直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

LLM对未来的影响有哪些

回答

LLM 对未来的影响主要体现在以下几个方面:

  1. 应用程序架构:代理有可能成为 LLM 应用程序架构的核心部分,为人工智能应用程序提供解决复杂问题、对外界采取行动以及从经验中学习等全新功能。但目前大多数代理框架仍处于概念验证阶段。
  2. 能力拓展:未来的大型语言模型将能够读取和生成文本,拥有更丰富的知识,能利用现有软件基础架构,具备查看和生成图像与视频、听取发声创作音乐、利用系统 2 进行深入思考、在特定领域自我优化以及针对特定任务定制和调整等能力。
  3. 落地应用:LLM 技术正从 demo 向落地阶段发展,在达到一定水平后,其在各个业务场景中的实用性将大大提升。但当前大部分应用仍处于探索阶段,在推理、训练学习效率等方面还有待提高,且与视觉、触觉等技术的搭配尚未成熟。同时,关于数据驱动的概率模型和由第一性原理建立的数理模型如何更好地模拟世界以及两者的融合方式仍有待解决。在应用方面,包括自然语言、ToB、ToC 等领域。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

LLM 应用程序的新兴架构

此参考架构中缺少的最重要组件是AI代理框架。[AutoGPT](https://github.com/Significant-Gravitas/Auto-GPT)被描述为“使GPT-4完全自主的实验性开源尝试”,是今年春天[历史上增长最快的Github项目](https://twitter.com/OfficialLoganK/status/1647757809654562816),实际上今天的每个AI项目或初创公司都包含某种形式的代理。与我们交谈的大多数开发人员都对代理的潜力感到非常兴奋。我们在这篇文章中描述的上下文学习模式可有效解决幻觉和数据新鲜度问题,以便更好地支持内容生成任务。另一方面,代理为人工智能应用程序提供了一组全新的功能:解决复杂的问题,解决复杂问题,对外界采取行动,以及在部署后从经验中学习。他们通过高级推理/规划、工具使用、记忆/递归/自我反思的组合来实现这一点。因此,代理有可能成为LLM应用程序架构的核心部分(如果您相信递归自我改进,甚至可以接管整个堆栈)。像LangChain这样的现有框架已经包含了一些代理概念。只有一个问题:代理还没有真正起作用。今天的大多数代理框架都处于概念验证阶段——能够进行令人难以置信的演示,但还不能可靠、可重现地完成任务。我们正在密切关注它们在不久的将来会如何发展。[heading2]展望未来[content]预训练的AI模型代表了自互联网以来软件架构的最重要的变化。他们使得个人开发者能够在几天内构建出令人难以置信的AI应用,这些应用超过了大团队花费几个月时间构建的监督机器学习项目。我们在此处列出的工具和模式可能是集成LLM的起点,而不是终点。我们将在发生重大变化时更新此信息(例如,转向模型训练)并在有意义的地方发布新的参考架构。如果您有任何反馈或建议,请联系我们。

文章:Andrej Karpathy 亲授:大语言模型入门

综上所述,我认为将大型语言模型仅视为聊天机器人或单词生成器是不准确的。更恰当的比喻是,它们类似于新兴操作系统的内核进程,协调大量资源来解决问题。考虑到我所展示的信息,我们可以设想几年后的大型语言模型将如何发展。它们将能够读取和生成文本,拥有比任何个人更丰富的知识,通过检索增强生成浏览互联网或引用本地文件。它能够利用现有的软件基础架构,例如计算器、Python等。它具备查看和生成图像与视频的能力。它能够听取、发声并创作音乐。它能够利用系统2进行深入思考。在某些具备奖励机制的特定领域内,它能够自我优化。它可能能够针对许多特定任务进行定制和细微调整。或许,许多LLM专家几乎都存在于一个能够协同解决问题的应用程序商店中。因此,我发现这个新的LLM OS操作系统与当今的操作系统有许多相似之处。这有点像一个图表,它几乎看起来与当今的计算机无异。这个内存层次结构是等效的。你有可以通过浏览访问的磁盘或互联网。你拥有类似于随机存取存储器(RAM)的设备,在这种情况下,对于LLM来说,这将是它能够预测序列中下一个单词的最大单词数的上下文窗口。我在这里没有详细介绍,但这个上下文窗口是你的语言模型工作记忆的有限而宝贵的资源。你可以想象内核进程(即这个LLM)尝试将相关信息调入和调出其上下文窗口以执行你的任务。我认为还存在许多其他的联系。我认为多线程、多处理、推测执行在这里是等效的。在上下文窗口的随机存取存储器中,用户空间和内核空间是等效的,以及我没有完全涵盖的当今操作系统的许多其他等效项。

观点:LLM落地思考

一、引子LLM技术为AI届带来了曙光与激情,经过这一年多的风起云涌,逐步的从demo向落地阶段进发,国内大模型也都在逐步的追上GPT-3.5,当达到GPT3.5的模型推理与知识储备后,在各个业务场景中落地的实用性就会大大提升了。但是从反方向来讲,当前大部分应用都是雷声大雨点小,也有部分原因是大家都处于探索阶段,还没有完成初期的验证来确定方向加强投入。通过对网上各个应用的检索梳理体验,以及对LLM技术文章的一些学习,整理了一下对LLM技术的落地分析。产业届落地的同时,面向普通人的AI应用也在不断的涌现,向妙鸭、全民舞王、哄哄模拟、kimi等产品在逐渐向大众普及。预计未来的几年,LLM带来的变革也会慢慢的进入每个人的生活中。本文章还是先从业务视角去写,今后打算也去分析一下普通人和孩子教育应该如何在未来使用LLM,比如如何帮老婆写论文~~二、LLM技术的应用分析LLM在chatgpt出现后,让每个人都对AGI的到来充满了期许,但是LLM目前还并不是万能的(推理上还存在较大的提升空间,训练学习效率也明显不高),且与LLM搭配来实现AGI的视觉(sd、sora等)、触觉(IOT技术、ML)都还没有成熟。而且还有一个更大的问题等待解决,就是LLM这种由数据驱动的概率模型,和由第一性原理建立的数理模型,这两者究竟哪一种才可以更好的模拟世界,以及两者能否有一种很好的融合方式来共同模拟世界。在当前这个时间点,讨论落地或许还稍显幼稚,毕竟AGI的逐步推进会附带将前面的落地方案步步推翻,不过这也算是技术发展的必经之路,从幼稚中逐步萌芽茁壮。下面会从三个方面进行一些应用的分析:自然语言、ToB、ToC1、自然语言

其他人在问
LLM 提示词怎么写
以下是关于 LLM 提示词编写的相关内容: 在“艾木:提示词编程|有必要用 Lisp 语言写提示词吗?”中,“小确幸”这段提示词用 Lisp 语言描述了一个简单工作流,包含对用户输入文本的处理和生成 SVG 卡片等步骤,内部还有一系列子步骤和 fewshot examples。但大语言模型按程序描述的逻辑运行这类复杂程序有难度。 在“走入 AI 的世界”中,提示词(Prompt)是输入给大模型的文本内容,其质量会显著影响大模型回答的质量。 在“藏师傅教你用 AI 三步制作任意公司的周边图片,不用到处找样机文件”中,介绍了用 LLM 生成图像提示词的流程,包括获取 Logo 图片的描述,根据描述和生成意图生成图片提示词,将图片和提示词输入 Comfyui 工作生成等步骤,并给出了相关示例。
2024-12-16
开源的开源的 LLM 微调推理,agent开发平台
以下是为您整理的关于开源的 LLM 微调推理、agent 开发平台的相关内容: LLM 作为 Agent 的“大脑”的特点: 1. 知识获取能力:通过预训练学习大量语言数据,掌握丰富语言信息和常识知识,能处理多种任务。 2. 指令理解:擅长解析人类语言指令,采用深度神经网络进行自然语言理解和生成,精准理解意图。 3. 泛化能力:在未见过的数据上表现良好,能利用先前知识处理新挑战,形成对语言结构的通用理解。 4. 推理和规划:能够进行逻辑推理和未来预测,分析条件制定最佳行动方案,在复杂环境中做出理性选择。 5. 交互能力:拥有强大对话能力,在多人多轮次对话中自然流畅交流,改善用户体验。 6. 自我改进:基于用户反馈和效果评估,通过调整参数、更新算法提升性能和准确性。 7. 可扩展性:可根据具体需求定制化适配,针对特定领域数据微调提高处理能力和专业化水平。 相关产品和平台: 1. ComfyUI:可在其中高效使用 LLM。 2. Vercel AI SDK 3.0:开源的工具,可将文本和图像提示转换为 React 用户界面,允许开发者创建丰富界面的聊天机器人。 3. OLMo7BInstruct:Allen AI 开源的微调模型,可通过资料了解从预训练模型到 RLHF 微调模型的所有信息并复刻微调过程。 4. Devv Agent:能提供更准确、详细的回答,底层基于 Multiagent 架构,根据需求采用不同 Agent 和语言模型。 实例探究: 1. ChemCrow:特定领域示例,通过 13 个专家设计的工具增强 LLM,完成有机合成、药物发现和材料设计等任务。 2. Boiko et al. 研究的 LLM 授权的科学发现 Agents:可处理复杂科学实验的自主设计、规划和执行,能使用多种工具。
2024-12-12
LLM 和 AI Agent的区别
LLM(大型语言模型)和 AI Agent(人工智能智能体)存在以下区别: LLM 主要侧重于语言的理解和生成,具有强大的语言处理能力。它们在大规模语料库上进行预训练,能够通过少量样本展现出泛化能力。然而,其缺点是计算资源消耗大,可能存在偏见和误解。 AI Agent 则为人工智能应用程序提供了全新的功能,包括解决复杂问题、对外界采取行动以及在部署后从经验中学习。它们通过高级推理/规划、工具使用、记忆/递归/自我反思的组合来实现这些功能。AI Agent 能够进行令人难以置信的演示,但目前大多数框架仍处于概念验证阶段,还不能可靠、可重现地完成任务。 基于 LLM 的 AI Agent 以 LLM 置于“大脑”或“控制器”的核心位置,赋予强大的语言理解和生成能力。为扩展感知和行动范围,采用多模态感知技术和工具利用策略,能理解和响应多种类型输入,并与环境有效互动。通过思维链和问题分解技术展现出推理和规划能力,还能从反馈中学习并执行新行动,表现出类似反应式 Agent 的特性。其已在软件开发、科学研究等现实场景中应用,能利用自然语言理解和生成能力与其他 Agent 交流协作。特点是基于大规模神经网络,特别是 Transformer 架构,技术上有 Llama、GPT 等预训练大型语言模型,优点是强大的语言理解、生成和对话能力,缺点是计算资源消耗大,可能存在偏见和误解。
2024-12-09
如何调教LLM写好提示词
以下是关于调教 LLM 写好提示词的相关内容: 1. 无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能: 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 提示词注入将工具信息及使用工具的提示词添加到系统提示中,其中 INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 理解和使用工具,编写时注意用无关紧要的工具作示例避免混淆。tools_instructions 可通过输入不同工具动态调整,让 LLM 得知可用工具及使用方法。REUTRN_FORMAT 定义调用 API 的格式。 工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,提高使用成功率。识别 LLM 返回的调用工具字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,若接口不接受,可改为回传给 user 角色。 2. 藏师傅教您用 AI 三步制作任意公司的周边图片: 整个流程分为三个部分:获取 Logo 图片的描述、根据 Logo 图片的描述和生成意图生成图片提示词、将图片和提示词输入 Comfyui 工作生成。 用下面的提示词生成关于 Logo 图片的描述:为帮助视障艺术家,需详细描述图像内容,包括摄影、标志设计等方面,控制在 50 字左右。 用 LLM 生成图像提示词:将第一步生成的提示词填入{图像描述}位置,将想生成的周边填入{周边描述}部分。 3. 小七姐:Prompt Engineering a Prompt Engineer 精读翻译: 提示词工程是优化大型语言模型性能的具有挑战性但至关重要的任务,需要复杂推理检查模型错误等。 研究了“PROMPT ENGINEERING A PROMPT ENGINEER”的问题,介绍并分析关键组成部分,如逐步推理模板和上下文规范等。 最终方法 PE2 在多个数据集和任务中表现出色,能进行有意义和针对性的提示词编辑,展现出反事实推理能力。
2024-12-08
LLM最大的价值是什么
LLM 具有以下重要价值: 1. 作为 LangChain 平台与各种大模型交互的核心模型,是一个能处理语言输入和输出的抽象概念,开发者无需关心大模型细节,只关注语言逻辑和意义,就能利用其能力构建应用,还能灵活选择和切换大模型,甚至自行封装实现特定语言逻辑和功能。 2. 能够强化人类既有的能力,未来可能促使每个人成为全栈人员,并重新划分岗位,关键在于对 LLM、自身技能和业务应用的理解。 3. 具有知识获取能力,通过预训练学习大量语言数据,掌握丰富语言信息和常识知识,能处理多种任务。 4. 擅长解析人类语言指令,精准理解用户语言表达意图。 5. 具备泛化能力,在未见过的数据上表现良好,能利用先前知识处理新挑战。 6. 能够进行逻辑推理和未来预测,在复杂动态环境中做出理性选择并引导行动。 7. 拥有强大的交互能力,在多人多轮次对话中自然流畅交流,改善用户体验。 8. 可以基于用户反馈和效果评估进行自我改进,逐渐提升性能和准确性。 9. 具有可扩展性,能根据具体需求定制化适配,通过微调提高特定领域处理能力和专业化水平。
2024-12-03
LLM是什么
LLM(语言逻辑模型)是 LangChain 平台与各种大模型进行交互的核心模型,是一个能够处理语言输入和输出的抽象概念,可理解为黑盒。其输入是表示用户请求或问题的字符串,输出是表示模型回答或结果的字符串。 LLM 具有以下优势: 1. 让开发者无需关心大模型的细节和复杂性,只需关注语言的逻辑和意义,就能利用大模型的能力构建应用。 2. 使开发者能灵活选择和切换不同的大模型,无需修改代码或适配接口。 3. 允许开发者自己封装自己的 LLM,实现自己的语言逻辑和功能。 RAG 对大语言模型(LLM)的作用如同开卷考试对学生,事实性知识与 LLM 的推理能力相分离,被存储在容易访问和及时更新的外部知识源中,包括参数化知识(模型在训练过程中学习得到,隐式储存在神经网络的权重中)和非参数化知识(存储在外部知识源,如向量数据库中)。 此外,LLM 可以是复杂、通用和强大的系统,能在广泛任务上表现出色,也可用于或微调执行特定任务,如知识生成和自我验证。同时,LLM 可用于检测对抗提示并将其过滤掉,如 Armstrong 和 Gorman(2022)提出的有趣解决方案,包括定义提示评估器等。
2024-12-03
智能鸿沟和国际协作写认识理解、研究方向、未来
以下是关于智能鸿沟和国际协作的认识理解、研究方向及未来的相关内容: 认识理解: 目前对于智能鸿沟的研究主要集中在人工智能、自动化等相关趋势在不同行业中对劳动力的影响,包括其造成的劳动力跨部门的变化,以及由此产生的劳动力需求和就业机会。 研究方向: 研究不同行业因人工智能的广泛采用所带来的劳动力影响。 探索人工智能在各行业广泛应用所产生的劳动力需求和就业机会。 明确更好地理解和追踪劳动力影响、需求及机会方面存在的研究差距和所需数据。 提出应对上述挑战和机遇的建议。 未来: 在未来的研究中,需要进一步深入探讨智能鸿沟在全球范围内的演变和影响,以及国际协作在应对智能鸿沟方面所能发挥的作用。通过国际间的合作,共同制定策略,以缩小不同国家和地区在人工智能应用和发展方面的差距,促进全球的平衡发展。同时,持续关注人工智能技术的新发展和其对劳动力市场的动态影响,及时调整应对策略。
2024-12-18
全球人工智能治理报告中的全球人工智能的十大议题,十个议题中选一个写认识理解、研究方向、未来
以下是为您提供的关于全球人工智能治理报告中相关议题的内容: 在“Model Evaluation for Extreme Risks”这一议题中: 认识理解:该议题强调了模型评估在应对极端风险以及在模型的训练、部署和安全方面做出负责任决策的重要性,并详细探讨了网络攻击、欺骗、说服与操纵、政治策略、武器获取、长期规划、AI 开发、情景意识以及自我传播等十个主要风险。 研究方向:深入研究如何更精准地评估模型在极端风险场景下的表现,以及如何基于评估结果优化模型的训练和部署策略,以降低潜在风险。 未来:随着 AI 技术的广泛应用,对于极端风险的模型评估将越发重要,有望形成更加完善和严格的评估标准和方法,以保障 AI 系统的安全可靠运行。 由于您没有明确指定具体的一个议题,以上仅为示例,您可以补充更具体的需求,以便为您提供更精准的回答。
2024-12-18
未来产业变革和技术创新的焦点
未来产业变革和技术创新的焦点主要体现在以下几个方面: AI 行业: 大型语言模型(LLM)面临模型能力提升、算力算法与数据协同、以评测为中心的体系构建以及平衡用户需求与模型推理深度等多重挑战。解决这些问题有助于推动 LLM 技术的有效应用和商业化进程。 2025 年或将成为 AI 技术逐渐成熟、应用落地取得阶段性成果的关键节点,也是 AI 产业链“资产负债表”逐步修复的年份。 大型基座模型能力的优化与提升,通过创新技术强化复杂推理和自我迭代能力,推动在高价值领域应用,同时优化模型效率和运行成本。 推进世界模型与物理世界融合,构建具备空间智能的世界模型,促进机器人、自主驾驶和虚拟现实等领域发展。 实现 AI 的多模态融合,整合多模态数据提升内容生成的多样性与质量,创造全新应用场景。 新工业革命: 生物技术与人工智能结合,如在医疗保健领域,COVID 已激发生物制药和医疗保健行业的新一波创新。 科技变革与投资: 2024 年正处于一场历史性的科技革命之中,AI 革命预计到 2030 年对 GDP 的贡献将超过以往任何一次革命,这场革命是多种科技融合的产物。 回顾历史,第二次工业革命使电力成为主要动力,信息革命由互联网诞生起始,如今正处于移动互联网尾声,向智能革命迈进。
2024-12-18
帮我描述一段让AI生成未来绿色城市的描述词,图片要是OC渲染、超高品质,8K渲染
以下是一段让 AI 生成未来绿色城市的描述词,图片采用 OC 渲染、超高品质、8K 渲染: 未来绿色城市,一片生机勃勃的景象。城市中摩天大楼与葱郁的森林相互交融,建筑表面覆盖着绿色的植被,仿佛是从大地中自然生长而出。街道宽敞整洁,由可再生材料铺就,太阳能路灯照亮着道路。空中花园遍布城市的各个角落,五彩斑斓的花朵争奇斗艳。清澈的河流穿城而过,河面上倒映着蓝天白云和两岸的绿树。城市的交通系统高效便捷,无人驾驶的电动汽车在智能轨道上有序行驶。公园中,人们在清新的空气中休闲娱乐,孩子们在绿色的草地上欢笑奔跑。整个城市被一层柔和的光芒笼罩,展现出和谐、美丽与可持续发展的魅力。
2024-12-12
AI有可能改变未来吗
AI 有可能改变未来,主要体现在以下几个方面: 1. 在科学领域,如生物科学、人类科学和社会科学等,AI 带来了新型“测量”方式,使过去需要通过论文解决的问题变得更加明确和定量。 2. 在技术就业市场,AI 促使技术专业人士发展难以被替代的技能,如团队建设、跨文化交流、创新解决方案设计等。对于面临被 AI 取代风险的工作者,需要重新规划职业生涯,学习新技能或转向更需要人类特质的工作领域。 3. 在商业和工业方面,AI 是一场生产力革命,塑造了公司未来的样貌。随着更多 AI 被开发,它们将通过 AI 网络协同工作,推动对新型基础设施的需求。未来公司的建设、规模、组建方式、需求和痛点等都将发生变化,软件数量和业务也将不断变化和迭代。创始人需要回答一系列关键问题以赢得未来企业的青睐。
2024-12-11
ai的现状和未来发展趋势
目前人工智能的现状和未来发展趋势如下: 现状: 更多资金投入:预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮持续且更加“奢华”。 计算压力挑战:政府和大型科技公司承受着逼近电网极限的计算需求压力。 AI 介入选举:虽预期影响尚未成真,但需保持警惕。 未来发展趋势: 专业化细分:从通用能力转向专注特定领域或功能,如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理等,各细分领域不断提升核心能力,提供更精准高质量服务。 商业模式创新:包括 ToB 市场深耕(如针对内容创作者的 ReadPo)、新型广告模式(如天宫搜索的“宝典彩页”)等,从技术展示向解决用户痛点和创造商业价值转变。 应用场景不断扩展,包括但不限于: 自动驾驶,提高交通安全性和效率。 交通管理,优化信号灯和交通流量,缓解拥堵。 物流和配送,优化路线和计划,降低运输成本。 无人机送货,快速送达偏远地区。 教育,提供个性化学习体验。 农业,分析农田数据,提高农作物产量和质量。 娱乐,开发虚拟现实和增强现实体验。 能源,优化能源使用,提高能源效率。 未来人工智能将对我们的生活产生更加深远的影响。
2024-12-07
AI对餐饮行业将来会有什么影响?
AI 对餐饮行业的未来可能产生多方面的影响: 1. 客户服务:通过生成式 AI 技术,深入了解客户需求和愿望,提供更加个性化和高效的服务。 2. 运营管理:有助于将人力密集、效率较低的运营环节转变为更低成本、更高效的“计算”模式。 3. 创新服务:例如利用空间智能,实现自主机器人运输餐饮用品,或通过增强现实技术引导厨师进行更安全、更快、更少侵入性的操作。 4. 卫生监控:如检测员工是否正确洗手等卫生操作,保障食品安全。 总之,AI 有望为餐饮行业带来更高效、更个性化和更优质的服务,同时优化运营和管理流程。
2024-12-19
AI的最新发展如何,对于哪些传统行业产生了影响
AI 的最新发展呈现出以下特点和影响: 技术方面:在自然语言处理和多模态推理领域取得进步,模型性能和多模态处理能力显著提升。 行业影响: 推动技术行业发展,为处理大量数据和复杂计算的专业用户提供高效工具。 革新机器人领域,促进智能设备、高级电池能源、电驱动火箭引擎等行业进步。 在核聚变技术、生物制药和纳米科技等前沿领域发挥关键作用。 预计对全球 GDP 产生巨大影响,帮助美国解决债务问题,为经济发展提供新动力。 众多产品和解决方案将被 AI 驱动的创新替代品取代,产业变革规模巨大,AI 相关行业的 TAM 将扩展到几乎所有人类参与的行业。 应用层大量创新,重点从基础训练转移到更高层次的认知任务,如计划和推理。 降低开展业务和投资成本,为收入增长做出贡献,推动公司竞争优势上升。 加速专业服务出现,熟练 AI 的专业人员能产生高附加值。 AI 对传统行业的影响包括但不限于以下方面: 教育:改变教学方式和学习体验。 医疗:辅助诊断、疾病预测等。 科研:提高研究效率和创新能力。 总之,AI 正处于重要的发展阶段,其影响深远且广泛,需要关注其合理使用以确保对社会产生正面影响。
2024-12-10
国内外所有虚拟数字人影响力及诞生时间
以下是国内外部分虚拟数字人的相关信息: 报告类: ,发布者为中国网络视听协会、人民日报智慧媒体研究院、中国传媒大学动画与数字艺术学院、元力趋势网,发表日期为 2024 年 1 月 1 日。 ,发布者为上海市人工智能技术协会、零壹智库、增强现实核心技术产业联盟、商汤科技,发表日期为 2024 年 4 月 11 日。 ,发布者为国盛证券,发表日期为 2023 年 11 月 21 日。 ,发布者为中航证券,发表日期为 2023 年 12 月 5 日。 ,发布者为招商证券,发表日期为 2023 年 10 月 29 日。 数字科技有限公司,发表日期为 2021 年 1 月 1 日。 ,发布者为清华大学新闻与传播学院,发表日期为 2023 年 2 月 21 日。 市场竞争类: 井英科技:CreativeFitting 专注打造“AI+人工”的商业短视频创作新模式,从创意发现到脚本创作,再到视频生产,均引入了 AI 辅助创作,大幅降低了优质短视频生产的边际成本,显著提高了生产效率和产能,网站为,成立于 2020 年 4 月 16 日,地点在上海,融资阶段为 A 轮。 铭顺科技:数字人私有化部署方案提供商,网站为,成立于 2022 年 7 月 15 日,地点在长沙,融资阶段为 A 轮。 八点八数字科技:虚拟人全链路服务公司,网站为,成立于 2014 年 9 月 1 日,地点在南京,融资阶段为 PreA 轮。 慧夜科技:虚拟生命 AI 驱动技术服务商,网站为,成立于 2019 年 5 月 30 日,地点在北京,融资阶段为 PreA 轮。 深锶科技:XR 内容创作平台,网站为,成立于 2021 年 12 月 1 日,地点在北京,融资阶段为 PreA 轮。 拟仁智能:AI 虚拟人解决方案提供商,网站为,成立于 2020 年 9 月 1 日,地点在杭州,融资阶段为天使轮。 心识宇宙:人工智能赋能虚拟人大脑,让虚拟人具有思维、意识和人格,网站为,成立于 2022 年 1 月 1 日,地点在杭州,融资阶段为天使轮。 跳悦智能:AI 数字人技术研发商,如虚拟主播带货,网站为,成立于 2021 年 6 月 1 日,地点在北京,融资阶段为天使轮。 延伸阅读类: ,发布者为汉坤,发表日期为 2022 年 6 月 22 日,类别为文章。 ,发布者为浙江省发展和改革委员会,发表日期为 2022 年 12 月 25 日,类别为政策。
2024-12-08
请综合各种AI产品的信息,预测接下来几年内将会有哪些较大创新或者有较大影响力的AI产品
以下是对未来几年内可能出现的较大创新或有较大影响力的 AI 产品的预测: 1. 一个主权国家可能向美国大型人工智能实验室投资 100 亿美元以上,但需国家安全审查。 2. 没有任何编码能力的人独自创建的应用程序或网站可能迅速走红,例如进入 App Store Top100。 3. 案件审理后,前沿实验室可能对数据收集实践实施有意义的改变。 4. 由于立法者担心权力过度,欧盟人工智能法案的早期实施可能比预期更慢。 5. OpenAI o1 的开源替代品可能在一系列推理基准测试中超越它。 6. 挑战者可能难以对 NVIDIA 的市场地位造成重大打击。 7. 由于公司难以实现产品与市场的契合,对人形机器人的投资水平可能下降。 8. 苹果设备上研究的强劲成果可能加速个人设备上 AI 的发展势头。 9. 人工智能科学家撰写的研究论文可能被大型机器学习会议或研讨会接受。 10. 一款以与 GenAI 元素交互为基础的视频游戏可能取得突破性进展。 此外,还可能有以下情况: 1. 2024 年可能是看到真正的应用将人类从旁边帮助和建议的副驾驶,转变为可以完全将人类排除在外的代理的一年,AI 将更像同事而非工具,在软件工程、客户服务等领域发挥作用。 2. 预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮将更“奢华”。 3. 政府和大型科技公司将继续承受计算需求的压力,逼近电网极限。 4. 虽然预期的 AI 对选举和就业的影响尚未成真,但仍需警惕。
2024-12-03
AI在未来多少年会颠覆式影响现在人的生活
AI 在未来对人类生活产生颠覆式影响的时间难以精确预测。目前的研究和观点表明: 从一些观点来看,在接下来的几十年内,AI 就可能带来巨大变化。例如,在未来的几十年里,我们将能够做到在祖辈看来如同魔法般的事情。AI 会为人们提供解决难题的工具,帮助我们在人类进步的架构上增添新的支撑。 预计到 2024 年及以后,生成式 AI 的热潮不会消退,会有团队投入大量资金训练大型模型,同时政府和大型科技公司将持续面临计算需求的压力。 虽然目前 AI 对选举和就业的预期影响尚未完全显现,但未来其影响可能如同潘多拉魔盒,在未来的数年、数十年甚至更长时间内无处不在。 总之,AI 已经在我们的日常生活中存在,其对生活的颠覆式影响会逐步显现,但具体时间难以确定。
2024-11-25
AI对翻译领域的影响
AI 对翻译领域产生了多方面的影响: 1. 技术创新:阿里巴巴发布的 Marco MT 等新工具不断提升翻译性能,超越了 Google、DeepL 和 ChatGPT 等。 2. 功能优化:如 Marco MT 支持多语言、上下文理解、处理文化和行业特定翻译,专为电商设计,集成至国际电商平台,支持多种翻译模式,降低成本,提升客户服务质量和销量。 3. 方法改进:吴恩达开源的 Coze 项目通过分块处理和语言习惯指定等方式进一步提升翻译质量。 4. 应用拓展:在从医疗到电子商务等各个领域,生成式 AI 为翻译带来更多机会,影响消费市场。
2024-11-25