Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI对餐饮行业将来会有什么影响?

Answer

AI 对餐饮行业的未来可能产生多方面的影响:

  1. 客户服务:通过生成式 AI 技术,深入了解客户需求和愿望,提供更加个性化和高效的服务。
  2. 运营管理:有助于将人力密集、效率较低的运营环节转变为更低成本、更高效的“计算”模式。
  3. 创新服务:例如利用空间智能,实现自主机器人运输餐饮用品,或通过增强现实技术引导厨师进行更安全、更快、更少侵入性的操作。
  4. 卫生监控:如检测员工是否正确洗手等卫生操作,保障食品安全。

总之,AI 有望为餐饮行业带来更高效、更个性化和更优质的服务,同时优化运营和管理流程。

Content generated by AI large model, please carefully verify (powered by aily)

References

生成式人工智能在客户服务中的兴起与挑战

随着生成式AI技术的不断进步,它将深入了解业务的其他方面,如生产和资源规划,并可能直接与供应商合作。这意味着未来的客户服务部门将与其他业务部门更加紧密地合作,利用AI技术来预测客户的需求和愿望,从而提供更加个性化和高效的服务。[heading3]结语[content]生成式人工智能的快速发展正在改变公司管理其关键客户服务职能的方式。这种进步为客户服务领域带来了巨大的潜力,同时也提出了一系列挑战。只有通过深入了解并管理这些挑战,公司才能在未来的竞争中占据优势。随着技术的不断发展,客户服务的未来将变得更加智能化、高效和个性化。

李飞飞的两次 TED 演讲

在古老时代的原始海洋中,能够看到和感知环境的能力引发了与其他生命形式互动的寒武纪大爆发。今天,那道光正在达到数字思维。空间智能不仅允许机器与彼此互动,而且还能与人类,以及真实或虚拟的3D世界互动。随着这个未来成形,它将对许多生命产生深远的影响。让我们以医疗保健为例。在过去的十年中,我的实验室一直在做初步努力,将AI应用于解决影响患者结果和医疗人员疲劳的挑战。与来自斯坦福医学院的合作者和其他合作医院一起,我们正在试验一些智能传感器,可以检测到临床医生是否在没有正确洗手的情况下进入病人房间。或跟踪手术器械,或在病人身体面临风险,如跌倒时提醒护理团队。我们认为这些技术是一种环境智能,就像额外的眼睛。但我更希望为我们的患者、临床医生和护理人员提供更多的互动帮助,他们迫切需要额外的一双手。想象一下,一个自主机器人在护理人员专注于病人的同时运输医疗用品,或者用增强现实技术,引导外科医生进行更安全、更快、更少侵入性的操作。再想象一下,严重瘫痪的病人可以用他们的思想控制机器人。没错,用脑电波来执行你和我习以为常的日常任务。这是最近我的实验室进行的一项试点研究。在这个视频中,机器人手臂仅通过大脑电信号控制,正在烹饪一顿日本寿喜锅餐。其中信号非侵入性地通过EEG帽收集。五亿年前,视觉的出现颠覆了黑暗的世界,引发了最深刻的进化过程:动物世界的智能发展。过去十年AI的进步同样令人惊叹。但我相信,直到我们为计算机和机器人赋予空间智能,就像大自然对我们所有人所做的那样,这场数字寒武纪大爆发的全部潜力才会完全展现。

新工业革命:生物技术×人工智能

在主要由服务主导的生物和医疗保健市场中,我们预计AI可能会带来巨大的收益——至少在AI能够将服务转化为“计算”资源的程度上。AI在[企业](https://a16z.com/tag/on-the-economics-of-ai-ml-data-businesses/)中并不总是那么有用,因为它比现有的状态慢,单位经济成本更高等。但在生物科技领域,AI可能极为有用:它有助于将那些过去昂贵、人力密集、效率较低且难以获得的事物转变为更低成本、更高效、甚至更有效的“计算”。一旦这种情况发生,技术就能渗透到以前未受IT革命影响的行业中。实际上,经济学家和创新者长期以来一直在思考,为什么我们没有在医疗保健等其他行业中看到我们在其他行业中看到的那种巨大收益,这被称为[鲍莫尔的成本病](https://future.com/podcasts/cost-disease-healthcare-baumol/)——因为当技术成功渗透到行业中时,它会将原本昂贵的服务转化为更加便宜的商品。(并释放人力去从事更有意义的工作,这也是它在医疗保健领域中可能发挥作用的地方。换句话说,技术可以让人类的医疗保健变得更加人性化。)

Others are asking
AI自动整理新媒体传播数据
很抱歉,目前知识库中没有关于“AI 自动整理新媒体传播数据”的相关内容。但一般来说,实现 AI 自动整理新媒体传播数据可以通过以下步骤: 1. 数据采集:利用网络爬虫等技术收集新媒体平台上的相关数据,如文章阅读量、点赞数、评论数等。 2. 数据清洗:对采集到的数据进行清理和预处理,去除无效或错误的数据。 3. 特征提取:从清洗后的数据中提取有价值的特征,例如用户行为特征、内容特征等。 4. 选择合适的算法:根据数据特点和需求,选择适合的机器学习或深度学习算法,如分类算法、聚类算法等。 5. 模型训练:使用提取的特征和选择的算法进行模型训练。 6. 模型评估:通过测试数据对训练好的模型进行评估,确保其准确性和可靠性。 7. 部署应用:将训练好的模型部署到实际系统中,实现自动整理新媒体传播数据的功能。 需要注意的是,具体的实现方式会因数据特点、业务需求和技术条件的不同而有所差异。
2025-02-06
目前AI发展到什么阶段了
AI 的发展可以概括为以下几个阶段: 1. 小模型阶段:能力单一,无法泛化和理解,例如早期的人脸识别,只能完成特定任务。 2. GPT 出现阶段:AGI 迎来拐点,机器实现与人类的交流。 3. Sora 出现阶段:打开了 AGI 的大门,能够认知世界并与世界互动,但训练算力可能受到限制。 4. 强人工智能阶段:机器能看懂一些常识并交流,但还缺少对世界力量的感知,如加速度、重力等,目前热炒的具身智能正朝着与物理世界互动的方向发展。 5. 超级人工智能阶段:能够总结出世界的规律,达到如爱因斯坦、牛顿般的水平。 当前 AI 前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。 6. 机器人学,涉及强化学习、运动规划、人机交互等。 7. 量子 AI,如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 AGI 的五个等级分别为: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2025-02-06
如何用AI搭建个人和企业知识库
以下是关于如何用 AI 搭建个人和企业知识库的相关内容: 一、使用飞书搭建 可以参考。读完相关文章,您将收获: 1. AI 时代的知识库的概念、实现原理以及能力边界。 2. 通往 AGI 之路大群中通过对话就能获取知识库中资料的原理。 3. 更好地使用 Coze 等 AI Agent 平台中的知识库组件,打造更加强大的智能体。 另外,作者正在规划一个关于 AI 时代您应该具备的编程基础系列,包括数据库、知识库、变量、JSON、API、操作系统与服务器、Docker 等内容。 二、本地部署大模型以及搭建个人知识库 1. 若要对知识库进行更灵活的掌控,需要额外的软件 AnythingLLM,其包含了所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 2. 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 3. 在 AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 跟其他项目数据进行隔离。具体操作包括: 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 完成上述配置后,即可跟大模型进行对话。 三、AI 时代的知识管理体系构建案例 1. 一条书摘:在读书(万维钢的新书《拐点》)时,看到一段有触动但保持批判性思考和怀疑的文本,提到如果足够强势,当前 AI 对人的作用有三个:信息杠杆、发现自己真正想要的、帮助形成自己的观点和决策。 2. 一个笔记:将上述书摘整理归纳,标记重点,打赏标签,放入笔记系统,准备展开深度思考和实践。 3. 对笔记的思考和实践:基于笔记中提到的 AI 对人的三种最终的赋能模式,以自己深度思考的问题为例,践行这套方法论,体会何谓“信息杠杆”可以令你的“思维换挡”,感受如何“让自己发现究竟想要什么”。 4. 生长出的自己的观点和内容:基于上述实践,生成“自己的观点和决策”。 5. 教授和分享:基于“自己的观点和决策”,打造成体系化的内容产品,实现价值。 总结:通过一个碎片化知识在左侧知识库中的“点、线、面、体”式的流转,从一个书摘变成一个体系化内容或课程,把“别人说的话”变成“我自己的智慧”。希望大家都能利用 AI 高效地把自己的知识管理体系搭建起来,运用起来。
2025-02-06
普通人怎样利用AI为副业挣钱
普通人可以通过以下几种方式利用 AI 为副业挣钱: 1. 艺术创作:利用生成式 AI 工具进行内容创作,例如在像 Lensa 这样的平台上,从肖像画开始,拓展到各种媒介的创作,通过内容实现盈利。 2. 成为数字克隆体提供者:将自己的经历和体验提供给数字克隆体,依据被使用的时长和费率获取收益。用户可以通过订阅平台使用多个克隆体,而作为克隆体本体,可基于自身克隆体的费率和被使用时长与平台结算。 3. 利用 AI 进行职业变迁:如果 AI 导致工作机会变化,政府可能通过税收平衡差异,例如全民基本收入(Universal basic income UBI)的方式,为个人提供一定的经济支持。
2025-02-06
优化ppt的ai 工具
以下是一些优化 PPT 的 AI 工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,可根据需求选择不同风格和主题的模板,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ AI 生成 PPT 的主要思路: 以爱设计为例,将大纲导入工具生成 PPT,其他工具操作方式大同小异,都是基于 Markdown 语法的内容来完成 PPT 的生成。具体步骤可移步到 MindShow、闪击、爱设计等章节。生成后可按照公司要求优化整体结构,如自行优化字体、图片等元素,针对下载后的 PPT 删改内容以达到预期。 此外,还可以使用 WPS 插件 chatPPT 为 PPT 添加动画等效果。同时,还有其他生成 PPT 的 AI 工具,如 gamma、百度文库、mindshow 等。
2025-02-06
推荐可以生成3D模型的ai软件
以下是一些可以生成 3D 模型的 AI 软件: 1. CADtools 12:这是 Adobe Illustrator 的插件,为其添加了 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:Autodesk 开发的云端 3D CAD/CAM 软件,集成了 AI 功能,能创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 主流 CAD 软件中的生成设计工具:如 Autodesk 系列、SolidWorks 等,提供基于 AI 的生成设计工具,可根据输入的设计目标和约束条件自动产生多种设计方案。 对于图片生成 3D 建模的工具: 1. Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型。 2. Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成。 3. CSM AI:支持从视频和图像创建 3D 模型,适用于游戏领域的模型生成。 4. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域。 5. VoxCraft:免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供多种功能。 此外,还有一些从文本生成 3D 的工具: 1. CSM_ai:能将文本、图像或草图转换为 3D 素材,可直接应用于游戏中,无需后期处理。体验地址:https://cube.csm.ai 2. Move AI 推出的 Move API:从 2D 视频生成 3D 运动数据,支持多种 3D 文件格式导出,为 AR 应用、游戏开发等提供高质量 3D 运动数据。网址:https://move.ai/api 3. ComfyUI 3D Pack:快速将图片转换为 3D 模型,支持多角度查看,使用 3D 高斯扩散技术提升模型质量,支持多种格式导出,集成先进 3D 处理算法。网址:https://github.com/MrForExample/ComfyUI3DPack/tree/main 4. Medivis 的 SurgicalAR 手术应用:将 2D 医疗图像转化为 3D 互动视觉,提高手术精度,支持 3D 模型的放大、缩小、旋转,精确手术计划。网址:https://t.co/3tUvxB0L4I
2025-02-06
AI技术在餐饮行业的应用场景有哪些
AI 技术在餐饮行业的应用场景主要包括以下方面: 1. 营销管理:时来智能通过自研的 AI Agent 以及强化学习等技术,为线下餐饮服务门店提供全自动管理私域流量营销运营的解决方案。基于垂直场景数据训练的 AI 营销模型可以针对不同消费者实时生成并推送个性化的营销折扣方案,从而在优化营销成本的同时显著提升营销转化效果,帮助门店提升 50%100%的营销转化效果以及相应提升平均 1520%的营业额。 2. 菜谱调整:下厨房的口味调整功能可根据用户对菜谱的评价,利用 AI 分析后给出口味调整建议,如增加甜度、减少辣味等。
2024-12-17
有专门餐饮行业的经营数据分析类的ai吗
目前市面上有一些可以应用于餐饮行业经营数据分析的 AI 工具和技术。例如,一些商业智能软件可能集成了 AI 算法,能够对餐饮企业的销售数据、顾客偏好、库存管理等方面进行分析和预测,帮助企业优化经营策略。但具体哪一款工具最适合您的需求,还需要根据您的餐饮业务规模、数据特点和具体的分析目标来确定。
2024-08-08
AI将来在哪些行业会替代人工
以下是一些可能会被 AI 替代人工的行业: 1. 办公领域:如输入数据、填写文件、扫描文档等单调重复的工作,AI 有可能将人们从这些任务中解放出来,让教师、医生、警察等有更多时间从事专业工作。 2. 营销行业:包括策略制定、用户画像洞察、广告内容制作、投放渠道管理与效果分析等工作,AI 能够提高效率和精准度,实现商业化落地。 3. 编程行业:随着 AI 的发展,如 OpenAI 的 o3 发布,AI 在复杂编程任务中表现出色,可能取代大部分常规编程工作,对软件工程和算法开发等领域产生巨大影响。
2025-02-06
有什么大模型是可以预测人的行为或者将来发展的
以下是一些与预测人的行为或将来发展相关的大模型信息: 斯坦福大学和谷歌的生成式智能体能够产生令人信服的人类行为代理。相关链接:https://syncedreview.com/2023/04/12/stanfordugooglesgenerativeagentsproducebelievableproxiesofhumanbehaviours/ 关于大模型的未来展望,认为它们将能够读取和生成文本,拥有更丰富的知识,具备多种能力,如查看和生成图像与视频、听取发声创作音乐、利用系统 2 进行深入思考等,还可能在特定领域内自我优化和针对任务进行定制调整。 同时,还为您提供了一些大模型相关的其他资源链接: Google Research,2022 & beyond:Generative models:https://ai.googleblog.com/2023/01/googleresearch2022beyondlanguage.htmlGener ativeModels Building the most open and innovative AI ecosystem:https://cloud.google.com/blog/products/aimachinelearning/buildinganopengenerativ eaipartnerecosystem Generative AI is here.Who Should Control It?https://www.nytimes.com/2022/10/21/podcasts/hardforkgenerativeartificialintelligen ce.html Generative AI:Perspectives from Stanford HAI:https://hai.stanford.edu/sites/default/files/202303/Generative_AI_HAI_Perspectives.pd f Generative AI at Work:https://www.nber.org/system/files/working_papers/w31161/w31161.pdf The future of generative AI is niche,not generalized:https://www.technologyreview.com/2023/04/27/1072102/thefutureofgenerativeaiis nichenotgeneralized/ Attention is All You Need:https://research.google/pubs/pub46201/ Transformer:A Novel Neural Network Architecture for Language Understanding:https://ai.googleblog.com/2017/08/transformernovelneuralnetwork.html
2024-09-15
从评审导师的角度优化“人工智能驱动企业供应链效率影响研究——基于专精特新中小企业的实证数据”这个工商学术研究生学位论文题目
作为评审导师,以下是对这个论文题目的一些优化建议: “人工智能对专精特新中小企业供应链效率的驱动作用及影响研究——基于实证数据分析” 这样的表述更加清晰地突出了人工智能的驱动作用,并且明确了是基于实证数据进行的分析。您觉得如何?
2025-01-08
人工智能会带来什么影响
人工智能会带来多方面的影响,主要包括以下几点: 1. 劳动力市场:预计在未来几年对劳动力市场产生重大影响,包括工作的变化,但大多数工作的变化速度会比人们想象的慢。 2. 社会服务和福利:在获得和享受特定的必要的私人和公共服务和福利方面,如医疗保健服务、社会保障福利等,使用人工智能系统可能会对人们的生计产生重大影响,也可能侵犯基本权利。 3. 应用场景不断扩展: 交通领域:用于自动驾驶、交通管理等,提高交通安全性和效率,缓解交通拥堵。 物流配送:优化物流路线和配送计划,降低运输成本,还包括无人机送货。 其他领域:在教育中提供个性化学习体验,在农业中分析农田数据提高农作物产量和质量,在娱乐中开发虚拟现实和增强现实体验,在能源中优化能源使用提高效率等。 总之,人工智能如同其他技术一样,既有积极影响也有负面影响,我们需要努力发挥其优势,减少危害,以实现其对社会的最大价值。
2025-01-08
模型微调对模型的影响和价值
模型微调对模型具有重要的影响和价值,主要体现在以下几个方面: 1. 提高结果质量:能够获得比即时设计更高质量的结果。 2. 增加训练示例:可以训练比提示中更多的例子,从而改进小样本学习,在大量任务中取得更好的效果。 3. 节省 Token 和成本:由于更短的提示而节省了 Token,对模型进行微调后,不再需要在提示中提供示例,能够节省成本并实现更低延迟的请求。 4. 提高模型效率:通过专门化模型,可以使用更小的模型,并且由于只对输入输出对进行训练,舍弃示例或指令,进一步改善延迟和成本。 5. 适应特定领域:针对特定领域进行微调,优化所有层的参数,提高模型在该领域的专业性。 目前,微调适用于以下基础模型:davinci、curie、babbage 和 ada。参数规模角度,大模型的微调分成全量微调 FFT(Full Fine Tuning)和 PEFT(ParameterEfficient Fine Tuning)两条技术路线,从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 通用大模型如 GPT4.0、GPT3.5 等具有广泛的自然语言理解能力,但在特定领域表现可能不理想。而通过微调,可以在现有模型基础上,更经济、高效地适应新的应用领域,节省成本并加快模型部署和应用速度。
2025-01-06
模型微调对模型的影响和价值
模型微调对模型具有重要的影响和价值,主要体现在以下几个方面: 1. 提高结果质量:能够获得比即时设计更高质量的结果。 2. 增加训练示例:可以训练比提示中更多的例子,从而改进小样本学习,在大量任务中取得更好的效果。 3. 节省 Token 和成本:由于更短的提示而节省了 Token,对模型进行微调后,不再需要在提示中提供示例,能够节省成本并实现更低延迟的请求。 4. 提高模型效率:通过专门化模型,可以使用更小的模型,并且由于只对输入输出对进行训练,能够舍弃示例或指令,进一步改善延迟和成本。 5. 适应特定领域:针对特定领域进行微调,优化所有层的参数,提高模型在该领域的专业性,例如在法律或医学等领域表现更佳。 目前,微调适用于以下基础模型:davinci、curie、babbage 和 ada。从参数规模的角度,大模型的微调分成两条技术路线:全量微调 FFT(Full Fine Tuning)和 PEFT(ParameterEfficient Fine Tuning),从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 微调是在较小的、特定领域的数据集上继续 LLM 的训练过程,把通用工具打磨成精密仪器。微调有两大好处:一是提高模型在特定任务中的性能,能够输入更多示例;二是提高模型效率,实现更低的延迟和更低的成本。 通用大模型如 GPT4.0、GPT3.5 等具有广泛的自然语言理解能力,但在特定领域表现可能不理想。而微调可以在现有模型基础上,更经济、高效地适应新的应用领域,节省成本并加快模型部署和应用速度。
2025-01-06
AI对哪些职业影响最大
以下是一些受到 AI 影响较大的职业: 1. 编程领域:传统的程序员岗位面临巨大挑战,如软件工程和算法开发等领域,随着 AI 的进步,可能会有更多程序员岗位被自动化技术取代。 2. 高薪工作:OpenAI 和宾夕法尼亚大学 Eloundou 等人的研究发现,生成式 AI 对高薪工作的影响更大。 3. 商业和社会中的一些职能角色: 软件工程师:负责编写软件应用程序并确保稳健运行。 机器学习工程师:负责实现人工智能,熟悉大模型、RAG、finetuning。 产品经理:负责识别和界定项目,确保项目对用户有用。 提示词工程师:被认为是炒作的职位,实际可能担任了机器学习工程师的部分职责。 其他岗位如数据工程师、数据科学家、项目主管、机器学习研究员等。 4. 销售、市场营销、用户运营、客户服务等岗位:麦肯锡研究了这些岗位将受到 AI 的影响。 5. 知识型工作:生成式 AI 将会对知识型工作产生更大的影响。 需要注意的是,虽然某些职业受到较大影响,但劳动力可能不容易被完全取代,更专业的服务将加速出现,熟练 AI 的专业人员能够产生高附加值。
2025-01-04
欧盟人工智能法案在实施中对我国未来立法的影响
欧盟人工智能法案在实施中对我国未来立法主要有以下影响: 1. 参考意义:我国与欧盟在人工智能立法方面处于“齐头并进”态势,且立法理念有共通之处,欧盟的《人工智能法案》对我国人工智能立法工作具有重要参考价值。 2. 产品调整:若AI项目有意拓展欧洲市场,可能因不同市场要求而需根据欧盟法案对产品进行调整。 3. 对中小企业的监管:我国法律制度在一般性规定基础上强化对大型企业监管,而欧盟法案顾及到中小企业弱势地位。将对中小企业的合规义务豁免及合规支持规定纳入我国未来人工智能立法,有利于形成公平竞争秩序,激发中小企业科技创新活力,避免过度监管。 4. 法律衔接:我国《个人信息保护法》规定可能对人工智能研发和部署使用中的个人信息处理形成合规障碍,而欧盟《人工智能法案》在不影响GDPR实施的情况下对涉及个人数据的处理进行了解释和衔接。我国若进行统一的人工智能立法,个人数据处理的合法性问题无法回避,可在立法中进行特别规定。
2025-01-02