Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何做一个具身智能实体?

Answer

要实现具身智能实体,以下是一些关键方面:

  1. 空间智能:像人类看到桌上水杯能自动计算其位置和与周围事物的关系并预测后续情况一样,具身智能实体也应具备这种能力,将感知与行动联系起来,例如特斯拉的 FSD 以及英伟达的 GR00T 项目。
  2. 通用智能体特征:能在开放世界中探索,拥有海量世界知识,并能执行无数任务。
  3. 与环境的互动:无论是在物理世界还是数字世界,具身智能实体都需要感知、交互、主动获取数据、主动犯错、主动迭代、收集和反馈。
  4. 对工具的理解和使用:有效使用工具的前提是全面了解工具的应用场景和调用方法,通过学习如从示范中学习和从奖励中学习等方法,利用环境和人类的反馈做出调整。
  5. 感知物理世界:在物理世界中感知环境的难度较大,需要重点关注更底层的传感,包括视觉传感和触觉传感,充分感知和理解更多信息以进行决策。

需要注意的是,目前具身智能的实现仍面临诸多挑战,数字世界可能会先于物理世界取得突破。

Content generated by AI large model, please carefully verify (powered by aily)

References

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

[title]智变时代/全面理解机器智能与生成式AI加速的新工业革命[heading1]03智变- AI加速的行业变革[heading3]3.5 Agent走进物理世界当我们人类看到一个桌上的水杯,大脑就会自动计算它在三维空间中的位置,以及它与桌子和周围一切事物的关系,还会预测接下来会发生什么。行动的冲动是所有空间智能生命形式所固有的,它将感知与行动联系起来。一个具有空间智能的AI,它也能自动做类似的预测与行动冲动。空间智能将推动AI系统获得具身智能(Embodied Intelligence),能够像生物一样与环境互动,FSD就是典型的例子,现在Tesla正通过其改进版本来驱动Optimus机器人,Elon Musk在Tesla最近一次财报电话会上说今年底就计划让Optimus能够在Gigafactroy代替人类干点活。不过Nvidia有一个更宏大的计划,这是今年GTC上的One More Thing,他们计划推出GR00T项目,一个通用智能体(Foundation Agent)。其目标是为通用的人形机器人构建基础模型,使其能在不同实体之间迁移,训练过程类似OpenAI训练GPT-4,通过在海量环境中训练来获得通用性,这里就要用到我们在上一小节中提及的Isaac Sim来创造GPU加速的虚拟世界。Nvidia将通过它来以1000倍速运行物理模拟,生成无限复杂精细的虚拟世界,正所谓AI不用一天,人间就得一年。。这个项目的负责人Jim Fang在一次TED演讲上概括了通用智能体的三大特征:能在开放世界中探索;拥有海量世界知识;能执行无数任务;

质朴发言:大模型时代下的具身智能|Z 沙龙第 5 期

[title]质朴发言:大模型时代下的具身智能|Z沙龙第5期[heading1]#二、如何定义具身智能[heading2]2.1具身智能的具体定义是什么?大模型要解决的智能问题与具身智能要解决的核心问题的差异点是什么?我并不同意具身智能一定要是物理实体,它也可能是数字实体。比如在West World等场景中,我们完全可以有一个Agent纯数字载体。数字世界的载体同样需要去感知、交互、主动获取数据、主动犯错、主动迭代、收集和反馈。我认为,具身智能的实现与物理世界和数字世界没有特别大的关系。虽然大模型可能让这个问题看到了一些曙光,但并没有完全解决。也许更有可能的是,数字世界会先有所突破。比如,以前的非玩家角色(NPC)都是按照剧本来编写的,现在可能会更加自主、更加真实。所以,很有可能在未来10年内,机器人还在原地,而数字世界已经发展得很快。当然,作为做机器人创业者的我们,肯定希望借这一波机会推动机器人的小脑发展。另一位创业者分享了他对于数字智能、具身智能和传统智能机器人差异的看法:核心差异在于,具身智能在物理世界中感知环境的难度远大于数字智能在虚拟世界的难度。我出身于清华机械专业,从研究生一年级开始,我一直专注于智能机器人的研究。今年人工智能的火热让我发现,这两个领域实际上有着许多相似之处。我们当时做智能机器人的研究,也分为四个部分:感知、规划、决策、行动。第一步是先有传感。作为机械学院的一员,我在研究具身智能时,不仅关注感知,还会深入研究更底层的传感,包括视觉传感和触觉传感。我认为,如果你想与物理世界进行交互,那么最重要的就是你能够感知这个物理世界。这是物理具身智能与虚拟世界的一个最大区别和难点。例如,你在虚拟世界或游戏中,可以获得所谓的“完美观测”,但在真实世界中,你需要感知和理解更多的信息,这对你的决策可能会更重要。

AI-Agent系列(一):智能体起源探究

[title]AI-Agent系列(一):智能体起源探究[heading2]十、基于LLM的AI Agent[heading3]10.3行动模块(Action)理解工具:AI Agent有效使用工具的前提是全面了解工具的应用场景和调用方法。没有这种理解,Agent使用工具的过程将变得不可信,也无法真正提高AI Agent的能力。利用LLM强大的zero-shot learning和few-shot learning能力,AI Agent可以通过描述工具功能和参数的zero-shot demonstartion或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。这些学习方法与人类通过查阅工具手册或观察他人使用工具进行学习的方法类似。在面对复杂任务时,单一工具往往是不够的。因此,AI Agent应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于LLM的推理和规划能力,当然也包括对工具的理解。使用工具:AI Agent学习使用工具的方法主要包括从demonstartion中学习和从reward中学习(清华有一篇从训练数据中学习的文章)。这包括模仿人类专家的行为,以及了解其行为的后果,并根据从环境和人类获得的反馈做出调整。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。具身智能在追求人工通用智能(AGI)的征途中,具身Agent(Embodied Agent)正成为核心的研究范式,它强调将智能系统与物理世界的紧密结合。具身Agent的设计灵感源自人类智能的发展,认为智能不仅仅是对预设数据的处理,更多地来自于与周遭环境的持续互动和反馈。与传统的深度学习模型相比,LLM-based Agent不再局限于处理纯文本信息或调用特定工具执行任务,而是能够主动地感知和理解其所在的物理环境,进而与其互动。这些Agent利用其内部丰富的知识库,进行决策并产生具体行动,以此改变环境,这一系列的行为被称为“具身行动”。

Others are asking
最新具身智能新闻
以下是关于具身智能的最新新闻: 具身智能是将机器学习算法适配至物理实体,从而与物理世界交互的人工智能范式。以 ChatGPT 为代表的“软件智能体”通过网页端、手机 APP 与用户交互,而具身智能体则将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流。人形机器人是具身智能的代表产品。 具身智能的三要素包括本体(硬件载体)、智能(大模型、语音、图像、控制、导航等算法)、环境(本体所交互的物理世界),三者高度耦合是高级智能的基础。不同环境下会有不同形态的硬件本体适应,如室内平地适用轮式机器人,崎岖地面适用四足机器人。 具身智能体的行动分为“感知决策行动反馈”四个步骤,感知模块负责收集和处理信息,通过多种传感器感知和理解环境。常见的传感器有可见光相机、红外相机、深度相机、激光雷达、超声波传感器、压力传感器、麦克风等。 最近,具身智能的概念很火。例如稚晖君开源人形机器人全套图纸+代码引发圈内热议,各类具身智能产品如李飞飞的 Voxposer、谷歌的 RT1 和 RT2、RTX、字节跳动的 Robot Flamingo、斯坦福的 ACT 和卡耐基梅隆的 3D_diffuser_act 等,在不同任务和场景中展示了强大能力,并有潜力带来革命性变革。本文拆分为上下两篇,明天会更新下篇,聚焦人机交互、发展讨论。本文部分参考中国信息通信研究院和北京人形机器人创新有限公司的《具身智能发展报告》。
2025-01-27
具身智能
具身智能是人工智能领域的一个子领域。 它强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。智能不仅仅是处理信息的能力,还包括感知环境、自主导航、操作物体、学习和适应环境等能力。 具身智能的核心在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体为智能体提供了与环境互动的手段,并影响其学习和发展。 具身智能的研究涉及多个学科,如机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法。 具身智能在机器人领域(如服务机器人、工业自动化和辅助技术等)、虚拟现实、增强现实和游戏设计等领域有广泛应用。 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。其行动分为“感知决策行动反馈”四个步骤,并形成闭环。 尽管具身智能取得了显著进展,但仍面临诸多挑战,如智能体身体的设计、在复杂多变环境中的有效学习以及与人类社会相关的伦理和安全问题等。
2024-12-31
具身智能
具身智能是人工智能领域的一个子领域。 它强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。智能不仅仅是处理信息的能力,还包括感知环境、自主导航、操作物体、学习和适应环境等能力。 具身智能的核心在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体为智能体提供了与环境互动的手段,并影响其学习和发展。 具身智能的研究涉及多个学科,如机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法。 具身智能在机器人领域(服务机器人、工业自动化和辅助技术等)、虚拟现实、增强现实和游戏设计等领域有广泛应用。通过具身智能,机器人能更好地理解和适应人类生活环境,提供更自然有效的人机交互,也能创造更具沉浸感和交互性的体验。 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。不同环境下有不同形态的硬件本体适应环境。 具身智能的行动可分为“感知决策行动反馈”四个步骤,形成一个闭环。 在追求人工通用智能(AGI)的过程中,具身 Agent 正成为核心研究范式,它强调智能系统与物理世界的紧密结合。与传统深度学习模型相比,LLMbased Agent 能主动感知和理解所在物理环境并互动,进行“具身行动”。 尽管具身智能取得显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂环境中有效学习、处理智能体与人类社会的伦理和安全问题等。未来研究将继续探索这些问题以推动其发展和应用。
2024-12-31
基于多模态大模型的具身智能 技术原理是什么
基于多模态大模型的具身智能技术原理主要包括以下方面: 决策模块是具身智能系统的核心,负责接收感知模块的环境信息,进行任务规划和推理分析,以指导行动模块生成动作。早期决策模块主要依赖人工编程规则和专用任务算法,而基于近端策略优化算法和 Qlearning 算法的强化学习方法在具身智能自主导航等任务中展现出更好的决策灵活性,但在复杂环境适应能力等方面存在局限。 大模型的出现极大增强了具身智能体的智能程度,提高了环境感知、语音交互和任务决策能力。具身智能体的大模型是 AIGA,调用机械臂、相机等身体部件,其发展方向是视觉语言动作模型(VLA)和视觉语言导航模型(VLN)。 VLA 输入语言、图像或视频流,输出语言和动作,在统一框架内融合互联网、物理世界和运动信息,实现从自然语言指令到可执行动作指令的直接转换。 VLN 输入语言、图像或视频流,输出语言和移动轨迹,用于统一指令输入框架,使大模型直接生成运动方向、目标物体位置等操作信息。 Google Deepmind 从大模型入手打造具身智能,率先提出 Robotics Transformer 系列模型,如 RT1 等,并不断升级。RT1 基于模仿学习中的行为克隆学习范式,输入短的图像序列和指令,输出每个时间步的动作。随着数据量增加,有从分层模型过渡到端到端模型的趋势。 北大 HMI Lab 团队构建了全新的 RoboMamba 多模态大模型,使其具备视觉常识任务和机器人相关任务的推理能力。 在具身智能应用中,更强调“动态”学习方式,如强化学习、模拟学习等,让机器人与环境不断交互学习,通过奖励机制优化行为,获得最优决策策略,摒弃传统控制论算法物理建模的弊端。
2024-12-27
基于世界模型的具身智能 技术原理是什么
基于世界模型的具身智能技术原理主要包括以下方面: 谷歌发布的世界模型 Genie: 能够学习一致的动作空间,可能适合训练机器人,打造通用化的具身智能。 其架构中的多个组件基于 Vision Transformer构建而成,为平衡模型容量与计算约束,在所有模型组件中采用内存高效的 STtransformer 架构。 Genie 包含三个关键组件:潜在动作模型(Latent Action Model,LAM)用于推理每对帧之间的潜在动作;视频分词器(Tokenizer)用于将原始视频帧转换为离散 token;动态模型给定潜在动作和过去帧的 token,用来预测视频的下一帧。潜在动作模型以完全无监督的方式学习潜在动作。 相关论文《Genie:Generative Interactive Environments》已公布,论文地址为 https://arxiv.org/pdf/2402.15391.pdf,项目主页为 https://sites.google.com/view/genie2024/home?pli=1 ,论文的共同一作多达 6 人,包括华人学者石宇歌。 具身智能算法层: 机器人创业公司 Covariant 推出的首个机器人基础模型 RFM1 是基于真实任务数据训练的机器人大模型,共有 80 亿参数,是基于文本、图片、视频、机器人动作、传感器信息等多模态数据进行训练的 any to any 序列模型。 RFM1 将机器人的实际动作也视作 Token,其 token 包括多种模态,每个模块都有专门的 tokenizer 进行处理。操作只有一个——预测下一个 token。 RFM1 对物理世界的理解源自于其学习生成视频的过程,通过接受初始图像和机器人动作的输入,预测接下来视频帧的变化,掌握了模拟世界每个瞬间变化的低层次世界模型。 行业进展: 李飞飞在 AI 3D 生成领域的工作极大地加速了进展,通过对 3D 物体的生成所构建出的世界,再进行降维的视频生成,生成的视频自然符合物理世界的规律,生成的世界也可交互。 世界模型开启了在虚拟世界中预训练机器人的可能,这个虚拟世界完全符合物理规律,可以快速生成无限场景,支持并行训练多个任务,大幅降低试错成本,加速机器人的学习过程,为实现更复杂的机器人行为打开可能。这种进步正在催生新的应用可能,如更自然的人机交互界面、更安全的机器人控制系统、更高效的虚拟训练平台等。世界模型也在改变 AI 理解和交互世界的基本方式。
2024-12-27
具身智能
具身智能是人工智能领域的一个子领域,以下是关于具身智能的详细介绍: 1. 定义:强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 2. 核心要素: 智能体的“身体”或“形态”,包括物理形态(如机器人的机械结构)和虚拟形态(如模拟环境中的虚拟角色)。 身体不仅是互动手段,也影响智能体的学习和发展。 3. 涉及学科:包括机器人学、认知科学、神经科学和计算机视觉等。 机器人学关注设计能自主行动和适应环境的机器人。 认知科学和神经科学探索大脑处理与身体相关信息的机制及应用于人造智能系统。 计算机视觉致力于开发算法,使智能体能够理解和解释视觉信息。 4. 应用领域: 机器人领域,如服务机器人、工业自动化和辅助技术等,能更好地理解和适应人类生活环境,提供更自然有效的人机交互。 虚拟现实、增强现实和游戏设计等领域,创造更具沉浸感和交互性的体验。 5. 特点: 即“具身+智能”,是将机器学习算法适配至物理实体,与物理世界交互的人工智能范式。 三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 四个模块为“感知决策行动反馈”,形成一个闭环。 6. 面临挑战: 如何设计智能体的身体以最大化其智能表现。 如何让智能体在复杂多变的环境中有效学习。 如何处理智能体与人类社会的伦理和安全问题。 人形机器人是具身智能的代表产品,不同环境下会有不同形态的硬件本体适应环境。在追求人工通用智能(AGI)的征途中,具身 Agent 正成为核心的研究范式,它强调将智能系统与物理世界紧密结合,能够主动感知和理解所在的物理环境并互动,产生具身行动。
2024-12-26
可以做一个小红书私信自动回复的ai程序或者智能体吗
在理论上是可以创建一个小红书私信自动回复的 AI 程序或智能体的。但这需要一定的技术知识和开发能力。 首先,您需要确定回复的规则和逻辑,例如根据关键词、常见问题类型等来设定回复内容。 其次,选择适合的技术框架和工具,比如使用自然语言处理(NLP)技术和相关的库。 然后,进行数据收集和预处理,以训练模型能够准确理解和回复私信。 不过,需要注意的是,小红书的使用规则可能对自动回复有一定的限制和要求,您需要确保您的程序或智能体的使用符合其规定。
2025-01-30
如何让 ai 做一个自己的智能ai 软件
要让 AI 做一个自己的智能 AI 软件,可以参考以下步骤: 1. 选择合适的平台:例如字节跳动旗下的扣子(Coze),其是新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot。 2. 明确创建流程: 起一个智能体的名称。 写一段智能体的简单介绍。 使用 AI 创建一个头像。 3. 对于让 AI 写出想要的代码,可遵循以下.cursorrules 写法: 先说清楚自己是谁,告诉 AI 期待其具备的专业技能。 告诉 AI 要干什么,明确项目需求。 定好项目的“规矩”,强调代码规范。 明确文件存放位置。 指定使用的“工具”,如框架和库。 告诉 AI 怎么做测试。 推荐参考资料。 如有 UI 需求,补充相关要求。 4. 在与 AI 合作编程时,了解其边界和限制,遵循编程准则: 能不编,尽量不编。优先找线上工具、插件、本地应用,先找现成的开源工具或考虑付费服务,实在找不到再自己编程。以终为始,聚焦目标。
2025-01-29
智能体能干嘛
智能体(Agent)在人工智能和计算机科学领域是一种能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体具有以下关键组成部分和功能: 1. 规划:将大型任务分解为更小、可管理的子目标,有效处理复杂任务。 2. 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 3. 记忆:包括短期记忆用于上下文学习,长期记忆用于长时间保留和回忆信息,通常通过外部向量存储和快速检索实现。 4. 工具使用:学习调用外部 API 获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 以下是一些具体的智能体应用示例: 1. 新年心语智能体: 功能包括写祝福语、做对联、预测新年运势、生成 AI 图片、陪用户闲聊等。 由于使用了代码节点访问外部 API,未提供体验。 2. 买买买!💥产品买点提炼神器强化版🚀智能体: 应用场景针对企业和品牌营销团队,尤其是活跃于小红书和抖音的市场推广者。 解决难以精准提炼产品卖点、不能以友好的用户侧表达讲述卖点、社交媒体营销文案和脚本创作无系统等痛点。 主要功能有产品卖点深度挖掘、优质买点文案生成、小红书笔记和抖音脚本生成,所有内容可一键同步到飞书。
2025-01-29
人工智能设计拜年PPT的软件
以下是一些可以用于人工智能设计拜年 PPT 的软件: 1. Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,增强演示文稿吸引力,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包含互动元素和动画效果,网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 此外,还有以下相关内容: 1. 2024 年 6 月 22 日更新的一批研究报告,如《》等。 2. 熊猫 Jay 编写的超全的 AI 工具生成 PPT 的思路和使用指南,介绍了 MindShow、爱设计、闪击、Process ON、WPS AI 等工具,并因该培训获得 1000 元奖励。原文:https://mp.weixin.qq.com/s/uVoIIcePa7WTx7GNqkAPA 公众号:熊猫 Jay 字节之旅
2025-01-28
智能合规性分析
以下是关于智能合规性分析的相关内容: 在金融服务业中,生成式 AI 能带来更好的合规性,具体表现为: 1. 高效筛查:迅速汇总个体在不同系统中的关键信息,让合规官员更快得出交易是否存在问题的答案。 2. 更准确地预测洗钱者:根据过去 10 年的可疑活动报告训练模型,创建对洗钱者构成的定义。 3. 更快的文档分析:分析大量文档,标记潜在问题或关注区域。 4. 培训和教育:开发培训材料,模拟真实场景,教育合规官员。 欧洲议会和欧盟理事会规定了人工智能的统一规则,包括成员国的市场监督管理机关和委员会应能提议联合行动,促进合规、查明不合规情况等。对于建立在通用人工智能模型基础上的人工智能系统,明确了国家和联盟一级的责任和权限。 未来,拥抱生成式 AI 的合规部门有望阻止每年在全球范围内非法洗钱的巨额资金。如今,合规软件主要基于“硬编码”规则,存在诸多问题,生成式 AI 可能带来改变。
2025-01-27
针对现阶段我国AI发展情况,实体企业面临的机会和挑战有哪些?
现阶段我国 AI 发展情况下,实体企业面临的机会和挑战如下: 机会: 1. 提高工作效率:如在编程、自动化任务处理和内容创作等方面,AI 能够快速完成复杂任务。 2. 创新业务模式:企业领导者可利用 AI 提高工作效率,将更多精力投入创新和战略规划。 3. 拓展市场边界:通过提示词工程优化 AI 输出,提升市场竞争力。 挑战: 1. 岗位替代风险:部分技术岗位如系统管理员、数字营销文案撰写等可能受到 AI 的冲击。 2. 伦理考量:包括数据隐私和安全、算法公平性、透明度和可解释性、人机协作以及社会影响等方面。 3. 适应新技术环境:企业需要不断调整和适应 AI 带来的工作方式和业务模式的变化。 同时,在国际上,如欧洲国家,要成为 AI 超级大国,需创造良好环境,应对包括物理伤害、国家安全、心理健康等风险,解决伦理挑战,建立公众信任,以充分发挥 AI 的优势。
2024-10-20
我需要一个能用于命名实体识别的prompt,针对具体的抽取事例为我提供一个这样的模板,要保证抽取结果的准确性。
以下是一个用于命名实体识别的 Prompt 模板示例: “请从以下文本中准确识别出所有的命名实体,并按照人物、地点、组织、时间等类别进行分类:” 通过这样明确的指令,能够引导模型更有针对性地进行命名实体的抽取,从而提高抽取结果的准确性。
2024-09-08
AI在实体服装店等方面的应用
以下是 AI 在实体服装店方面的应用: 1. 设计方面: 提升设计质量和效率。 利用 AI 绘画进行服装款式、图案等的设计。 根据客户对颜色、面料和款式的偏好创建服装可视化。 2. 营销方面: 利用图像生成工具进行广告宣传,如 DALLE 2 用于生成与服装相关的广告图像。 利用 AI 向客户推荐特定服装。 3. 客户服务方面: 采用 AI 驱动的聊天机器人来处理客户服务请求。 4. 商品方面: 进行 AI 服装预售。 将 AI 绘画应用于实体印刷,如在 T 恤、杯子等实物上印刷相关图案。
2024-08-15
零基础怎么入门AI工具,行政专员一个
对于零基础的行政专员入门 AI 工具,以下是一些建议: 1. 明确学习目标:确定您希望通过 AI 工具解决哪些行政工作中的问题或提高哪些方面的效率。 2. 学习基础知识:了解 AI 的基本概念,例如机器学习、深度学习、自然语言处理等。可以通过在线课程、科普文章和视频来学习。 3. 选择适合的工具:根据行政工作的需求,选择一些易于上手的 AI 工具,如自动化文档处理工具、智能客服工具等。 4. 参加培训课程:报名参加专门针对零基础的 AI 入门培训课程,这些课程通常会有系统的教学和实践指导。 5. 实践操作:在实际工作中尝试使用所选的 AI 工具,积累经验。 6. 加入学习社区:参与 AI 学习的社区或论坛,与其他学习者交流经验,获取更多的学习资源和建议。 7. 持续学习和更新知识:AI 领域发展迅速,要保持学习的热情,不断跟进新的技术和工具。
2025-01-30
我想要一个能够计算工程预算的软件或者AI,请问我推荐
目前市面上有一些能够计算工程预算的软件和具备相关功能的 AI 工具。例如广联达,它是一款在建筑工程领域广泛使用的预算软件,功能较为全面和专业。还有鲁班软件,也在工程预算计算方面有一定的优势。 此外,一些新兴的 AI 工具如某些基于大数据和机器学习算法的在线预算计算平台,能够根据您输入的工程参数和要求,快速生成较为准确的预算结果。但在选择时,您需要考虑软件的适用性、价格、操作便捷性等因素,以满足您的具体需求。
2025-01-30
我是一个AI小白,我使用AI的主要目的是使用这些工具,简化我工作中费时费力的事情,比如:表格的制作,筛选数据;图片的抠图,渲染,产品的口播介绍;日常工厂管理文件的编写及执行步骤;工作手册及岗位绩效的编写;作业指导书的编写
以下是为您整合的相关内容: 对于 AI 小白来说,使用 AI 工具简化工作中的费时费力之事是可行的。 在接触 AI 工具时,对于超出自己理解范围的事情,最简单有效的方法就是尝试。学习新事物,实践比听闻更重要。 比如在 AI 视频制作方面,人物设定与剧本是关键部分,包括主体、动作、场景等要素;分镜处理也较为重要,要考虑用几个镜头表述内容;生成环节如同抽卡,可多尝试,最后进行粗检和后期处理,如 AI 配音剪辑、加过渡滤镜等。小白制作 AI 视频要做好脚本即提示词,有耐心抽卡,并不断提升撰写提示词的能力。撰写提示词时要了解主体、动作、场景,避免使用专有名词和网络名词,给 AI 清晰描述。工具选用方面,没有绝对好的工具,只有适合的,如小白可使用剪映,主力机是 MacBook Pro 可使用 final cut。还可向 ChatGPT 询问获取灵感。 另外,在“AI 布道”活动中发现,AI 工具虽强大能做很多事,但也在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。无论是什么身份、什么年龄段的人,都可以尝试使用 AI 工具。 如果您想要跟相关作者交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-01-30
我是一个ai新手 我该如何开始入门
对于 AI 新手入门,建议您采取以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-30
怎样构建一个自己专业的AI小模型
构建一个自己专业的 AI 小模型可以参考以下步骤: 1. 搭建 OneAPI:这是为了汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时了解如何白嫖大模型接口。 2. 搭建 FastGpt:这是一个知识库问答系统,将知识文件放入,接入上面的大模型作为分析知识库的大脑,最后回答问题。如果不想接到微信,搭建完此系统就可以,它也有问答界面。 3. 搭建 chatgptonwechat 并接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。若想拓展功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画等。 部署和训练自己的 AI 开源模型的主要步骤如下: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 大模型的构建过程包括: 1. 收集海量数据:像教孩子成为博学多才的人一样,让模型阅读大量的文本数据,如互联网上的文章、书籍、维基百科条目、社交媒体帖子等。 2. 预处理数据:清理和组织收集到的数据,如删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。 3. 设计模型架构:为模型设计“大脑”结构,通常是一个复杂的神经网络,如使用 Transformer 架构。 4. 训练模型:让模型“阅读”提供的数据,通过反复尝试预测句子中的下一个词等方式,逐渐学会理解和生成人类语言。
2025-01-29