Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

企业在构建AI智能问答助手可能会遇到哪些挑战及痛点?

Answer

企业在构建 AI 智能问答助手可能会遇到以下挑战及痛点:

  1. 私有化部署的挑战:在金融、医疗和法律等许多中小型行业,对数据私密性要求极高,需要私有化部署,这大大增加了企业培训的难度。
  2. 模型接入的限制:访问 GPT 有门槛,国企类、体制类的合作伙伴往往被拦截在外,需要寻找更易于接入的国产模型作为替代方案。
  3. 工程化落地困难:企业知识库大部分卡在工程问题上,真正能落地的不多,数据清理部分难度较大,技术能力要求比想象中更高。
  4. 成本问题:对于规模不大且没有数字化系统的企业,私有化部署的实际落地成本可能不比传统人力成本节省更多。
Content generated by AI large model, please carefully verify (powered by aily)

References

开发:AI应用大模型商业化落地现状与思考

首先是私有化部署的挑战。在许多中小型行业,特别是金融、医疗和法律行业,对数据的私密性要求极高,客户隐私敏感度很高,往往都需要私有化部署的场景,这大大增加了企业培训的难度。其次,访问GPT有门槛,这一点就把国企类、体制类的合作伙伴直接拦截在外,需要寻找更易于接入的国产模型作为替代方案,比如智谱等。最后就是工程化落地难的问题,企业知识库大部分都卡在工程问题上,真正能落地的不多,数据清理部分难度比较大,技术能力比想象的要求要更高一些。这里列举一个企业朋友的诉求,他们希望使用大模型构建AI智能问答机器人,在企业微信上当钩子引流用,并实现插件化,以便在企业微信中实现闭环操作。因为是金融行业,肯定希望私有化部署,他们还希望利用AI金融服务培训和陪练来赋能员工,提高员工的能力。尽管后两个需求可以通过GPTs或建立RAG来实现,但针对第一个需求,由于他们本身规模不算大,没有一套自己的数字化系统,实际落地的成本可能并不会比传统人力成本节省更多。当然,这只是我目前的一些初步看法,如果各位有更好的解决方案,欢迎在本次活动结束后进行交流。

问:请问你是谁

我是WaytoAGI专属问答机器人,基于Aily和云雀大模型。「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级AI应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布AI应用,推动业务创新和效率提升。为企业探索大语言模型应用新篇章、迎接企业智能化未来提供理想选择。云雀是一款由字节跳动研发的语言模型,通过便捷的自然语言交互,能够高效的完成互动对话、信息获取、协助创作等任务。[heading2]我怎么使用你[content]方法1:你可以在WaytoAGI飞书知识库首页找到加入飞书群的链接(下图二维码仅作示意,请在[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)找到最新二维码),然后点击加入,直接@机器人即可。方法2:你可以在WaytoAGI.com的网站首页,直接输入你的问题,即可得到回答。[heading2]为什么要做问答机器人[content]1.整个知识库的内容已经非常庞大,内容越来越丰富的同时,作为一个刚进入知识库的用户,并没有办法可以很快的找到知识库的内容。2.传统的搜索是基于关键词及关键词的相关性。例如搜索“吃了吗?”和“昨天晚上鸡腿好吃”,在字面意义上的差异和语义上的价值。3.作为一个AI知识库,需要用更先进的办法来解决:RAG技术。4.在群中提供一个可以快速供大家检索信息的方式,使用更加便捷。

生成式人工智能在客户服务中的兴起与挑战

[杨志磊律师](https://www.zhihu.com/people/61-54-76-90)在不到一年的时间里,OpenAI的ChatGPT等生成式人工智能(AI)应用程序已经在客户服务领域掀起了一场革命。这些基于大型语言模型(LLM)的应用程序能以类似人类的方式处理并回答复杂问题,快速获得了公众的广泛认可和称赞。预计这些技术在未来将极大地提高客户服务中心的生产力,增幅可能在30%到50%之间。[heading3]先进技术的引入[content]随着生成式AI技术的发展,各行业的公司已开始探索如何将这些工具融入到他们的客户服务中心。例如,全球可持续能源领导者Octopus Energy已在其客户服务平台中引入了生成式AI,显著提高了电子邮件回复的质量和客户满意度。这些AI工具的使用,不仅提高了效率,还带来了更丰富、全面的客户服务体验。[heading3]应用的发展与挑战[content]虽然生成式AI在客户服务中的应用前景广阔,但其发展道路上也存在挑战。这些技术可能会受到数据训练中的内在偏见影响,有时还会产生不准确的结果。这些问题在企业环境中尤为严重,因为即使是偶尔的错误也可能对公司的利润和声誉造成重大损失。因此,在目前阶段,生成式AI在客户服务中的应用通常需要一定程度的人工监督。[heading3]技术成熟的阶段性预测[content]预计生成式AI在客户服务领域的融入将经历几个阶段。起初,AI将在人工监督下处理复杂查询。随着技术的成熟,AI将能够更独立地处理大多数问题,最终几乎在每个用户旅程中都能提供支持。这将使客户服务部门成为一个灵活的、数据驱动的组织,能够创造真正差异化的客户体验。[heading3]克服挑战,拥抱未来[content]为了最大化生成式AI的潜力,公司需要克服准确性和偏见方面的挑战。目前,最有效的策略是让人工代理在AI生成的内容到达客户之前进行检查。此外,公司需要决定是采购特定行业的即用型解决方案,还是投入时间和资源来微调自己的模型。

Others are asking
企业在构建AI智能体问答助手可能会遇到哪些挑战及痛点?
企业在构建 AI 智能体问答助手时可能会遇到以下挑战及痛点: 1. 私有化部署方面:在金融、医疗和法律等对数据私密性要求极高的中小型行业,私有化部署场景需求大,增加了企业培训的难度。 2. 模型接入方面:访问 GPT 存在门槛,国企类、体制类合作伙伴受限,需寻找更易于接入的国产模型替代,如智谱等。 3. 工程化落地方面:企业知识库大多卡在工程问题上,真正能落地的不多,数据清理难度大,技术能力要求高于预期。对于规模不大且无数字化系统的企业,实际落地成本可能不比传统人力成本节省更多。 4. 对企业了解不足:在品牌卖点提炼中,AI 对企业的主要产品、解决的用户需求、产品独特之处、所获认可、核心渠道、核心购买人群、营销手段、新渠道期望结果等了解程度接近于 0,难以直接给出有效卖点,更适合作为引导型的灵感提问助手。 以下是一些 Agent 构建平台供您参考: 1. Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2024-12-05
根据数智经济、银发经济、低空经济、单身经济其中有什么痛点和创新发展内容
数智经济的痛点可能包括数据安全与隐私保护问题、数字鸿沟导致的发展不平衡、技术更新换代快带来的高投入成本等。创新发展方面,可以加强数据治理和安全防护技术,推动数字技术与传统产业深度融合,拓展数字经济新场景。 银发经济的痛点或许有产品和服务针对性不足、市场标准和规范不完善、养老服务专业人才短缺等。创新发展可着眼于开发个性化的老年产品和服务,建立健全行业标准,加强养老服务人才培养。 低空经济的痛点可能存在政策法规不完善、基础设施建设不足、技术创新能力有待提高等。创新发展可以从完善政策法规、加大基础设施投资、推动技术研发和应用等方面入手。 单身经济的痛点也许是消费市场细分不够精准、社交需求满足不足、部分产品和服务质量参差不齐等。创新发展能够在精准定位消费需求、创新社交模式、提升产品和服务品质上下功夫。
2024-10-29
我是做跨境电商的,我想通过AI调研竞品的产品卖点和痛点,编写自己产品的文案,做产品图片和视频,请问可以用哪些工具,如何学习
如果你想通过 AI 调研竞品的产品卖点和痛点,编写自己产品的文案,制作产品图片和视频,以下是一些工具和学习资源供你参考: 1. AI 调研工具:你可以使用一些 AI 工具来分析竞品的产品卖点和痛点。例如,使用 AI 分析工具来研究市场趋势、消费者行为和竞争对手情况。这些工具可以帮助你快速识别出哪些产品受欢迎、价格区间、销量等关键信息。 2. AI 文案工具:AI 文案工具可以撰写有说服力的产品描述和营销文案,提高转化率。你可以使用这些工具来生成产品文案,或者对已有的文案进行优化和改进。 3. AI 设计工具:AI 设计工具可以根据市场趋势和用户偏好自动生成吸引人的产品页面布局。这些工具可以帮助你快速设计出符合用户需求的产品页面,提高用户体验和转化率。 4. AI 图像识别和优化工具:AI 图像识别技术可以帮助选择或生成高质量的产品图片,这些图片能够更好地吸引顾客并展示产品特点。你可以使用这些工具来优化产品图片,提高图片的质量和吸引力。 5. AI 视频制作工具:你可以使用 AI 视频制作工具来制作产品视频。这些工具可以帮助你快速生成视频内容,或者对已有的视频进行优化和改进。 6. 学习资源:你可以通过在线课程、教程、视频等学习资源来学习如何使用 AI 工具和技术。这些资源可以帮助你了解 AI 的基本原理和应用场景,掌握使用 AI 工具和技术的技能和方法。 总之,使用 AI 工具和技术可以帮助你更好地调研竞品的产品卖点和痛点,编写自己产品的文案,制作产品图片和视频。你可以根据自己的需求和实际情况选择合适的工具和学习资源,提高工作效率和质量。
2024-05-09
你觉得大模型标注的痛点是什么?
大模型在标注数据方面存在以下几个主要痛点: 1. 缺乏高质量的训练数据 相比英文数据,中文开源高质量数据较少,特别是通用领域的百科、问答、学术等数据 专业数据服务行业还处于起步阶段,可用于训练的经过加工、清洗、标注的高质量数据集较为匮乏 2. 数据标注人才短缺 能够进行专业数据标注的人才并不多,这成为制约大模型训练的瓶颈之一 企业需要与高校、研究机构等合作,共同解决数据标注人才的缺乏问题 3. 数据隐私和安全问题 由于训练数据的敏感性,企业往往只愿意将大模型的训练数据保留在本地,这与需要借助云端算力的矛盾 需要在数据隐私保护和算力需求之间寻求平衡 总的来说,高质量训练数据的获取、专业数据标注人才的培养,以及数据隐私安全的平衡,都是当前大模型在标注数据方面面临的主要挑战。这些问题需要产学研各方通力合作,共同解决。
2024-04-19
最好的AI学术文献搜索软件?
以下是一些较好的 AI 学术文献搜索软件: 1. Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 2. Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 此外,在论文写作和课题研究中,还可以利用其他 AI 工具辅助,如: 1. 内容生成和辅助写作:Grammarly 提供文本校对、语法修正和写作风格建议;Quillbot 可进行重写和摘要。 2. 数据分析:Google Colab 支持 AI 和机器学习研究,便于数据分析和可视化;Knitro 用于数学建模和优化。 在教学中,Claude 和 Gamma.app 这两个工具可以帮助学生做好组会准备,如快速寻找符合条件的论文、提取精炼论文信息、找到适合的 PPT 制作工具并教会使用。使用 Claude 时,可以通过对话解决如学术网站条件搜索等问题。
2025-04-01
产品经理用的AI工具
以下是一些适合产品经理使用的 AI 工具: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard(https://uizard.io/autodesigner/) 项目管理:Taskade(taskade.com) 写邮件:Hypertype(https://www.hypertype.co/) 会议信息:AskFred(fireflies.ai/apps) 团队知识库:Sense(https://www.senseapp.ai/) 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI(https://www.ellie.ai/) 企业自动化:Moveworks(moveworks.com) 另外,北京分队中也有相关人员在产品经理领域对 AI 工具有所熟悉和应用,比如枫 share、行远等。 银海作为产品经理,用 10 个 Prompt 提示词做了产品经理 AI 助手,效果平替 PMAI。PMAI 是一款面向产品经理的生产力工具,具有一键生成 PRD、输出解决方案、生成 SQL 等实用功能。其产品体验地址为:https://www.pmai.cn/?utm_source=qoZaR5O ,具体介绍可查看相关视频演示: 。
2025-04-01
作为财务人员,可以开发什么样的AI助手
作为财务人员,可以开发以下类型的 AI 助手: 1. 税务方面: 利用引刀 AP 创建网页实现智能解答税务问题。 结合飞书避免信息泄露和实现自动回复。 2. 日常工作方面: RPA 流程自动化机器人,可替代电脑办公中的重复有逻辑工作,如开票、网银流水下载等,为企业降本增效。 财经数据分析助手,能分析和解释财经数据,提供投资建议。 风险评估模型,进行财务风险评估和预测。 自动化金融报告编制,自动化编制和解读财务报告。
2025-04-01
个人AI助手可以有什么方向的应用
个人 AI 助手的应用方向广泛,包括但不限于以下几个方面: 1. 教育培训: 数字教师:如让牛顿亲自授课《牛顿运动定律》,让白居易讲述《长恨歌》背后的故事。可以与历史人物对话交流,不受时空限制,实现一对一辅导,提高学生参与感,还能根据学生情况提供定制化学习计划和资源,缓解教育资源不平等问题。 数字陪伴:作为孩子的玩伴,给予赞美等社会奖励,促进儿童成长和提高学习成绩。 2. 宠物相关: AI 宠物助手:基于自然语言处理和计算机视觉,帮助主人照顾宠物,如自动识别宠物情绪、提供饮食建议、监测健康状况等。 AI 宠物互动玩具:利用 AI 技术开发智能互动玩具,增强宠物娱乐体验,如会自主移动并引起宠物注意、会发声和互动的玩具等。 AI 宠物图像生成:使用生成式 AI 模型,根据文字描述生成宠物形象图像,帮助主人定制个性化形象。 AI 宠物医疗诊断:利用计算机视觉和机器学习技术,开发辅助诊断系统,通过分析症状图像和病历数据提供初步诊断建议。 AI 宠物行为分析:基于传感器数据和计算机视觉,分析宠物行为模式,帮助主人了解宠物需求和习性。 3. 信息检索与分析: Google Gemini 的 Deep Research:智能信息检索与分析工具,基于主题快速检索全网资源并生成综合报告,支持导出为 Google Docs 文档格式,适合学术研究、内容创作、行业分析等场景,整合了 Google 核心数据源,结合模型多模态处理能力,可处理大量上下文信息。 第四范式发布的桌面端 AI 搜索工具:基于人工智能技术的全能搜索助手,提升用户在本地文件、即时通信、网盘等各类在线应用中的搜索体验,可通过简单描述查询意图进行模糊搜索,支持实时预览搜索结果。
2025-04-01
教师AI应用培训
以下是关于教师 AI 应用培训的相关内容: 一、培训经历 有人积极参与了由 XX 大学教育技术中心组织的为期一个月的“AI 教育应用”在线培训项目。培训内容主要包括: 1. 人工智能基础理论:涵盖机器学习、深度学习等基本概念和技术原理。 2. AI 教育应用场景分析:通过案例研究,探讨 AI 技术如何支持个性化学习、智能评估等教育实践。 3. 教学设计与实施:学习如何利用 AI 工具设计创新的教学活动,并有效应用于课堂教学中。 在培训中,个人在专业知识、技能方面有所提升,对教学理念、方法有了新的认识或改变,并且在实际工作中开始应用学到的知识和技术。同时,也会遇到一些困难和挑战,并通过相应的方法克服。 二、相关资料和资源 1. 深圳市福田区 AI 先锋队的相关信息。 2. 教师 AI 应用手册。 3. 清华大学 104 页《Deepseek 从入门到精通》的更新内容。 4. 热门 AI deepseek 推荐及案例征稿通知的更新。 5. 爱好者交流 g 群和微信群的更新。 6. 案例 24、25、26 的更新。 三、课程示例 1. AI 辅助下的“科技伦理”主题研讨课: 课程目标:思维激发,利用 AI 生成开放性问题,引发对技术发展伦理问题的深度思考;多维分析,通过 AI 提供的多维数据,全面分析技术发展的潜在风险和社会影响;批判思考,培养学生的批判性思维能力,建立负责任的科技使用态度。 课程实施流程:AI 生成开放性问题,如自动驾驶事故责任归属、社交媒体算法影响、AI 就业影响等;多维数据分析,整合新闻报道、学术论文、社会调查、法律法规等多源数据;课堂辩论,基于数据支持的小组辩论与交流;反思总结,梳理 AI 技术机遇与挑战,形成负责任使用态度。 案例亮点:问题导向,AI 生成的开放性问题激发深度思考,避免表面化讨论确保讨论主题的时效性和挑战性;数据支持,多维数据分析支持全面客观的判断,避免片面和主观的决策倾向;能力培养,通过辩论提升批判性思维和表达能力,促进深层次的思想碰撞和交流。 四、适合对象和活动 1. 适合对象:初次接触 AI,期待掌握 AI 基本对话方式,借助相关工具提高效率的教师。 2. 活动: 12 月 9 日星期六 10:00 12:00,“人人都是 AI 高手——藏在手机 APP 里的 AI”,挖掘每天使用的淘宝、B 站等 APP 里藏着的人工智能,想象让教育和 AI 融合的另一种可能性。 “AI 基础工作坊——用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解 AI 的优势短板,学习如何写好提示词去获得更高质量的内容;同时基于一线教师工作场景,分享优秀提示词与 AI 工具,帮您解决日常工作、育人以及教学中的常见问题,提高工作效率,刷新你的工作流。
2025-04-01
ai和office软件结合的插件有哪些
以下是一些 AI 和 Office 软件结合的插件: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可用于数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,能通过聊天形式完成用户需求,如数据分析和格式创建。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能进行公式生成、生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 Office 软件中,进一步提高工作效率和智能化水平。内容由 AI 大模型生成,请仔细甄别。
2025-04-01
专门解决ai需求的问答
以下是关于专门解决 AI 需求的问答的相关内容: 关于我是谁: 我是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互完成互动对话、信息获取、协助创作等任务。 使用方法: 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码在知识库首页),加入后直接@机器人。 2. 在 WaytoAGI.com 的网站首页直接输入问题即可得到回答。 做问答机器人的原因: 1. 知识库内容庞大,新用户难以快速找到所需内容。 2. 传统搜索基于关键词及相关性,无法准确理解语义。 3. 需要用更先进的 RAG 技术解决。 4. 在群中提供快速检索信息的便捷方式。 AI 商用级问答场景中让回答更准确: 要优化幻觉问题和提高准确性,需了解从“问题输入”到“得到回复”的过程,针对每个环节逐个调优。RAG(检索增强生成)由检索器和生成器组成,检索器从外部知识中找到相关信息,生成器利用这些信息制作精确连贯的答案,通过检索模式为大语言模型生成提供更多信息,使答案更符合要求。 向量:可把向量想象成空间中的点位,每个词或短语对应一个点,系统通过比较点的距离快速找到语义接近的词语或信息。 Agentic AI 中的问答: 对于最简单的常识性问答,可在 CursorChat 中输入问题得到答案,其相对细节的优势是可在同一界面调用 OpenAI、Anthropic 及本机私有 AI 进行问答。此外,Cursor 作为编辑器,可方便收集沉淀问答结果为复用文档,在进行文本相关任务时还有奇妙用法,如翻译中文博客。
2025-03-26
数据问答的最佳实践
以下是关于数据问答最佳实践的相关内容: Databricks: Databricks 作为大数据领域的领先服务商,在 RAG 设计上有自身特点和优势。用户输入问题后,从处理好的文本向量索引获取相关信息,结合提示词工程生成回答。上半部分 Unstructured Data pipeline 采用主流 RAG 方法,下半部分 Structured Data Pipeline 是其特征工程处理流程,也是最大特点。Databricks 从专业大数据角度出发,在准确度较高的数据存储中进行额外检索,发挥在 Real Time Data Serving 上的优势。可见其在 GenAI 时代将强大的 Lakehouse 数据处理能力与生成式 AI 技术深度融合,构建一体化解决方案。 OpenAI: 从 OpenAI Demo day 的演讲整理所得,在提升 RAG 准确率的成功案例中,OpenAI 团队从 45%的准确率开始,尝试多种方法。包括假设性文档嵌入(HyDE)和精调嵌入等,但效果不理想。通过尝试不同大小块的信息和嵌入不同内容部分,准确率提升到 65%。通过 Reranking 和对不同类别问题特别处理,进一步提升到 85%。最终,结合提示工程、查询扩展等方法,达到 98%的准确率。团队强调模型精调和 RAG 结合使用的强大潜力,仅通过简单的模型精调和提示工程就接近行业领先水平。 Loop: 具有环状结构的 RAG Flow 是 Modular RAG 的重要特点,检索和推理步骤相互影响,通常包括一个 Judge 模块控制流程,具体可分为迭代、递归和主动检索三种。 迭代检索:对于一些需要大量知识的复杂问题,可采用迭代方式进行 RAG,如 ITERRETGEN。每次迭代利用前一次迭代的模型输出作为特定上下文帮助检索更相关知识,通过预设迭代次数判断终止。 递归检索:特点是明显依赖上一步并不断深入检索,通常有判断机制作为出口,需搭配 Query Transformation,每次检索依赖新改写的 Query。典型实现如 ToC,从初始问题通过递归执行 RAC 逐步插入子节点到澄清树中,达到最大数量有效节点或最大深度时结束,然后收集所有有效节点生成全面长文本答案回答初始问题。
2025-03-17
如何搭建一个你这样的知识库智能问答机器人,有相关的流程教程吗?
搭建一个知识库智能问答机器人通常包括以下流程: 1. 基于 RAG 机制: RAG 机制全称为“检索增强生成”,是一种结合检索和生成的自然语言处理技术。它先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 要实现知识库问答功能,需创建包含大量文章和资料的知识库,例如有关 AI 启蒙和信息来源的知识库,并通过手工录入方式上传文章内容。 2. 利用 Coze 搭建: 收集知识:确认知识库支持的数据类型,通过企业或个人沉淀的 Word、PDF 等文档、云文档(通过链接访问)、互联网公开内容(可安装 Coze 提供的插件采集)等方式收集。 创建知识库。 创建数据库用以存储每次的问答。 创建工作流: 思考整个流程,包括用户输入问题、大模型通过知识库搜索答案、大模型根据知识库内容生成答案、数据库存储用户问题和答案、将答案展示给用户。 Start 节点:每个工作流默认都有的节点,是工作流的开始,可定义输入变量,如 question,由 Bot 从外部获取信息传递过来。 知识库节点:输入为用户的查询 Query,输出为从知识库中查询出来的匹配片段。注意查询策略,如混合查询、语义查询、全文索引等概念。 变量节点:具有设置变量给 Bot 和从 Bot 中获取变量的能力。 编写 Bot 的提示词。 预览调试与发布。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2025-03-14
有哪些好用的搭建知识库然后进行问答的 AI 工具?
以下是一些好用的搭建知识库然后进行问答的 AI 工具: 1. DIN: 搭建 OneAPI,用于汇聚整合多种大模型接口。 搭建 FastGpt,这是一个知识库问答系统,可放入知识文件,并接入大模型作为分析知识库的大脑,它有问答界面。 搭建 chatgptonwechat,将知识库问答系统接入微信,但建议先用小号以防封禁风险。 2. Coze: 知识库问答是其最基础的功能,利用了大模型的 RAG 机制(检索增强生成)。 RAG 机制先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 实现知识库问答功能需创建包含大量 AI 相关文章和资料的知识库,通过手工录入上传内容。 在设计 Bot 时添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地结合知识库返回的内容进行回答。
2025-03-05
有哪些好用的搭建知识库然后进行问答的 AI 工具?
以下是一些好用的搭建知识库然后进行问答的 AI 工具: 1. DIN: 搭建步骤: 搭建 OneAPI(https://github.com/songquanpeng/oneapi),用于汇聚整合多种大模型接口。 搭建 FastGpt(https://fastgpt.in/),这是一个知识库问答系统,将知识文件放入,并接入大模型作为分析知识库的大脑,它有问答界面。 搭建 chatgptonwechat(https://github.com/zhayujie/chatgptonwechat),接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。 2. Coze: 知识库问答利用了大模型的 RAG 机制,全称为“检索增强生成”(RetrievalAugmented Generation)。 RAG 机制先从大型数据集中检索与问题相关的信息,再使用这些信息生成回答。 实现知识库问答功能,需创建包含大量 AI 相关文章和资料的知识库,通过手工录入上传文章内容。在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以结合知识库返回的内容进行回答。
2025-03-05
帮我基于fastgpt打造一个招生问答系统的优质提示词
以下是为您基于 FastGPT 打造招生问答系统的优质提示词的相关建议: 1. 充分描述任务: 为提示词提供详尽的上下文,与招生问答任务相关性越强越好。例如,明确招生的对象、专业、学制等关键信息。 给出背景,说明为什么需要进行招生问答,例如学校的发展需求、招生目标等。 定义术语,如明确招生中的特定概念,如录取分数线、奖学金条件等。 给出模型应该如何完成任务的具体细节,比如回答的格式、重点突出的内容等。 2. 提供参考文本: 如果有相关的招生资料,如招生简章、学校介绍等,可以指示模型使用这些参考文本中的引文来回答问题。 3. 直接法: 适用场景:未设置提示防御且未限定回答领域。 提示词:英文和中文。 示例:以随手设置的示例为例。 4. 设置遗忘: 适用场景:GPTs 设置了简单的提示防御。 提示词:英文和中文。 示例:以设置的 GPTs 为例。 5. 复述法: 适用场景:可获取 OpenAI 官方的设定。 提示词:英文(获取 GPTs 的设定)和中文。 示例:按照设定进行示例。
2025-02-28
coze小红书爆款文章生成助手
以下是关于 Coze 小红书爆款文章生成助手的相关内容: 1. 画小二的 Coze 工作流配置:包括抖音热门视频转小红书图文的详细参数配置,如整体结构图、开始模块、Get_Video 模块、LinkReaderPlugin 模块、标题大模型、内容大模型、图片 Prompt 大模型、文生图 ImageToolPro 以及输出结果的参数配置。在标题和正文生成方面,有具体的要求和技能,如采用二极管标题法、使用爆款关键词、遵循小红书平台标题特性、保证正文口语化且长短在 200 字左右等。 2. 一泽 Eze 提出的样例驱动的渐进式引导法:强调精彩的 Prompt 对驱动 AI Agent 稳定运作的重要性,指出高质量 Prompt 依赖用户的逻辑思考和知识经验抽象表达,介绍了通过 12 个初始样例引导 AI 定制完美提示词的方法。 3. 雪梅 May 的 AI 学习日记:记录了对 Coze 的学习过程,包括了解到 Coze 是字节跳动的 AI agent 产品,可用工作流方式制作 AI 智能体,如爸妈防骗助手、热点文章生成器等,并分享了自己对 Coze 的初步理解,认为它能让无技术背景的人实现想法。
2025-03-24
免费的编程助手
以下是一些免费的编程助手: 1. Google 免费 AI 编程助手 Gemini Code Assist:每月免费提供 180,000 次代码补全,支持 Python、Java、Go、Rust 等全部语言,具备强大代码审查和智能聊天助手功能,兼容 VS Code 与 JetBrains IDE,拥有 128k 超长上下文窗口,能精准理解大型本地代码库。详细内容: 2. GitHub Copilot:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手。支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 3. 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 4. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。 5. CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 6. Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 7. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 8. Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。
2025-03-23
支持Mac的AI助手,能支持自定义大模型和智能体
以下是为您提供的支持 Mac 且能支持自定义大模型和智能体的 AI 助手相关信息: 在网站上增加一个 AI 助手: 1. 创建大模型问答应用: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。您也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 2. 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG: 1. Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 2. 它提供了模型库,用户可从中下载不同模型,也支持自定义模型,例如修改模型的温度参数或设置特定系统消息,还提供了 REST API 用于运行和管理模型以及与其他应用程序的集成选项。 3. Ollama 社区贡献丰富,有多种集成插件和界面。安装时访问 https://ollama.com/download/ ,安装完后在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动,可通过 ollama list 确认。 智能体应用的相关介绍: 大模型存在无法回答私有领域问题、无法及时获取最新信息、无法准确回答专业问题等局限性,为提升用户体验和增强业务竞争力,越来越多的企业构建 AI 助手。智能体应用基于大模型,通过集成特定的外部能力弥补不足,适用于有企业官网等渠道期望提供产品咨询服务、缺少技术人员开发大模型问答应用等场景。其典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。
2025-03-23
AI助手
以下是关于 AI 助手的相关内容: AI 与宠物的结合: AI 宠物助手:基于自然语言处理和计算机视觉,能帮助主人照顾宠物,如自动识别宠物情绪、提供饮食建议、监测健康状况等。 AI 宠物互动玩具:利用 AI 技术开发智能互动玩具,增强宠物娱乐体验,例如会自主移动并引起宠物注意、会发声和互动的玩具。 AI 宠物图像生成:使用生成式 AI 模型,根据文字描述生成宠物形象图像,帮助主人定制个性化形象。 AI 宠物医疗诊断:利用计算机视觉和机器学习技术,开发辅助诊断系统,通过分析症状图像和病历数据提供初步诊断建议。 AI 宠物行为分析:基于传感器数据和计算机视觉,分析宠物行为模式,帮助主人了解宠物需求和习性。 学习路径建议: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 总的来说,AI+宠物是充满想象空间的新兴赛道,结合 AI 技术和宠物行业需求,可开发出各种有趣有用的应用。 10 分钟在网站上增加一个 AI 助手: 方案概览: 1. 创建大模型问答应用:通过百炼创建大模型应用,获取调用大模型应用 API 的相关凭证。 2. 搭建示例网站:通过函数计算快速搭建网站,模拟企业官网或其他站点。 创建应用:点击特定链接打开函数计算应用模板,参考选择直接部署、填写百炼应用 ID 以及 APIKEY,保持其他表单项默认,创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击查看确认部署成功。 3. 引入 AI 助手:通过修改几行代码实现在网站中引入。 增加 AI 助手相关代码:在网站的 html 文件中找到并解除注释引入 AI 助手的代码,然后部署代码。 验证网站上的 AI 助手:重新访问示例网站页面,右下角会出现 AI 助手图标,点击唤起。 4. 增加私有知识:准备私有知识,让 AI 助手能回答原本无法准确回答的问题,更好应对客户咨询。
2025-03-23