Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI现阶段的成因

Answer

AI 现阶段的成因主要包括以下几个方面:

  1. 在软件领域,AI 软件公司有三种起源和结果:运行在现有软件之上的 AI 工具,如为 Zoom 会议自动记录会议笔记;运行在现有软件之上且有机会取代现有软件的 AI 工具,如为 Zoom 会议记录笔记后构建视频会议并推销;成为劳动力的 AI 工具,这是一个全新的类别。平台转变促成了前两种情况。同时,软件市场与白领劳动力市场相比规模较小,许多增长最快的公司将现有的昂贵服务转化为大众的低价产品。
  2. 在医疗保健和生物技术领域,AI 正在工业化生物制药和医疗保健,应用于从药物设计、诊断到医疗保健交付和后勤功能等各个方面。
  3. 在教育领域,学习通常具有功利导向,“突破性新技术+垂直行业知识”的组合能为学习者带来更高投入产出比。在 AI 领域,让 AI 工程师懂行业、让行业专家懂 AI 投入产出比高,但前提是找到高价值应用场景。现阶段“AI 口嗨者众,AI 实干家寡”的主要原因是缺乏带来足够正反馈的高价值应用场景。
Content generated by AI large model, please carefully verify (powered by aily)

References

输入咖啡,输出代码:AI 如何将资本转化为劳动力

这并不意味着AI的成功仅仅局限于“全新”的类别。但在[分销与创新的较量](https://a16z.com/distribution-vs-innovation/)中,分销通常是默认的赢家——现有的软件公司拥有分销渠道。尤其是在2024年的今天,人工智能几乎是所有软件公司和终端客户的首要任务。2007年,大多数首席执行官都认为iPhone很愚蠢(没有键盘!),而黑莓则更好。1996年,大多数零售业首席执行官都认为互联网只是一个玩具、一种时尚,人们肯定不会通过网络浏览器买东西。这让新公司填补了这一空白。2024年,几乎不可能找到一个认为人工智能是个坏主意的首席执行官。AI软件公司将有效地有三种起源和结果:运行在现有软件之上的AI工具(想想:为Zoom会议自动记录会议笔记);运行在现有软件之上的AI工具,有机会取代现有的软件(想想:为Zoom会议记录会议笔记……然后该公司构建视频会议并向你推销,让你放弃Zoom);成为劳动力的AI工具——一个全新的类别,在此之前完全不受软件影响(想想:软件为你主持会议!)平台转变总是促成前两种情况(X的互联网版本、X的移动版本、X的云版本)。但AI革命最令人兴奋的是,看似庞大的企业软件市场——每年支出3000亿美元——与白领劳动力市场相比,简直是微不足道,后者每年有数万亿美元。这就是为什么我们看到的许多增长最快的公司都是“[已知的未知数](https://a16z.com/financial-opportunity-of-ai/)”,它们将现有的昂贵服务转化为大众的低价产品(由AI创造)。我们正处于软件吞噬和增强劳动力的最初阶段。

新工业革命:生物技术×人工智能

我们今天正站在这个转折点上。直到现在,医疗保健和生物技术仍然大量依赖服务——由受过专业培训的科学家和[医生](https://a16z.com/2019/06/13/ai-doctor-deep-medicine-topol/)提供——这些服务是算法无法替代的,更不用说为公司增加足够的价值来采纳它们了。但现在,我们正处于一个革命的起点,[AI正在](https://a16z.com/2019/11/19/ai-industrializing-discovery-biology-healthcare/)工业化生物制药和医疗保健,它被应用于从[药物设计](https://a16z.com/2020/05/26/investing-insitro/)和[诊断](https://a16z.com/2017/03/01/going-deeper-into-freenome/)到[医疗保健交付](https://a16z.com/2021/07/12/investing-in-bayesian-health/)和[后勤功能](https://a16z.com/2021/02/09/administration-healthcare-back-office-innovation/)的各个方面。(关于在生物学中应用AI的讨论经常出现的问题或挑战,我在[此处](https://a16z.com/2018/02/28/black-box-problem-ai-healthcare/)解决了医疗保健中AI的“黑箱”问题;并在[此处](https://a16z.com/2021/06/15/ai-is-too-dumb-for-now-2/)解决了我们获取智能[与“愚蠢”]AI的需求问题。)[heading4]但现在,我们正处于一个革命的起点,AI正在使生物制药和医疗保健产业化,并且它被应用到从药物设计和诊

笔记:与AI+教育前辈聊天

昨天跟一位“AI+教育”行业的前辈,聊了下“学习AI”相关的问题,下面是一些小的结论:1、学习是反人性的,所以通常只有功利导向的“学习”,才会带来强烈的付费意愿。比如,在真实的K12买课场景中,很多家长根本不在乎孩子「能力」是否提升,他们更在乎老师能不能押对考试的题目,直接让孩子多拿「分数」。2、“突破性新技术+垂直行业知识”的组合,一般能为学习者带来更高的投入产出比。拿程序员举例,如果单纯看996的新闻,还以为中国程序员早已供大于求了。但在很多很大的行业里,懂该行业知识的程序员缺口大的不得了,很多时候只能找高潜应届生从头开始培养。典型的有,银行嗷嗷缺金融科技人才,车企嗷嗷缺智能网联人才,智能制造行业嗷嗷缺数字化转型技术人才。3、放在AI领域,则意味着「让AI工程师懂行业,让行业专家懂AI」,这个学习的投入产出比可以做到很高。但前提是,一定要找到AI在该行业的高价值应用场景。找到之后,AI工程师会发现,如果说自己的技术在那个领域创造的价值是西瓜,那么在手头的这个领域创造的价值可能就只是芝麻,孰轻孰重,他会知道怎么选;行业专家也会发现,在他的专业领域,很多事情的效率可以提升10倍以上,他不仅有机会真正做到“一个人就是一支队伍”,还可以为组织为行业复制出无数个「能达到80%水平的自己」。4、现阶段,之所以「AI口嗨者众,AI实干家寡」,最主要的原因是没有能带来足够正反馈的高价值应用场景。

Others are asking
现在有哪些AI绘画平台
以下是一些常见的 AI 绘画平台: 1. MewXAI:这是一款强大且新手友好、操作简单的 AI 绘画创作平台。其功能包括 MX 绘画、MX Cute、MJ 绘画、边缘检测、室内设计、姿态检测、AI 艺术二维码、AI 艺术字等。访问地址:https://www.mewxai.cn/ 2. StableStudio:Stability AI 开源的 AI 图像生成平台。 3. Roop:一键实现 AI 换脸,仅需一张换脸图像,无需数据集,无需训练,自带敏感图像检测功能。 4. pixian.ai:能够利用 AI 一键移除各种图像背景,并支持在线调整图片分辨率、背景颜色等。 5. Inpaint Anything:一个 AI 图像编辑工具,支持一键擦除、替换图像中的指定物品,通过提示词来自动更换背景图。 6. Segment Anything:一个图像分割模型,可自动分割图片或视频中的所有物品,一键完成自动分割,并支持零样本转移到其他分割任务。 7. Docker:支持一键从图片中解析出 Prompt 描述,并能够基于描述进行扩展,以便二次图片生成。 8. Plask.ai:一个 AI 工具,可以通过 3D 建模,直接生成模特效果图。 9. Recraft AI:是 AI 平面设计工具,用户可以使用其生成和编辑插画,海报,产品周边等,提供多种样式的可选风格,对所有用户每日都有免费的试用点数,并允许对生成的图像进行商业使用。访问地址:https://www.recraft.ai/ 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-03
现在有哪些ai平台?
以下是一些常见的 AI 平台: 图虫网:AI 摄影作品销售平台,利用图像识别、数据分析技术,为摄影爱好者提供作品销售渠道。 网易云音乐音乐人平台:AI 音乐作品发布平台,运用音频处理、数据分析技术,为音乐创作者提供作品发布等服务。 好好住 APP:AI 家居用品推荐平台,通过数据分析、自然语言处理技术,根据用户需求推荐家居用品。 东方财富网投资分析工具:AI 金融投资分析平台,借助数据分析、机器学习技术,分析金融市场并提供投资建议。 此外,在 ProductHunt 2023 年度最佳产品榜单中的 AI 产品有: Dora AI:用一次 prompt 生成网站,支持文字转网站、生成式 3D 互动、高级 AI 动画。 Bard(免费):谷歌推出的官方 ChatGPT 竞争者,由谷歌的对话应用语言模型(LaMDA)提供支持。 Chat.DID(免费):有史以来首个允许人们以人类方式与 AI 进行视频聊天的 APP。 Pika(免费):AI 视频平台,能将创意转化为动态视频。 对于希望自行部署 AIGC 服务的用户,以下云服务平台可供选择: AWS(亚马逊云服务):提供多种 AI 服务,资源丰富、灵活性强,但费用相对较高,适合需求复杂、要求高可用的企业用户。 Google Cloud Platform:推出 Vertex AI 和多款预训练模型供使用,支持多种编程语言和框架,具有领先的计算机视觉和语音识别能力。 Microsoft Azure:Azure 机器学习服务涵盖多种 AI 工作负载,与微软其他产品融合度高,提供硬件加速等优化方案。 Huawei Cloud:提供 ModelArts 等 AI 开发和推理平台,融合 Ascend AI 处理器实现硬件加速,针对本地化部署和行业应用进行了优化。 阿里云:提供 PAI 和机器学习平台等 AI 产品,支持主流深度学习框架部署,与阿里云其他产品生态集成度高。部署 AIGC 服务通常需要大量算力和存储资源,利用云平台是便捷的选择。建议先评估实际业务场景和需求,再对比不同供应商的产品特性和价格,以选择最合适的部署方案。
2025-03-03
用AI生成角色原画的现状
目前,用 AI 生成角色原画既有优势也存在一些问题。 优势方面: Niji·journey 5 作为表现优异的在线二次元角色设计 AI,能在各种类型的二次元设计中发挥重要作用。 对于游戏中的角色设计,AI 设计可以提供参考和辅助。 问题方面: Niji·journey 5 存在对流行二次元风格的偏好、风格相对固定以及版权风险等局限性。 AI 设计生成的角色往往需要进一步修饰和调整以符合游戏整体风格和要求,不能完全掌握角色设计的细节和规律。 AI 绘画生成的设计可能存在版权问题。 未来展望: Niji 有望通过改进算法和扩大数据样本来源,提升角色设计的创新性和独特性,满足不同用户和项目的需求。 随着技术进步,Midjourney 等 AI 不断升级,使用 AI 辅助游戏美术设计师工作将成为趋势。但美术设计师需不断学习新技能和知识,拓展多领域知识,以应对未来变化和挑战。游戏美术中各职业分类的界限可能会越来越模糊。
2025-03-03
我应该如何自学ai
以下是关于自学 AI 的一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于中学生自学 AI 的建议: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术如机器学习、深度学习等,以及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 7. 使用 AI 来做事: 利用人工智能帮助教育和自学学习,可以要求人工智能解释概念并获得结果。但因为人工智能可能会产生幻觉,所以对于关键数据要根据其他来源仔细检查。
2025-03-03
让AI帮我写一篇论文的文献综述,怎么命令
利用 AI 写一篇论文的文献综述可以参考以下步骤: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取收集资料中的关键信息和主要观点。 4. 生成大纲:利用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:使用 AI 工具辅助撰写,确保内容准确完整。 6. 构建方法论:根据研究需求,参考 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据,使用 AI 数据分析工具处理和解释。 8. 撰写和编辑:依靠 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:通过 AI 文献管理工具生成正确格式的参考文献。 10. 审阅和修改:利用 AI 审阅工具检查课题的逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题的原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维。在使用时应保持批判性思维,确保研究质量和学术诚信。
2025-03-03
用ai帮助聊天
以下是关于用 AI 帮助聊天的相关内容: Cursor 官方: Chat 聊天:允许您与看到您的代码库的 AI 交谈。聊天室始终可以看到您当前的文件和光标,您可以向它询问诸如“这里有 bug 吗”等问题。您可以使用⌘+Shift+L 或“@”将特定代码块添加到上下文中,也可以使用⌘+Enter 与整个代码库聊天。 代码库答案:使用@Codebase 或⌘Enter 询问有关您的代码库的问题,Cursor 会搜索您的代码库以查找与您的查询相关的代码。 引用您的代码:带有@符号的参考代码可用作 AI 的上下文,只需键入@即可查看文件夹中所有文件和代码符号的列表。 使用图像:点击聊天下方的图片按钮,或将图片拖到输入框中,将视觉上下文包含在聊天中。 学习笔记:Generative AI for Everyone 吴恩达: 阅读方面:可以让 LLM 检查文本错误、总结长句。客服人员针对每一位用户传递大量信息时,可内置 LLM 快速总结信息提供给决策管理层,使用 LLM 进行语义分析,将邮箱、客户留言等外部信息传递给相关部门。构建处理信息的 LLM 模型时,要设置好提示词,持续优化。 聊天方面:聊天机器人可用于做旅游计划、职业咨询、做饭建议等,不仅能生成文本,还能产生进一步行动,如处理文本后发送订单信息等。建立聊天机器人的流程为:开始于内部聊天机器人,确保良好表现并避免问题;设置人为参与链路;确保安全后,让机器人对接用户。 大语言模型行与不行:能做类似于应届生能做的事;不可做的包括时间限制(如 GPT3 只有 2022 年 1 月前的数据)、会出现幻觉、接受有限的 prompt、输出有限制、不可以很好处理结构化数据、可能输出有害的信息。 @Chat:此功能目前仅适用于 Cmd K。您可以在 Cmd K 中使用@Chat 将当前聊天消息添加为上下文,当您与希望应用于编辑或生成代码的 AI 进行对话时很有用。
2025-03-03
现阶段AI应用软件有哪些好用的
以下是一些好用的现阶段 AI 应用软件: AI 摄影参数调整助手:使用图像识别、数据分析技术,常见于摄影 APP 中,能根据场景自动调整摄影参数,市场规模达数亿美元。 AI 音乐情感分析平台:运用机器学习、音频处理技术,有音乐情感分析软件,可分析音乐的情感表达,市场规模达数亿美元。 AI 家居智能照明系统:基于物联网技术、机器学习,如小米智能照明系统,实现家居照明的智能化控制,市场规模达数十亿美元。 AI 金融风险预警平台:采用数据分析、机器学习技术,有金融风险预警软件,能提前预警金融风险,市场规模达数十亿美元。 AI 旅游路线优化平台:借助数据分析、自然语言处理技术,如马蜂窝路线优化功能,可根据用户需求优化旅游路线,市场规模达数亿美元。 AI 儿童安全座椅推荐系统:通过数据分析、机器学习,如宝宝树安全座椅推荐,为家长推荐合适的儿童安全座椅,市场规模达数亿美元。 AI 汽车保养套餐推荐系统:利用数据分析、机器学习,如途虎养车保养推荐,根据车辆情况推荐保养套餐,市场规模达数十亿美元。 AI 物流快递柜管理系统:基于数据分析、物联网技术,如丰巢快递柜管理系统,优化快递柜使用效率,市场规模达数十亿美元。 AI 招聘面试模拟平台:运用自然语言处理、机器学习,如智联招聘面试模拟功能,帮助求职者进行面试模拟,市场规模达数亿美元。 AI 房地产装修设计平台:借助图像生成、机器学习,如酷家乐装修设计软件,为用户提供装修设计方案,市场规模达数十亿美元。 AI 游戏道具推荐系统:通过数据分析、机器学习,如游戏内商城推荐功能,根据玩家需求推荐游戏道具,市场规模达数亿美元。 AI 天气预报分时服务:采用数据分析、机器学习技术,如彩云天气分时预报,提供精准的分时天气预报,市场规模达数亿美元。 AI 医疗病历分析平台:利用数据分析、自然语言处理,如医渡云病历分析系统,分析医疗病历,辅助诊断,市场规模达数十亿美元。 AI 会议发言总结工具:借助自然语言处理、机器学习,如讯飞听见会议总结功能,自动总结会议发言内容,市场规模达数亿美元。 AI 书法作品临摹辅助工具:通过图像识别、数据分析,如书法临摹软件,帮助书法爱好者进行临摹,市场规模达数亿美元。
2025-03-03
现阶段AI应用有哪些
现阶段 AI 应用主要包括以下方面: 1. AI 视频生成: 专业创作者(艺术家、影视人等):能够为作品赋予独特风格和想象力,提供灵感,降低后期制作门槛和成本,目前主要集中在音乐 MV、短篇电影、动漫等方向。 自媒体、非专业创作者:解决视频剪辑痛点,如快速生成脚本分镜、视频,将文章高效转 PPT 再转视频,解决同一素材在不同平台分发的成本问题。 企业客户:为小企业、非盈利机构大幅缩减视频制作成本。 2. 交通领域: 自动驾驶:提高交通安全性和效率。 交通管理:优化交通信号灯和交通流量,缓解交通拥堵。 物流和配送:优化物流路线和配送计划,降低运输成本。 无人机送货:将货物快速送达偏远地区。 3. 其他领域: 教育:提供个性化学习体验。 农业:分析农田数据,提高农作物产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源使用,提高能源效率。 此外,从使用场景来看,还包括改善大模型产品的使用体验、助力用户工作流、细分场景独立实用工具、AI 社区、Chatbot 等方向;从产品形态上来看,分为插件、辅助现有产品能力、深度结合 LLM 能力的独立网站&应用、AI 社区等。目前产品大多分布在 PC 端。
2025-03-03
现阶段最智能的AI工具是哪一款?
现阶段很难确切地指出哪一款 AI 工具是最智能的,因为这取决于不同的应用场景和需求。以下为您介绍一些表现出色的 AI 工具: Unity 推出的两款 AI 工具: Copliot 工具:可通过与 Muse Chat 聊天快速启动创建游戏项目,如生成塔防类游戏基础框架、创建人物角色动作,还能协助编码和熟悉工程环境。 Unity Sentis:能在 Unity 运行时为游戏或应用程序嵌入 AI 模型,增强玩法和功能,是首个将 AI 模型嵌入实时 3D 引擎的跨平台解决方案。 基于 2022 年 9 月至 2023 年 8 月访问量的 10 个最佳人工智能工具: ChatGPT:访问量达 146 亿次,在美国使用率最高,男性用户占比较大,多用于写作和内容创作、教育和常识等方面。 Character AI QuillBot Midjourney Hugging Face Google Bard NovelAI CapCut JanitorAI Civitai 不同类型的 AI 工具在不同领域各有优势,例如聊天机器人在流量份额上占比较大,而图像生成器、视频生成器、语音和音乐工具等也在各自领域表现出色。您可以根据具体需求选择适合的工具。
2025-02-21
在现阶段的GPT发展下,与AI交流提示词还重要吗
在现阶段的 GPT 发展下,与 AI 交流的提示词仍然非常重要。以下是一些原因: 1. 目标明确:对于 GPT 及其他 AI 来说,明确每一步的目标至关重要。只有给予清晰的指导,AI 才能产生相关且有价值的输出。 2. 逻辑性:在各种提示策略中,逻辑性都是关键。清晰、结构化的提示有助于 AI 更有效地生成输出。 3. 分步骤:无论是进行深度分析还是遵循特定结构,确保提示按照清晰的步骤进行极为重要。 4. 考虑变量:这在某些提示策略中尤其重要,需要考虑可能影响结果的所有因素。 例如,在运用 CoD 将文章做摘要的实验中,个人观点认为以英文提示词最后加上中文输出的方式效果较好,并且密度等级 4 的结果较让人满意。同时,LangGPT 框架的出现也表明随着新一代模型的发布,提示词的重要性日益凸显,其编写过程逐渐成为一种编程语言。但也有人认为框架在协助的同时也有限制,提示词带来的收益并非如宣传所说,其重要性会朝两极分化。
2025-01-07
现阶段应对ai诈骗研究进展
现阶段应对 AI 诈骗的研究进展主要包括以下方面: 拜登签署的 AI 行政命令要求开发最强大 AI 系统的开发者与美国政府分享安全测试结果等关键信息。对于可能对国家安全、经济安全、公共卫生和安全构成严重风险的基础模型,开发公司在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。商务部将为内容认证和水印制定指导方针,以清晰标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和世界各国政府树立榜样。 OpenAI 提出通过“指令层次结构”修复“忽略所有先前指令”攻击的方法,并已在 GPT40 Mini 中部署。Anthropic 在多重越狱方面的工作表明了“警告防御”的潜力,在前面和后面添加警告文本以警示模型。Gray Swan AI 的安全专家试用“断路器”,专注于重新映射有害表示。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建了首个红队抵抗组织基准,Scale 根据私人评估推出了自己的稳健性排行榜。 除了常见的越狱攻击,还存在更隐蔽的攻击,如伯克利和麻省理工学院的研究人员创建的看似无害的数据集,会训练模型响应编码请求产生有害输出。
2024-12-02
ai诈骗现阶段研究进展及其成果
目前关于 AI 诈骗的研究进展及成果的相关内容较少。但在 AI 领域,以下方面的研究成果可能对理解 AI 诈骗有所帮助: 神经网络研究:自 2010 年左右,大型公共数据集的出现推动了神经网络的发展。2012 年卷积神经网络用于图像分类,错误率大幅下降。2015 年微软研究院的 ResNet 架构达到人类水平准确率。此后,神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中表现成功。 AI 幻觉应对:研究人员开发多种技术手段应对,如进行数据“体检”,包括数据清洗去除错误信息、补充缺失数据等,以及数据增强为模型提供更多丰富训练数据。 政策方面:拜登签署的 AI 行政命令中,要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息,制定确保 AI 系统安全可靠的标准、工具和测试,建立相关安全委员会,应对 AI 对关键基础设施的威胁,制定防范利用 AI 制造危险生物材料的新标准,建立检测 AI 生成内容和认证官方内容的标准及最佳实践以防范 AI 导致的欺诈和欺骗。
2024-12-02