Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

现阶段ai工具解决问题的方式方法是什么

Answer

现阶段 AI 工具解决问题主要有以下方式方法:

  1. 生成式 AI 在艺术创作方面,虽存在幻觉或处理请求时间长等问题,但为满足高级用户需求,许多公司预计会添加如 ChatGPT 那样的“专业版”套餐以提供更高质量服务。
  2. AI 工作流:每个工作环节都有自身特点,不能仅依靠一个 AI 工具解决所有问题,而是要为每个环节选择最合适的 AI 工具,通过局部最优解达到全局最优解。AI 能帮助人类迅速写出基础文章,人类在此基础上优化,效率更高。随着大模型进化和提示词能力提升,未来 AI 有望输出更高质量文章。现在学习 AI 工作流是为了提前布局、抢占先机。
  3. 在游戏创建领域,第一阶段重点关注工具,生成式人工智能可成为创作者的副驾驶,优化现有 UGC 工作流程,现有平台会添加相关工具,初创公司也会针对其优化工作流程。第二阶段可能会出现从头重新构想创作工作流程的新公司,形成全新创作范式,但具体形式难以预测。
Content generated by AI large model, please carefully verify (powered by aily)

References

生成式 AI:下一个消费者平台

今天,许多AI工具都会出现幻觉(例如,照片中突然出现第三只手臂!)或者需要很长时间才能处理请求。对于大多数消费者来说,这可能是可以接受的,但如果你试图通过内容实现盈利,这可能会令人更加沮丧。为了满足这些高级用户的需求,我们预计许多公司将添加提供更高质量服务的“专业版”套餐——正如ChatGPT[已经做到的那样](https://techcrunch.com/2023/02/01/openai-launches-chatgpt-plus-starting-at-20-per-month/)。

夙愿:AI 工作流,赋能我的十倍增长

通过这个AI工作流的加持,每个步骤里你都选择了一个,最适合当前步骤的AI工具来提效,文章从选题到发布的全流程都得到了非常高的效率提升。通过局部最优解,来达到全局最优解。现在,很多人企图用一个的AI工具来解决所有问题。但其实每个工作环节都有自己的特点,一个工具难以应对所有情况。想想看,你会让一个篮球高手去游泳比赛吗?肯定不行啊。AI工作流就是要给每个环节找最合适的AI工具。这样一来,不同的AI工具配合起来,效果比单独用一个工具好得多。说到这,有的人会反驳了,AI写的文章很一般,没有灵魂。你说得对,的确是这样的,但是我的观点是,AI它能够帮助我们人类迅速地从0写出70分的文章,然后我们人类其基础上,打磨优化到80分,这样的工作方式,效率肯定是比人类直接从0-80分高得多得多的。但再过一段时间,随着大模型能力的进化,以及我们写提示词的能力提升,就能一定能让AI输出80分的文章。有人可能会问,既然现在的AI还不够完美,为什么我们要现在就学习AI工作流呢?我的答案是:提前布局,抢占先机。因为未来会出现更强大的AI工具,例如GPT5。

AI将使任何人都能够创建游戏

1.第一阶段将重点关注工具。生成式人工智能可能会成为人类创作者的副驾驶,使现有的UGC工作流程变得更加强大和易于访问。现有的UGC平台(即Roblox)将在其现有工具集中添加生成人工智能工具,初创公司将复制当前的UGC工作流程,但从一开始就针对生成人工智能进行优化。类似于互联网最初如何开始为政府解决次要的点解决方案,或者云如何开始用于点解决方案,我们相信生成式人工智能将从点解决方案工具开始,以协助创作者当前的工作流程。2.在第二阶段,我们相信将会出现新的公司,从头开始重新构想创作工作流程。第二阶段的产品可能看起来不太像工具或平台,而更像是基于生成人工智能构建的引擎或操作系统。与获胜网站不是对报纸的模仿或获胜移动应用程序不是对网站的模仿类似,我们相信,随着生成式人工智能深入嵌入从用户体验到渲染管道的基础堆栈中,将会出现一种全新的创作范式。.他们现在究竟会采取什么形式,没有人能真正预测。

Others are asking
0基础,如何开始学习ai
对于 0 基础学习 AI 的朋友,以下是一份详细的学习指南: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是 0 基础还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但请注意,部分内容由 AI 大模型生成,请仔细甄别。
2025-01-30
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 此外,您还可以参考《雪梅 May 的 AI 学习日记》,该日记适合纯 AI 小白。其学习模式是输入→模仿→自发创造,学习内容可根据个人兴趣在 waytoAGI 社区寻找最新的内容。学习时间较为灵活,且学习资源免费开源。
2025-01-30
能够制作工程预算单的AI推荐
目前在制作工程预算单方面,暂时没有特别突出的专门 AI 工具推荐。但您可以尝试使用一些通用的办公软件,它们可能具有相关的功能或模板,例如 Microsoft Excel 等,通过设置公式和参数来辅助您完成工程预算单的制作。
2025-01-30
我想要一个能够计算工程预算的软件或者AI,请问我推荐
目前市面上有一些能够计算工程预算的软件和具备相关功能的 AI 工具。例如广联达,它是一款在建筑工程领域广泛使用的预算软件,功能较为全面和专业。还有鲁班软件,也在工程预算计算方面有一定的优势。 此外,一些新兴的 AI 工具如某些基于大数据和机器学习算法的在线预算计算平台,能够根据您输入的工程参数和要求,快速生成较为准确的预算结果。但在选择时,您需要考虑软件的适用性、价格、操作便捷性等因素,以满足您的具体需求。
2025-01-30
想让ai帮助写一篇论文
在论文写作方面,AI 技术的应用能提供多方面的辅助。以下为您介绍一些相关的 AI 工具和利用 AI 写论文、课题的方法: 常用的论文写作 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写论文的方法: 目前大多数人零碎使用 AI 工具,未系统应用到工作场景,可能导致整体效率不高。要形成适合自己的 AI 工作方法论和流程,比如在挑选和切换工具时避免浪费时间。 利用 AI 写课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据,用 AI 数据分析工具处理和解释。 8. 撰写和编辑:用 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 请注意,AI 工具是辅助,不能完全替代研究者的专业判断和创造性思维,使用时要保持批判性思维,确保研究质量和学术诚信。
2025-01-30
学习AI技术从哪里开始
对于新手学习 AI ,可以从以下几个方面开始: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 如果您的学习方向偏向技术研究,需要掌握的知识包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您的学习方向偏向应用,需要掌握的知识包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-30
在现阶段的GPT发展下,与AI交流提示词还重要吗
在现阶段的 GPT 发展下,与 AI 交流的提示词仍然非常重要。以下是一些原因: 1. 目标明确:对于 GPT 及其他 AI 来说,明确每一步的目标至关重要。只有给予清晰的指导,AI 才能产生相关且有价值的输出。 2. 逻辑性:在各种提示策略中,逻辑性都是关键。清晰、结构化的提示有助于 AI 更有效地生成输出。 3. 分步骤:无论是进行深度分析还是遵循特定结构,确保提示按照清晰的步骤进行极为重要。 4. 考虑变量:这在某些提示策略中尤其重要,需要考虑可能影响结果的所有因素。 例如,在运用 CoD 将文章做摘要的实验中,个人观点认为以英文提示词最后加上中文输出的方式效果较好,并且密度等级 4 的结果较让人满意。同时,LangGPT 框架的出现也表明随着新一代模型的发布,提示词的重要性日益凸显,其编写过程逐渐成为一种编程语言。但也有人认为框架在协助的同时也有限制,提示词带来的收益并非如宣传所说,其重要性会朝两极分化。
2025-01-07
AI现阶段的成因
AI 现阶段的成因主要包括以下几个方面: 1. 在软件领域,AI 软件公司有三种起源和结果:运行在现有软件之上的 AI 工具,如为 Zoom 会议自动记录会议笔记;运行在现有软件之上且有机会取代现有软件的 AI 工具,如为 Zoom 会议记录笔记后构建视频会议并推销;成为劳动力的 AI 工具,这是一个全新的类别。平台转变促成了前两种情况。同时,软件市场与白领劳动力市场相比规模较小,许多增长最快的公司将现有的昂贵服务转化为大众的低价产品。 2. 在医疗保健和生物技术领域,AI 正在工业化生物制药和医疗保健,应用于从药物设计、诊断到医疗保健交付和后勤功能等各个方面。 3. 在教育领域,学习通常具有功利导向,“突破性新技术+垂直行业知识”的组合能为学习者带来更高投入产出比。在 AI 领域,让 AI 工程师懂行业、让行业专家懂 AI 投入产出比高,但前提是找到高价值应用场景。现阶段“AI 口嗨者众,AI 实干家寡”的主要原因是缺乏带来足够正反馈的高价值应用场景。
2024-12-26
现阶段应对ai诈骗研究进展
现阶段应对 AI 诈骗的研究进展主要包括以下方面: 拜登签署的 AI 行政命令要求开发最强大 AI 系统的开发者与美国政府分享安全测试结果等关键信息。对于可能对国家安全、经济安全、公共卫生和安全构成严重风险的基础模型,开发公司在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。商务部将为内容认证和水印制定指导方针,以清晰标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和世界各国政府树立榜样。 OpenAI 提出通过“指令层次结构”修复“忽略所有先前指令”攻击的方法,并已在 GPT40 Mini 中部署。Anthropic 在多重越狱方面的工作表明了“警告防御”的潜力,在前面和后面添加警告文本以警示模型。Gray Swan AI 的安全专家试用“断路器”,专注于重新映射有害表示。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建了首个红队抵抗组织基准,Scale 根据私人评估推出了自己的稳健性排行榜。 除了常见的越狱攻击,还存在更隐蔽的攻击,如伯克利和麻省理工学院的研究人员创建的看似无害的数据集,会训练模型响应编码请求产生有害输出。
2024-12-02
ai诈骗现阶段研究进展及其成果
目前关于 AI 诈骗的研究进展及成果的相关内容较少。但在 AI 领域,以下方面的研究成果可能对理解 AI 诈骗有所帮助: 神经网络研究:自 2010 年左右,大型公共数据集的出现推动了神经网络的发展。2012 年卷积神经网络用于图像分类,错误率大幅下降。2015 年微软研究院的 ResNet 架构达到人类水平准确率。此后,神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中表现成功。 AI 幻觉应对:研究人员开发多种技术手段应对,如进行数据“体检”,包括数据清洗去除错误信息、补充缺失数据等,以及数据增强为模型提供更多丰富训练数据。 政策方面:拜登签署的 AI 行政命令中,要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息,制定确保 AI 系统安全可靠的标准、工具和测试,建立相关安全委员会,应对 AI 对关键基础设施的威胁,制定防范利用 AI 制造危险生物材料的新标准,建立检测 AI 生成内容和认证官方内容的标准及最佳实践以防范 AI 导致的欺诈和欺骗。
2024-12-02
针对现阶段我国AI发展情况,实体企业面临的机会和挑战有哪些?
现阶段我国 AI 发展情况下,实体企业面临的机会和挑战如下: 机会: 1. 提高工作效率:如在编程、自动化任务处理和内容创作等方面,AI 能够快速完成复杂任务。 2. 创新业务模式:企业领导者可利用 AI 提高工作效率,将更多精力投入创新和战略规划。 3. 拓展市场边界:通过提示词工程优化 AI 输出,提升市场竞争力。 挑战: 1. 岗位替代风险:部分技术岗位如系统管理员、数字营销文案撰写等可能受到 AI 的冲击。 2. 伦理考量:包括数据隐私和安全、算法公平性、透明度和可解释性、人机协作以及社会影响等方面。 3. 适应新技术环境:企业需要不断调整和适应 AI 带来的工作方式和业务模式的变化。 同时,在国际上,如欧洲国家,要成为 AI 超级大国,需创造良好环境,应对包括物理伤害、国家安全、心理健康等风险,解决伦理挑战,建立公众信任,以充分发挥 AI 的优势。
2024-10-20
现阶段如何让AI融入生活和工作
人工智能 正以惊人的速度融入我们的生活和工作,为各个领域带来了革命性的变化。以下是一些现阶段如何让 AI 融入生活和工作的方法: 日常生活方面: 1. 智能家居: 利用智能家居设备,例如智能音箱、智能灯具、智能门锁等,可以简化日常家务,提升生活便利性和安全性。 2. 个性化推荐: 基于 AI 算法的个性化推荐系统可以根据您的兴趣和需求,推荐您可能喜欢的商品、电影、音乐等,帮助您节省时间和精力。 3. 智能语音助手: 智能语音助手可以帮助您完成各种任务,例如设置闹钟、播放音乐、查询天气、拨打电话等,解放您的双手。 4. 智能图像识别: AI 图像识别技术可以用于照片整理、物品识别、文字翻译等,方便您的日常生活。 5. 虚拟现实和增强现实: VR 和 AR 技术可以为您提供身临其境的体验,用于游戏、教育、培训等领域,丰富您的生活娱乐。 工作领域方面: 1. 智能客户服务: AI 客服机器人可以 7x24 小时提供客户服务,解答常见问题,处理简单事务,减轻人工客服压力。 2. 数据分析和决策支持: AI 可以帮助分析大量数据,发现隐藏的模式和趋势,为企业决策提供支持。 3. 自动化工作流程: AI 可以自动化许多重复性的工作流程,例如数据录入、文件整理、报告生成等,提高工作效率。 4. 智能制造: AI 可以用于智能制造,例如预测性维护、质量控制、生产优化等,提高生产效率和产品质量。 5. 个性化学习和培训: AI 可以根据每个学生的学习情况和需求,提供个性化的学习和培训方案,提高学习效果。 6. 医疗辅助诊断: AI 可以辅助医生进行诊断,例如分析医学影像、识别疾病特征等,提高诊断的准确性和效率。 7. 科学研究: AI 可以用于科学研究,例如分析实验数据、提出新理论、设计新实验等,加速科学发现。 总而言之,AI 已经渗透到生活的各个方面,并将在未来发挥更大的作用。随着 AI 技术的不断发展,我们可以期待 AI 将为我们的生活和工作带来更加便利、智能和高效的体验。
2024-05-08
如何精准提问解决问题
要精准提问解决问题,可以参考以下几点: 1. 在使用类似 Cursor 等工具时,如果在提示栏中按 Option/Alt Enter,它将回答您关于选择和附加上下文的任何问题。此对话内容可在后续生成中进一步使用,在其提出响应后键入“do it”即可在快速提问后生成代码。 2. 相信类似 GPT 等工具的能力,大胆提要求让其帮忙完成。 3. 明确自己的需求,向 GPT 提的要求尽量准确,如同给员工安排工作。 4. 不断追问,只要不明白,就目标明确、表达精确地追问。 5. 对于 GPT 不了解您工作环境和个性需求的情况,提供准确信息,如直接贴出文件目录地址,请其直接处理。 6. 锻炼语言表述能力,更精准地用语言描述问题。因为在语言模型时代,一个好的问题某些时候比答案更重要,语言本身也代表着人类思维的外放,与文明诞生有关联。 7. 具备业务理解和 AI 嵌入能力,找到业务中应用大模型的场景,将业务和大模型算法结合,理解模型在业务中的边界。 8. 培养维度转换能力,将各种问题转化为语言问题,将业务中的数据转化为语言描述,将通用模块问题转化为通用问题模块,把所有信息都转化为语言信息后再交流。 9. 在业务助手中,可采用助手方式,主要进行工作辅助,不在主业务流程内,大模型负责优化、检索、启发、提供思路等,帮助人提高效率、多维度思考;也可采用业务环方式,大模型经过调整和 prompt 工程后,作为接口服务,进入到主业务流程中,自动处理内容并生成结果。
2025-01-30
与 AI 共事,是否改变了你解决问题的方式
与 AI 共事确实改变了人们解决问题的方式。具体表现为: 更加聚焦目标,避免陷入具体细节。 从实现细节中抽离出来,更加高效地工作。 对复杂问题的理解发生变化,能力在过程中得到提升。 为流程带来全新视角,突破过去能力的限制。 对于个人博客,AI 提供了不同的思路和视角,使其变得可执行可操作。 在医疗保健领域,为了让 AI 产生真正的改变,应创建像优秀医生和药物开发者那样学习的模型生态系统。例如,预医学生和设计新疗法的科学家都需要经历从基础到专业的学习过程,AI 也应如此,通过逐步训练不同的模型,而非仅依靠大量数据和生成模型来解决问题。
2025-01-11
大学老师最头疼的场景,能够使用到最多的AI场景解决问题
以下是一些大学老师可能会遇到的头疼场景以及能够用 AI 解决的方式: 学习指导方面: 可以大规模部署个性化的学习计划,为每个学生提供一个“口袋里的老师”,理解学生独特需求,回答问题或测试技能。例如像 Speak、Quazel 和 Lingostar 这样的应用。 对于特定学科的学习,如数学,有像 Photomath 和 Mathly 这样的应用指导学生解决问题;对于历史学习,有 PeopleAI 和 Historical Figures 通过模拟与杰出人物的聊天来教授。 学生在作业中利用 AI 助手,如 Grammarly、Orchard 和 Lex 帮助克服写作难题,提升写作水平。处理其他形式内容的产品,如 Tome 和 Beautiful.ai 协助创建演示文稿。 教学协助方面: 自适应学习,精准回答学生问题,协助教师提供数字资源。 在教育的各个方面,如教学内容、教学场景、教材与教法、教育思想和教育组织形态等,AI 都能发挥作用。 在不同的教育时代,如口传时代、手抄时代、印刷时代、电子媒体时代和数字媒体时代,AI 都能为教育带来新的可能性和改进。 AI 在医疗保健、金融服务、零售和电子商务、制造业、交通运输等行业也有广泛应用: 医疗保健:医学影像分析辅助诊断疾病、药物研发、个性化医疗、机器人辅助手术等。 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:自动驾驶、交通流量预测、物流优化等。
2024-10-07
如何提升解决问题的能力
提升解决问题的能力是一个持续的过程,涉及多个方面的培养和锻炼。以下是一些系统性的方法和技巧,可以帮助你提高解决问题的能力: 1. 了解和定义问题 a. 清晰理解问题 问题陈述:确保你能明确地描述问题,包括问题的背景和关键要素。 问题拆解:将复杂问题分解为多个小问题,逐步解决。 b. 问题分析 5 Whys 法:连续问“为什么”五次,找到问题的根本原因。 鱼骨图(因果图):通过图示法识别问题的潜在原因。 2. 开展系统思维 a. 理解系统 系统图:绘制系统图,了解问题所在系统的各个组成部分及其相互关系。 反馈回路:识别系统中的正反馈和负反馈回路,理解其动态行为。 b. 思维工具 思维导图:使用思维导图整理和关联不同的想法和信息。 SWOT分析:分析问题的优势(Strengths)、劣势(Weaknesses)、机会(Opportunities)和威胁(Threats)。 3. 培养批判性思维 a. 信息评估 证据检验:评估信息的真实性和可靠性,避免信息偏差。 逻辑推理:通过逻辑推理评估结论的合理性,确保没有逻辑漏洞。 b. 偏见识别 认知偏差:了解常见的认知偏差(如确认偏差、锚定效应)并加以避免。 多视角分析:从不同的角度审视问题,避免单一视角带来的偏见。 4. 掌握解决问题的方法和工具 a. 创意思维 头脑风暴:鼓励团队成员提出各种创意和解决方案,不进行立即评估。 SCAMPER 技巧:通过替换(Substitute)、结合(Combine)、调整(Adapt)、修改(Modify)、其他用途(Put to another use)、消除(Eliminate)和重组(Rearrange)等方法产生新思路。 b. 决策方法 权衡分析:评估不同方案的优缺点,权衡利弊,选择最佳方案。 决策矩阵:将各方案按不同的决策标准进行评分和比较。 5. 实践和反思 a. 实践机会 实际案例分析:通过实际案例分析和解决问题,积累经验。 模拟训练:通过模拟训练解决虚拟问题,提升应对真实问题的能力。 b. 持续反思 事后分析:在解决问题后进行事后分析,评估解决方案的效果和改进点。 个人反思:定期进行个人反思,记录和总结解决问题的经验和教训。 6. 培养相关技能 a. 沟通能力 有效沟通:清晰表达问题和解决方案,确保团队成员理解并达成共识。 倾听技能:认真倾听他人的意见和建议,吸取不同的观点和信息。 b. 团队合作 团队协作:充分利用团队成员的知识和技能,协同解决问题。 角色分工:明确团队成员的角色和分工,提高解决问题的效率。 7. 学习和借鉴 a. 学习经典方法 PDCA 循环:计划(Plan)、执行(Do)、检查(Check)、行动(Act),持续改进。 六西格玛:使用DMAIC(定义、测量、分析、改进、控制)方法改进流程和解决问题。 b. 借鉴成功案例 行业标杆:研究和借鉴行业内外的成功案例和最佳实践。 跨领域学习:学习和借鉴其他领域的解决问题方法,拓宽思路。 实施步骤 1. 明确问题:详细描述和定义问题,确保对问题的全面理解。 2. 系统分析:分析问题的根本原因和影响因素,绘制系统图和反馈回路。 3. 创意生成:利用头脑风暴和创意思维技巧,生成多种可能的解决方案。 4. 决策评估:通过权衡分析和决策矩阵,选择最佳解决方案。 5. 实施方案:制定详细的实施计划,明确步骤和责任人,确保方案的有效执行。 6. 效果评估:在实施过程中和结束后,评估方案的效果,进行必要的调整和改进。 7. 总结反思:总结解决问题的经验和教训,进行个人和团队的持续改进。 通过这些系统性的方法和步骤,你可以有效地提升解决问题的能力,应对各种复杂和多变的挑战。如果有具体的问题或领域,可以告诉我,我可以提供更详细的建议和指导。
2024-07-15
有没有什么工具,把教学操作视频,转ppt或者pdf
目前在 AI 领域,暂时没有专门直接将教学操作视频转换为 PPT 或 PDF 的工具。但您可以通过以下方式来实现类似的效果: 1. 手动观看视频,并根据内容自行制作 PPT 或 PDF。 2. 使用视频编辑软件,提取关键帧,然后将这些图片插入到 PPT 或 PDF 中。 3. 利用语音转文字工具,获取视频中的讲解内容,再整理到 PPT 或 PDF 中。
2025-01-30
我是一个AI小白,我使用AI的主要目的是使用这些工具,简化我工作中费时费力的事情,比如:表格的制作,筛选数据;图片的抠图,渲染,产品的口播介绍;日常工厂管理文件的编写及执行步骤;工作手册及岗位绩效的编写;作业指导书的编写
以下是为您整合的相关内容: 对于 AI 小白来说,使用 AI 工具简化工作中的费时费力之事是可行的。 在接触 AI 工具时,对于超出自己理解范围的事情,最简单有效的方法就是尝试。学习新事物,实践比听闻更重要。 比如在 AI 视频制作方面,人物设定与剧本是关键部分,包括主体、动作、场景等要素;分镜处理也较为重要,要考虑用几个镜头表述内容;生成环节如同抽卡,可多尝试,最后进行粗检和后期处理,如 AI 配音剪辑、加过渡滤镜等。小白制作 AI 视频要做好脚本即提示词,有耐心抽卡,并不断提升撰写提示词的能力。撰写提示词时要了解主体、动作、场景,避免使用专有名词和网络名词,给 AI 清晰描述。工具选用方面,没有绝对好的工具,只有适合的,如小白可使用剪映,主力机是 MacBook Pro 可使用 final cut。还可向 ChatGPT 询问获取灵感。 另外,在“AI 布道”活动中发现,AI 工具虽强大能做很多事,但也在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。无论是什么身份、什么年龄段的人,都可以尝试使用 AI 工具。 如果您想要跟相关作者交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-01-30
国外用户数最多的ai工具
根据所提供的内容,国外访问量最大的 AI 工具中,ChatGPT 独占 140 亿流量,占总流量的 60%。Writerbuddy AI 分析了 3000 多种 AI 工具,选出访问量最大的 50 个工具,共产生超过 240 亿次访问量,且 AI 行业每月增长 2.363 亿访问量,这 50 个工具增长率达 10.7 倍。在分析的前 50 名 AI 工具的地理行为方面,中国排名第 47 位。美国在顶级 AI 公司数量方面领先,欧洲以及澳大利亚和加拿大在 AI 投资和采用方面落后,所有欧盟国家合计产生了 39 亿流量,占总量的 16.21%。
2025-01-29
如何快速提高向AI工具的提问能力
以下是一些快速提高向 AI 工具提问能力的方法: 1. 先了解 AI 工具的功能和适用范围,明确其能解决的问题类型。 2. 学习相关的基础知识,例如 AIGC 背后的原理,以便更深入理解 AI 的可能性和局限性。 3. 避免拟人化的提问方式,而是直接清晰地描述问题。 4. 对于复杂的问题,逐步分解,分步骤进行提问。 5. 学会批判性地看待 AI 的输出结果,如有错误,分析原因并进一步优化提问。 6. 多参考他人成功的提问案例,如学生在春游前提问关于便携食物的规划。 7. 利用群里的交流氛围,如“公开问”,学习他人的提问技巧。 8. 对于不熟悉的领域,先进行一定的知识储备,再向 AI 提问。 9. 不断练习和尝试,在实践中总结经验,提高提问的准确性和有效性。
2025-01-28
对口型工具
以下是关于对口型工具的相关信息: 即梦 AI 对口型功能: 功能介绍:是即梦 AI「视频生成」中的二次编辑功能,现支持中文、英文配音。主要针对写实/偏真实风格化人物的口型及配音生成,为用户创作提供更多视听信息传达能力。可上传包含完整人物面容的图片生成视频,完成后点击预览视频下的「对口型」按钮,输入台词并选择音色或上传配音文件生成对口型效果。目前支持语言包括中文(全部音色)和英文(推荐「超拟真」内的音色)。 技巧:上传写实/近写实的人物单人图片,不支持多人物图片对口型;输入 prompt,选择参数生成视频,确保人物无形变等扭曲效果;确保人物生成的情绪与希望匹配的口型内容匹配;在生成的视频下方点击【对口型】;输入或上传需要配音的内容,注意视频生成时长和配音试听时长尽量对齐,点击生成;先对口型,再超分补帧。 其他制作数字人及对口型的工具: HeyGen:AI 驱动的平台,可创建逼真的数字人脸和角色,适用于游戏、电影和虚拟现实等应用。 Synthesia:AI 视频制作平台,允许用户创建虚拟角色并进行语音和口型同步,支持多种语言。 DID:提供 AI 拟真人视频产品服务和开发,上传人像照片和输入内容,平台的 AI 语音机器人将自动转换成语音并合成逼真的会开口说话的视频。 相关创作教程示例: 文物唱歌:利用可灵先让文物动起来,再利用对口型让文物唱歌/搞 rap/念诗等。用到的工具包括可灵、剪映。 唱歌2:在 HeyGen 里上传图片作为 Photo Avatar,点击上传音频,上传自己想使用的歌曲/片段。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。请注意,这些工具的具体功能和可用性可能会变化,使用时请遵守相关条款和政策,并注意版权和伦理责任。
2025-01-27
有没有现成的AI工具可以用来整理收藏的网页知识内容?
以下是一些可以用来整理收藏的网页知识内容的 AI 工具: 1. 月之暗面开发的:它具备读取网页内容的能力,并能在此基础上生成一定的内容。但它的阅读能力有一定限制,可能无法一次性处理大量资讯或某些网站的内容,可分批次提供资料。 2. Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划。
2025-01-27