Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

明略科技:2024年中国AI Agent行业研究

Answer

以下是关于 2024 年中国 AI Agent 行业的相关研究报告:

Content generated by AI large model, please carefully verify (powered by aily)

References

2024 年历史更新(归档)

Coatue的报告《[The Path to General-Purpose Robots](https://waytoagi.feishu.c其它一些报告发布在[研究报告板块](https://waytoagi.feishu.cn/wiki/WvhZwk16WiEnSvk8AcpcdZetnMe)和[知识星球](https://t.zsxq.com/18DnZxlrl):《[Sensor Tower:2024年AI应用市场洞察](https://waytoagi.feishu.cn/record/GelSrOoGPefaB8c51JicH98hn7b)》《[2024世界机器人大会:人形机器人十大趋势展望](https://waytoagi.feishu.cn/record/Ezf2rz3ZWewBnFcXcEdc7g5KnYg)》《[月狐数据:2024年智能PPT行业市场研究报告](https://waytoagi.feishu.cn/record/QpaprmH5HexO2Gc1DiOchuCenQe)》《[信通院:大模型落地路线图研究报告(2024年)](https://waytoagi.feishu.cn/record/TugqrcOhke4VqwcFv3NcyY1znRb)》《[头豹研究院:2024年中国AI Agent行业研究](https://waytoagi.feishu.cn/record/BF1UrH5KyeDPVTcA2r6cWlcDnLd)》《[明略科技:2024年中国AI Agent行业研究](https://waytoagi.feishu.cn/record/Uk5hrvXcgeRSBvcXAwvcpol2nxe)》

2024 年历史更新(归档)

《[2024年工作趋势指数年度报告](https://waytoagi.feishu.cn/record/JxwsrMo0Ie3gwZcxSSrcaHnOnzb)》由微软和领英联合发布,揭示了人工智能(AI)在工作场所的快速增长和深远影响。报告指出,75%的全球知识工作者在工作中使用AI,其中46%的用户在过去六个月内开始使用。AI帮助员工节省时间、提升创造力和工作满意度。然而,尽管领导者认识到AI的重要性,但对即时投资回报率的压力使他们行动迟缓。报告还发现,员工正在自行引入AI工具。此外,AI技能成为就业市场上的关键因素,66%的领导者表示不会雇佣没有AI技能的人。报告强调,组织需要克服对AI的惰性,将员工对AI的热情转化为业务转型的动力。最近上传了一些研究报告,也[可在知识星球下载](https://t.zsxq.com/18DnZxlrl):《[爱分析:2024中国AI Agent市场研究报告](https://waytoagi.feishu.cn/record/PGKDryyEyeYozocC8H6cia68nGe)》深入分析了AI Agent的市场定义、发展阶段、核心组件及其在企业用户场景中的应用。《[爱分析:2024年AI Agent实施的明路应用实践报告](https://waytoagi.feishu.cn/record/ZXvIrscbXeG362cqt6echnCFn5i)》企业实施AI Agent的主要目标是降低运营成本,尤其是在知识库管理、数据分析、营销与客户服务等领域。《[陈文光:AI时代的数据处理技术](https://waytoagi.feishu.cn/record/RLPvrig1hezeyVcfsTLceFMAnah)》数据处理应从模型为中心转向数据为中心,并强调向量数据库在提升模型服务能力中的核心作用。

2024 年历史更新(归档)

《[甲子光年:中国AI Agent行业研究报告](https://waytoagi.feishu.cn/record/Fvb5r5dR7eGvaccJw5gcwbLRnjh)》研究中提到AI Agent市场处于早期阶段,需要更多探索,其商业价值在于提升工作均值、实现行业知识库构建、改变工作流程及生产关系。未来,AI Agent将作为数字生产力,通过与工作流的结合,成为企业知识资产积累与复用的关键角色,推动技术革命。强烈推荐甲子光年的这篇研究报告,同步在[知识星球提供下载](https://t.zsxq.com/Gkw9g)。

Others are asking
告诉我最新的国际ai资讯(比如从2024年有什么ai被发明了,国际上一共有什么大的ai公司,中国的ai发展的怎么样了(deepseek怎么样))
以下是为您整理的最新国际 AI 资讯: 2024 年 2 月 5 日:百度智能云成功点亮昆仑芯三代万卡集群,这是国内首个正式点亮的自研万卡集群。 在 Lex Fridman 的播客中,Dylan Patel 和 Nathan Lambert 深入探讨了中国的 DeepSeek AI 模型,特别是 DeepSeekV3 和 DeepSeekR1。Nathan 强调 DeepSeek 是最开放的模型之一,采用 MIT 许可,鼓励商业用途,推动行业走向开源。 2025 年 AI 语音助手研究显示,语音技术是 AI 应用的关键,企业和用户都将受益。2024 年将是语音助手快速发展的时期,技术不断升级,市场竞争加剧,涌现出多种创业公司。未来,AI 语音将成为服务的“万能钥匙”,应用场景广泛,从医疗到教育,推动行业变革与创新。 2024 年 1 月 17 日:随着预训练技术遭遇瓶颈,GPT5 迟迟未能问世,从业者开始从不同角度寻找突破。以 o1 为标志,大模型正式迈入“PostTraining”时代;开源发展迅猛,Llama 3.1 首次击败闭源模型;中国本土大模型 DeepSeek V3,在 GPT4o 发布仅 7 个月后,用 1/10 算力实现了几乎同等水平。同时,大模型的日渐成熟也让产业重心从基础模型转向应用落地。AI 在编程领域爆发,“数字员工”崛起。 李飞飞在访谈中探讨了 AI Agent 的发展及其未来。她强调 AI Agent 应作为工具和赋能者,而非主导者,确保人们的自主性。李飞飞回顾了 ImageNet 的创立背景,并提到正在推动的“空间智能”概念,旨在理解和融合物理与数字三维世界。她认为,未来这两者的界限将逐渐模糊,从而带来更大变革。
2025-02-08
2024 AI工具排行榜
以下是 2024 年部分 AI 工具的相关信息: 开发者工具: 23 年 12 月至 24 年 3 月的访问量排行榜中,非大厂的 Top1 公司是 Langchain,其 3 月 PV 为 356 万,单 PV 价值为 56.18 美元。 赛道方面,天花板潜力 TAM 为 120 亿美元,总体趋势平稳增长,月平均增速为 82 万 PV/月,原生产品占比高。 竞争方面,Top1 占 19%,Top3 占 54%,马太效应弱,网络效应强,大厂已入局,技术门槛中。 教育工具: 23 年 12 月至 24 年 3 月的访问量排行榜中,非大厂的 Top1 公司是 Quizlet,其 3 月 PV 为 1.3 亿。 赛道方面,天花板潜力 TAM 约为 30 亿,总体趋势快速增长,月平均增速为 1793 万 PV/月,原生产品占比低。 竞争方面,Top1 占 45%,Top3 占 76%,马太效应弱,网络效应弱,大厂未入局,技术门槛中。 此外,在展望 2025 时,AI 行业的创新机会方面,2024 年 9 月 OpenAI 发布了新一代语言模型 o1,业界推测其采用了全新的训练与推理方案,结合强化学习技术,显著增强了推理能力,可能借鉴了下围棋的 AlphaGo Zero 的技术思路。
2025-01-26
2024年视频换脸技术
2024 年视频换脸技术面临一些挑战和发展趋势: 挑战方面: 可控性和一致性存在挑战,如人脸转动中保持观感不变形、多个生成片段保持人物一致性、遵循生成指令等,目前视频生成的体感仍需改进,需要底层模型的进步。 成本较高,生成一段 5 秒视频的成本最低约为 1 元人民币,限制了 C 端玩法和大规模应用。 发展趋势: 原生多模态成为 AI 架构的主流选择,从 OpenAI 的 GPT4V 到 Anthropic 的 Claude3V 和 xAI 的 Grok1.5V 等,行业正从简单的模态叠加向真正的多模态融合迈进。原生多模态模型采用统一的编码器解码器架构,在预训练阶段完成多模态信息的深度融合,提升了模型的理解能力,实现了模态间的无缝转换和互补增强,能够处理更复杂的任务。 自 2023 年末开始,Runway、Pika、Meta、Google 等不断推出视频生成/编辑工具,2024 年是 AI 视频技术逐渐成熟并开始商用的一年,下半年或 2025 年可能会看到 AI3D 技术的突破。抖音的成功证明音频、视频加入泛社交/娱乐产品会带来质的飞跃,AI 陪聊赛道中视频、音频技术的加入也将带来内容生产和社交方式的质变。
2025-01-24
2024大模型典型应用案例集
以下是 2024 大模型的一些典型应用案例及相关信息: 《2024 大模型典型示范应用案例集》汇集了 97 个优秀案例,展示了大模型技术在教育、医疗、金融、政务等多个行业和领域的应用。案例由阿里云、百度、华为等领先企业实施,上海成为应用落地的热点地区,大中型企业是主要试验场。AI 智能体和知识库成为提升大模型落地实效的关键手段。 在智能终端行业,中国超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 整体来看,在主流大模型厂商中,百度表现突出,拿下最关键的中标项目数量、中标金额两项第一。截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%,其增长主要由互联网、教育、金融等行业对模型训练和推理的高需求带动。 企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。 相关报告: 《信达证券:AI 行业设计领域专题报告:Adobe AI 功能覆盖全面,Canva、美图等力争上游》 《中国信通院:大模型基准测试体系研究报告(2024 年)》 《埃森哲:人工智能行业:2024 在生成式人工智能时代重塑工作、劳动力和员工》 此外,还有一些相关活动,如: 2024 年是国内大模型技术加速落地的关键年份,各大厂商如百度、阿里、字节等在 AI 大模型领域展开激烈竞争。百度凭借 40 个中标项目和 2.74 亿元中标金额在行业中处于领先地位。尤其在金融、智能终端等行业,百度文心大模型的应用广泛,表现亮眼。 🏮「非遗贺春」魔多蛇年春节 AI 模型创作大赛,大赛时间 2024 年 12 月 24 日2025 年 1 月 15 日。大赛奖池【¥12000】现金奖励+官方高含金量荣誉证书+会员与算力激励+流量激励。双赛道同时开启,赛道一【春节】+赛道二【爱非遗 AI 传承】。本次活动由浙江省非遗保护中心(浙江省非遗馆)指导×浙江省非遗保护基金会主办×魔多 AI 联合承办,由提供社区传播支持。
2025-01-16
2024年人工智能指数报告 下载
以下是为您提供的 2024 年人工智能指数报告的相关下载信息: 1. 《》由微软和领英联合发布,揭示了人工智能(AI)在工作场所的快速增长和深远影响。 2. 可在知识星球下载的报告: 《》深入分析了 AI Agent 的市场定义、发展阶段、核心组件及其在企业用户场景中的应用。 《》企业实施 AI Agent 的主要目标是降低运营成本,尤其是在知识库管理、数据分析、营销与客户服务等领域。 3. 《》数据处理应从模型为中心转向数据为中心,并强调向量数据库在提升模型服务能力中的核心作用。 4. 斯坦福大学发布的基础模型透明度指数相关报告:在上一届 SOAI 发布后不久,斯坦福大学发布了其首个基础模型透明度指数,模型开发者的平均得分为 37 分。在团队的中期更新中,这一分数攀升至 58 分。2024 年 5 月,该指数的最新一期基于 100 项指标,评估了 14 家领先的基础模型开发者的透明度,这些指标涵盖“上游”因素数据、劳动力、计算、围绕能力和风险的“模型级”因素、围绕分布的“下游”标准以及社会影响。计算和使用政策的评分出现了最强劲的改善,而“上游”评分仍然疲弱。 5. 《2024 年人工智能现状:辉煌、戏谑和“牛市”》报告链接:
2025-01-11
2024年人工智能指数报告
以下是关于 2024 年人工智能指数报告的相关内容: 斯坦福大学发布的基础模型透明度指数显示,模型开发者的平均得分从最初的 37 分攀升至中期更新的 58 分。2024 年 5 月的最新一期基于 100 项指标评估了 14 家领先的基础模型开发者的透明度,其中计算和使用政策的评分改善强劲,“上游”评分仍疲弱。 2024 年 AI 年度报告的十大预测包括:好莱坞级别的制作公司开始使用生成式人工智能制作视觉特效;美国联邦贸易委员会或英国竞争与市场管理局基于竞争理由调查微软/OpenAI 的交易;在全球人工智能治理方面进展有限;一首由人工智能创作的歌曲进入公告牌 Hot 100 前 10 名或 Spotify 2024 年热门榜单;随着推理工作负载和成本的显著增长,一家大型人工智能公司收购或建立专注于推理的人工智能芯片公司。同时也有错误预测,如生成式人工智能媒体公司在 2024 年美国选举期间的滥用行为未受到调查,自我改进的人工智能智能体在复杂环境中未超越现有技术最高水平。 预测还覆盖了人工智能领域的多个方面,如主权国家向美国大型人工智能实验室投资超 100 亿美元引发国家安全审查;完全无编码能力的人创建的应用或网站走红;前沿实验室在案件审判后对数据收集实践方式发生重大转变;早期欧盟人工智能法案实施结果比预期宽松;开源的 OpenAI o1 替代品在推理基准测试中超越;挑战者未能突破英伟达市场地位;对人形机器人投资水平下降;苹果在设备上的研究成果加速个人设备上人工智能的发展;人工智能科学家生成的研究论文被主要机器学习会议或研讨会接受;以“生成式人工智能”为元素互动的视频游戏取得突破性地位。
2025-01-11
如何用ai建立自己的知识库?
以下是用 AI 建立自己知识库的方法: 1. 使用 GPT 建立: 将大文本拆分成若干小文本块(chunk)。 通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,将问题转换成问题向量,与向量储存库中的文本块向量比对,提取距离最小的几个向量对应的文本块,与问题组合成新的 prompt 发送给 GPT API。 例如,对于一篇万字长文,拆分成多个文本块,如“文本块 1:本文作者:越山。xxxx。”等,当提问“此文作者是谁?”时,通过比较 embeddings 向量,提取关联度高的文本块发送给 GPT API 回答问题。 2. 使用 Coze 建立: 确定功能范围,编写 prompt 提示词,设定 Bot 的身份和目标。 创建知识库,整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。创建知识库路径为:个人空间 知识库 创建知识库。支持的文档类型包括本地文档、在线数据、飞书文档、Notion 等,本次可使用本地文档。按照操作指引上传文档、分段设置、确认数据处理。小技巧:在内容中加上特殊分割符“”,分段标识符号选择“自定义”,内容填“”,以便于自动切分数据。 创建工作流,告诉 AI 机器人按流程处理信息。创建工作流路径为:个人空间 工作流 创建工作流。工作流设计好后,先点击右上角“试运行”,测试无误后点击发布。如果任务和逻辑复杂,可以结合左边“节点”工具来实现,如调用大模型总结分析知识库内容、调用数据库存储用户输入信息、调用代码处理复杂逻辑等。个人建议:工作流不必复杂,能实现目的即可,所以在设计 Bot 前“确定目的”和“确定功能范围”很重要。
2025-02-13
generate ai的网页是什么
以下是一些与生成式 AI 相关的网页: 1. 关于 Gen AI/Generative AI 与 AIGC 的异同介绍:未明确具体网页,但可在 OpenAI 官网查询相关内容。 2. 学习生成式 AI 知识的笔记,如生成式人工智能的工作原理、应用等:未明确具体网页。 3. 鉴别图片是否为 AI 生成的相关网页:ILLUMINARTY(https://app.illuminarty.ai/)。
2025-02-13
gamma AI的网址是什么
Gamma AI 的网址是:https://gamma.app/
2025-02-13
哪个AI的知识库功能比较强大?
以下是一些知识库功能比较强大的 AI 相关产品: 1. Coze 汽车售后服务知识库 Bot:主要针对汽车售后场景,能解答问题,输出文档,还具备智能录入功能。当用户提出问题,它能给出初步判断并分析原因,给出精准解决方案及操作视频。问题解决后能生成维修报告和案例归档文档存入 AI 知识库。其 AI 知识库不仅支持单独文本录入还支持链接录入,能智能解析分解文章并录入知识点。 2. WayToAGI:这是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,整合了各种 AI 资源,提供了一系列开箱即用的工具,如文生图、文生视频、文生语音等详尽的教程,还能追踪 AI 领域最新进展并时刻更新。 3. 扣子:其记忆库功能可以保留和理解对话细节,并支持添加外部知识库给模型补充知识。知识库支持上传本地或线上内容,然后将这些内容分割成知识分片,通过语义匹配给模型补充知识。
2025-02-13
哪个Ai可以生成思维导图
以下是一些可以生成思维导图的 AI 工具: 1. GitMind:免费的跨平台思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内的思维导图+AIGC 工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路并生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求即可由 AI 自动完成生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 此外,还有一些相关的新产品,如 ChatMind,是利用 AI 自动生成思维导图的在线工具,输入问题、文章、数据即可,还能获取答案并导出图片与 Markdown 文档两种格式。其网址为:https://www.chatmind.tech/
2025-02-13
deepseek和普通的AI大模型相比,优势是什么?
DeepSeek 与普通的 AI 大模型相比具有以下优势: 1. 强大、便宜、开源、免费、联网和本土等六大优势,全面超过现有 AI 大模型。 2. 以仅 27 分之一的成本实现卓越表现,挑战了高价闭源模型的传统观念。 3. 创新的 R1 Zero 模型显示出模型思考能力的自我涌现,或将引领 AGI 的新方向。 4. 在推理过程中通过多头隐式注意力减少内存需求,并且改进了 MoE 架构。 5. 其深度思考版本 DeepSeek R1 属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升最终回答的质量。 6. 在中国 LMSYS 排行榜上取得优异成绩,尤其在数学和编程方面表现出色。
2025-02-13
什么是agent
Agent(智能体)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 从产品角度看,比如我们的 Agent 可以是一个历史新闻探索向导,具有知识渊博、温暖亲切、富有同情心的性格,主导新闻解析和历史背景分析,为使其角色更生动,可设计背景故事,明确角色背景和身份、性格和语气、互动方式、技能等。 在结合大型语言模型(LLM)的情况下,LLM Agent 是指结合大型语言模型和自主智能体特性的系统,能够利用大型语言模型的自然语言处理能力,理解用户输入,并进行智能决策和行动。其组成部分包括规划(负责将复杂任务分解成可执行的子任务,并评估执行策略)、记忆(包括短期记忆用于存储对话上下文,长期记忆存储用户特征和业务数据)、工具(如 API 调用、插件扩展等辅助手段)、行动(将规划和记忆转换为具体输出,包括与外部环境的互动或工具调用)。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,还包括规划(子目标分解、反思完善)、记忆(短期记忆、长期记忆)、工具使用(调用外部 API 获取额外信息)等方面。
2025-02-12
谷歌agent
谷歌在今年的 Next 与 I/O 大会上连续发布了自己的 Agent 战略,并将其置于公司的 AI Stack 之上,Agent 成为接下来 Google App 的衍生。例如,从客服 Agent 到员工 Agent 再到代码 Agent,以及最新的 Google Plan Search,能够自动化多步骤执行搜索任务。如找附近有折扣的理发店并完成预约,它能理解需求、自动分解任务,调用 Google Map 等工具完成请求。这得益于 Gemini 1.5 Pro 的推理能力已达 GPT4 水平。2024 年,Anthropic 的 Computer Use、智谱 AI 的 AutoGLM 以及 Google 的 Gemini 2.0 都展示了 AI Agent 的突破性进展。在应用场景方面,Google 的 Gemini 还涉及 GUI Agent 类,为 Agent 提供更强的视觉感知能力。
2025-02-12
agent比较好用的应用是什么
以下是一些比较好用的 Agent 应用: 1. 构建平台: Coze:新一代一站式 AI Bot 开发平台,适用于构建各类问答 Bot,集成丰富插件工具拓展能力边界。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 2. 项目应用: AppAgent:让 AI 模仿人类在手机上操作 APP,对于模仿数据的反利用有不错应用场景,例如优化产品原型和 UE 交互。由腾讯和德州大学达拉斯分校的研究团开发,是基于大语言模型的多模态代理,能处理和理解多种信息,执行各种任务。 3. 设计范式: Reflection(反思):类似于 AI 的自我纠错和迭代,如让 AI 写代码并自我检查修改,反复优化。 Tool Use:大语言模型调用插件,拓展 LLM 的边界能力。 Planning:较为新颖有前景的方式。 Multiagent:较为新颖有前景的方式。
2025-02-11
AI领域,传统机器学习,nlp,深度学习,大语言模型,rag,agent,请生成一张让普通人能看懂的AI领域概念图
以下是为您生成的 AI 领域概念图的相关解释: 人工智能(AI):一种目标,让机器展现智慧。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容。 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失。 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因为有很多层所以叫深度),神经网络可用于多种学习方式。 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。它是美国 OpenAI 公司开发的一款基于大型语言模型(LLM)的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-02-11
AI Agent 企业实施的方案和案例
以下是一些关于 AI Agent 企业实施的方案和案例: 顺着推理引擎的思路,可让 LLM 自己做自动化的多步骤推理,其间能使用搜索引擎、调用工具及与其他 LLM 协作。最早实现此想法原型的是 AutoGPT 和 BabyAGI 两个开源的智能代理,它们给出了很好的解题思路,人类给出目标,LLM 自己分解子目标,调用外部工具,自我评估任务是否完成,逐步实现整体目标。如今,随着 LLM 的推理能力和速度提高,Agent 的思路已被很多创业公司和科技巨头用于产品中。例如,来自纽约的华人创业团队 Cognition AI 推出的可以像人类程序员一样自动写代码的 Agent,但因演示视频过于科幻而被揭露造假。Google 也在今年的 Next 与 I/O 大会上发布了自己的 Agent 战略,如从客服 Agent 到员工 Agent 再到代码 Agent,以及最新的 Google Plan Search,能自动多步骤执行搜索任务。 《爱分析:2024 年 AI Agent 实施的明路应用实践报告》指出,企业实施 AI Agent 的主要目标是降低运营成本,尤其是在知识库管理、数据分析、营销与客户服务等领域。 公司的核心产品“灵搭”平台是以自研 MultiAgent 架构为基础的企业级 AI Agent 平台,结合了多种技术,能理解并处理复杂的企业业务需求,提供多种解决方案。该平台具有多项优势,如适配多模型、灵活可视化构建、即时发布上线、安全访问控制、支持多 Agents 协作等。已与多家企业达成深度合作,主要服务电力能源行业,成功落地多个应用场景。 此外,《[2024 年工作趋势指数年度报告》揭示了人工智能在工作场所的情况。最近还上传了一些相关研究报告,如《[爱分析:2024 中国 AI Agent 市场研究报告》等。
2025-02-11
agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用等。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 以下是一些关于智能体 Agent 的相关链接:
2025-02-11