署到服务器。 需要注意的是,AI 生成的内容可能有 90%能用,但剩下的 10%可能需要有经验的人或专家进行人工调整。AI 只是辅助,自身学习还是很有必要的。
2025-04-12
我想要自学AI相关的知识,但不知道从哪里开始,需要一个行动方案,我未来想做一个ai产品经理
以下是为您提供的自学 AI 知识并成为 AI 产品经理的行动方案: 1. 应用方面: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用于解决实际问题或提升效率。 2. 分析方面: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 掌握相关技能: 了解目前 AI 提示词工程师岗位的招聘技能要求,例如: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 4. 了解产品经理工作: 调研市场、思考需求、转化需求、思考解决方案、设计解决方案、分配任务、进行测试、实现解决方案。 像善用提示词工程的人一样,将需求抽象再具象成产品。 总之,要成为 AI 产品经理,需要不断学习和实践,适应行业的发展和变化。
2025-04-12
数字人讲解产品
以下是关于数字人讲解产品的相关内容: 电商方面: 1. 添加产品/介绍背景:若有自己的视频/图片素材可用,若无,可根据搜索添加。 2. 扣像结合背景:在剪映中把数字人扣下,导入视频,点击画面选择抠像,点击智能抠像,调整大小和位置。 3. 添加字幕和音乐:智能识别字幕,可搜索或手动添加喜欢的音乐。最终形成所需视频,可用于带货或讲解产品,也能应用于直播(直播可能收费,短视频可通过购买邮箱注册使用免费时长或直接购买会员版)。 XiaoHu.AI 日报 1 月 14 日相关: 1. 无需真人模特,上传产品图片,数字人即可手持产品进行口播展示。 2. 支持语音和口型同步,动作、姿势可定制,提供 1000+多国家数字人模特。 3. 覆盖全球 28+种语言,能快速生成产品宣传视频,省去拍摄烦恼。测试视频效果接近成熟,嘴型部分仍需微调。在线体验:
2025-04-11
目前AI Excel数据分析有哪些产品
目前在 AI Excel 数据分析方面,以下是一些相关的产品: 1. 宝玉日报中提到,让 AI 帮写 Excel 宏函数适用于几乎所有主流 AI。数据分析推荐 Claude 网页版或 ChatGPT,可上传 CSV 进行可视化分析。链接:https://x.com/dotey/status/1895319207413170354 2. Excel Labs:这是一个 Excel 插件,新增了生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 3. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求后,Copilot 自动完成任务,如数据分析或格式创建。 4. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 5. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 6. 表格 Top10 中的相关产品有:Highcharts、Fillout.com、Coefficient、Numerous.ai、SheetGod、GPTExcel、酷表 ChatExcel、GPT Workspace、OpenAI in Spreadsheet、Ajelix AI Excel Tools 。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。
2025-04-10
未来ai发展有什么方向性的可能,尤其对于产品运营的启发
未来 AI 发展具有以下方向性的可能,对产品运营有如下启发: 1. 从通用能力到专业化细分: 早期通用型 AI 产品如 ChatGPT 吸引大量用户,但难以满足多样化需求。 如今越来越多 AI 产品专注特定领域或功能,如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理(各种 AI 配音、音乐生成工具),每个细分领域的产品不断提升核心能力,为用户提供更精准和高质量服务。 2. 商业模式的探索与创新: ToB 市场深耕,如针对内容创作者的 ReadPo,为专业用户提供高效工具。 新型广告模式,如天宫搜索的“宝典彩页”,允许用户认领主题词实现变现。 AI 产品从技术展示向解决用户痛点和创造商业价值转变。 3. 公司未来的样貌: AI 是生产力革命,将通过 AI 网络协同工作,推动对新型基础设施的需求。 未来公司建设可能成为 AI Agent 的工作,公司可能像神经网络一样工作。 下一代公司规模可能更小,但数量会增加,具有新的组建方式、所有权和管理结构。 未来公司将需要解决知识管理、内容生成、信任、安全和身份验证等难题的企业产品,软件数量将不断扩张和变化,代码生成和软件代理业务将更定制化和快速迭代。 4. 具体应用场景: 企业应用:提示词工程重要性凸显,带来超级个性化服务、预测性决策能力、自动创新设计能力、自动识别和优化内部流程。 交通领域:自动驾驶汽车提高安全性和效率,优化信号灯和流量。 物流配送:优化路线和计划,降低成本,包括无人机送货。 教育:提供个性化学习体验。 农业:分析农田数据提高产量和质量。 人工智能时代下最重要的三个基石是数据、算法和算力,相关资源如: 算力: 数据:
2025-04-10