直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

有哪些前沿的大语言模型公司

回答

目前,前沿的大语言模型公司包括:

  • OpenAI:其 GPT-4 是先进且广泛使用的大型语言模型,在多种任务上表现卓越。
  • Anthropic 公司:推出了 Claude 3 。
  • 谷歌:有 Gemini 等大语言模型。
  • 百度:文心一言。
  • 阿里巴巴:通义大模型。

如果想了解国内的大模型效果,可以参考第三方基准评测报告:2023 年度中文大模型基准测评报告.pdf 。内容由 AI 大模型生成,请仔细甄别。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:目前最火最好用的的大语言模型是哪个

[OpenAI](https://openai.com/)的GPT-4是其中一个最先进和广泛使用的大型语言模型。它在多种任务上展示了卓越的性能,包括文本生成、理解、翻译以及各种专业和创意写作任务。GPT-4通过大量数据的学习,能够理解和生成人类语言,展示了在处理复杂问题和理解上下文方面的深度能力。除了OpenAI的GPT系列,还有其他一些重要的大型语言模型,如Anthropic公司[Claude 3](https://www.anthropic.com/news/claude-3-family)、谷歌的Gemini、百度的文心一言、阿里巴巴的通义大模型等,它们在特定领域和任务上也表现出了卓越的能力。如果想了解国内的大模型效果,可以参考第三方基准评测报告:[2023年度中文大模型基准测评报告.pdf](https://waytoagi.feishu.cn/wiki/ANF7wRcJPixR00kWJINcoP1GnGf)内容由AI大模型生成,请仔细甄别。类似问题:最强大语言模型是哪个?

生成式人工智能如何改变创意工作

生成式人工智能已经可以做很多事情。它能够生成文本和图像,涵盖博客文章、程序代码、诗歌和艺术品(甚至[赢得竞赛,有争议)](https://www.washingtonpost.com/technology/2022/09/02/midjourney-artificial-intelligence-state-fair-colorado/))。该软件使用复杂的机器学习模型根据先前的单词序列预测下一个单词,或根据描述先前图像的单词预测下一个图像。法学硕士于2017年在Google Brain开始提供,最初用于翻译单词,同时保留上下文。从那时起,大型语言和文本到图像模型在领先的科技公司中激增,包括Google(BERT和LaMDA)、Facebook(OPT-175B、BlenderBot)和OpenAI(微软是主要投资者的非营利组织(GPT- 3用于文本,DALL-E2用于图像,Whisper用于语音)。Midjourney(帮助赢得艺术竞赛)等在线社区和HuggingFace等开源提供商也创建了生成模型。

红杉|AI 50 未来公司

原文链接:https://www.sequoiacap.com/article/ai-50-2024/发表时间:2024-4-11作者:Konstantine Buhler编译:Z Potentials去年,生成式AI从不引人注意的地方走到了AI 50强榜单的前列。今年,随着我们看到企业用户和消费者的AI生产力开始大幅提高,它成为前沿和中心。尽管2023年美国的大部分AI风投都流向了基础设施领域——其中60%流向了最大的大语言模型(LLM)提供商,但应用公司仍在AI 50强榜单中占据主导地位。与此同时,我们开始看到AI如何为公司赋能。如今,许多公司正将AI融入其工作流程,以此来快速达成KPI。我们看到大公司正通过将AI融入其产品的方式而获益。工作流程自动化平台ServiceNow通过AI驱动的Now Assist,实现了近20%的事件避免率。Palo Alto Networks利用AI降低了处理费用的成本。Hubspot利用AI扩大了能够支持的用户规模。瑞典金融科技公司Klarna最近宣布,通过将AI融入用户支持,他们在运行率方面节省了4000多万美元。现在,成千上万的公司正在将AI整合到他们的工作流程中,以扩张规模和降低成本。AI 50强企业正在快速进化。

其他人在问
大模型有哪些前沿论文
以下是一些关于大模型的前沿论文: 2017 年发布的《Attention Is All You Need》,开启了大模型发展的序幕。 2018 年 Google 提出的 BERT(Bidirectional Encoder Representations from Transformers),创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模,参数规模在 110M 到 340M 之间。 2018 年 OpenAI 提出的 GPT(Generative Pretrained Transformer),开创了仅使用自回归语言建模作为预训练目标的方式,参数规模达 1750 亿。 2021 年 Meta 提出的 Large LAnguage Model Approach(LLAMA),是首个开源模型,为构建更大规模、更通用的语言模型提供了方法与工具,参数规模在十亿到千亿之间。 2024 年苹果公布的《MM1:Methods,Analysis & Insights from Multimodal LLM Pretraining》,这是一个具有高达 30B 参数的多模态 LLM 系列,探讨了不同架构组件和数据选择的重要性。
2024-11-15
可以找到产品相关的前沿科技报道和论文 的AI工具
以下是一些可以帮助找到产品相关前沿科技报道和论文的 AI 工具: 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。 此外,在“AI+教育”方面,也有一些相关案例和投稿,如: 《AI 洞察:一线医生如何实际使用 ChatGPT》:来自纽约时报最新报道,再现了 ChatGPT 在美国一流医院的实际场景。 《笔记:与 AI+教育前辈聊天》:亲测有效的让某人主动学习 AI 的方式。 《数学:OpenAI 发表论文大幅提高 ChatGPT 的数学准确性》:探讨了 ChatGPT 在数学方面的挑战和改进。 《书籍推荐:三本神经科学书籍》:强调多学科交叉对学习和运用 AI 的作用。
2024-10-30
ai行业前沿技术突破
以下是关于 AI 行业前沿技术突破的相关内容: 2024 年,AI 模型在生物医学、气象预测等领域取得了重要突破。诺贝尔物理学奖和化学奖先后颁给了 AI,这不仅推动了机器学习的理论创新,还揭示了蛋白质折叠问题,标志着人工智能已成为一门科学学科和加速科学的工具。 在具体的技术应用方面: 基于深度学习和 Transformer 架构的蛋白质结构预测模型 AlphaFold 3 能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用,将为细胞功能解析、药物设计和生物科学的发展提供有力支持。 DeepMind 展示的新的实验生物学能力 AlphaProteo 是一种能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。 生物学前沿模型的扩展方面,Meta 发布的 ESM3 是一种前沿多模态生成模型,它在蛋白质序列、结构和功能上进行训练,能够学习预测任何模态组合的完成情况。 此外,在学习路径方面,偏向技术研究方向需要掌握数学基础(如线性代数、概率论、优化理论等)、机器学习基础(监督学习、无监督学习、强化学习等)、深度学习(神经网络、卷积网络、递归网络、注意力机制等)、自然语言处理(语言模型、文本分类、机器翻译等)、计算机视觉(图像分类、目标检测、语义分割等)等,还包括前沿领域如大模型、多模态 AI、自监督学习、小样本学习等以及科研实践。 偏向应用方向则需要具备编程基础(Python、C++等)、机器学习基础(监督学习、无监督学习等)、深度学习框架(TensorFlow、PyTorch 等),了解应用领域(自然语言处理、计算机视觉、推荐系统等)、数据处理(数据采集、清洗、特征工程等)、模型部署(模型优化、模型服务等),并进行行业实践。 AI 技术的发展历程大致为:早期阶段有专家系统、博弈论、机器学习初步理论;知识驱动时期有专家系统、知识表示、自动推理;统计学习时期有机器学习算法(决策树、支持向量机、贝叶斯方法等);深度学习时期有深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点包括: 大模型,如 GPT、PaLM 等。 多模态 AI,如视觉语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 小样本学习,如元学习、一次学习、提示学习等。 可解释 AI,包括模型可解释性、因果推理、符号推理等。 机器人学,涉及强化学习、运动规划、人机交互等。 量子 AI,包含量子机器学习、量子神经网络等。 AI 芯片和硬件加速。
2024-10-28
帮忙生写最近人工智能领域的前沿技术新闻简报
以下是最近人工智能领域的前沿技术新闻简报: 1. Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位,详情可访问: 2. Shopify 的 AI 助手现已上线。Sidekick 是一个帮助机器人,它知道如何在 Shopify 中执行任何操作,包括提取相关数据、操作新功能或创建报告,详情可访问: 3. Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能,详情可访问: 4. OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,主要目的是确保 AI 模型的安全发展,详情可访问: 5. Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器,详情可访问:
2024-10-14
了解人智能前沿
以下是关于人工智能前沿的一些信息: 在具身智能赛道方面,目前其底层动作技能还没看到可以泛化的办法。相关参考资料包括:Li,Junnan 等人的“Blip2: Bootstrapping languageimage pretraining with frozen image encoders and large language models”,Sun,Quan 等人的“Generative pretraining in multimodality”,BAI 资本的万字干货带你入门“具身智能”,以及中金的一系列关于人形机器人的研究等。 在职业变迁方面,充分发展的行业可能会被完全自动化,AI 本质上是人类经验的自动化回放,会雇佣更少人力,但技术也会开辟新行业。尽管技术变革可能突然涌现,但人类职业显著变化通常需一代人时间。若 AI 抢走多数人类工作机会,政府可用税收平衡差异,如全民基本收入(Universal basic income UBI)。 在机器之心的进化方面,涵盖了 AI 进化史、软件 2.0 的崛起、面向智能的架构、一统江湖的模型、现实世界的 AI 以及 AI 进化的未来等内容。文中提到在无特别指明情况下,为书写简洁,会用 AI(Artifical Intelligence)代表人工智能,用 ML(Machine Learning)代表机器学习,DL(Deep Learning)代表深度学习等。
2024-09-20
24小时内中国AI前沿科技最新消息
以下是 24 小时内中国 AI 前沿科技的最新消息: 阿里 CEO 吴泳铭表示将开源国内最大 720 亿参数模型。 京东 CEO 称正在测试 AI 自动生成营销内容。 此外,还有一些国际上的 AI 相关消息: 苹果新专利:CGR 技术生成虚拟形象,展示穿戴效果。 微软 AI 专利:充当治疗师,疏导心理问题。 苹果改造 Siri:明年或用大语言模型。 谷歌 Open Se Cura:为 Pixel 带来低功耗 AI。 微软计划:AI 助手 Copilot 将进入 Windows 10。 亚马逊成立 AI 训练团队,投资数百万美金。 ChatGPT 持续宕机,CEO 道歉。 GitHub Universe 2023 新功能:新的 Copilot 聊天功能,Copilot 支持手机应用,GitHub Copilot Workspace,产问题查询 GitHub Copilot 企业版:每月 39 美元的高级服务。GitHub Copilot 合作伙伴计划,GitHub 高级安全功能。
2024-09-17
混元大模型
腾讯混元大模型(HunyuanLarge)是全球最大的 MoE 开源模型,具有以下特点: 拥有 3890 亿参数,其中活跃参数为 520 亿。 具备强大的长文本处理和常识推理能力,支持 256K 上下文窗口。 通过数据增强,使用合成数据提升对未见内容的理解。 详细介绍: 模型下载: 技术报告:
2024-11-15
整合多家大预言模型的工具
以下为整合多家大语言模型的工具介绍: 1. Poe: 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验,但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性。 支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导能够启发用户,支持 Explore Chatbot,但丰富度不如后续要介绍的 Character,midjourney prompt 扩写 Chatbot 能力很惊人。 2. Ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小,以满足不同需求和硬件条件。模型库可通过 https://ollama.com/library 查找。 用户可通过简单步骤自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 提供 REST API,用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 下载安装地址:https://ollama.com/download/ ,安装完后,在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动,可通过 ollama list 确认,未下载模型时正常显示空,可通过 ollama 命令下载模型。 3. 未来还会不断丰富大模型的外延能力,例如知识库检索、计算工具、WolframAlpha、操作软件等。首先集成了 LangChain 框架,可更方便地基于 Llama2 开发文档检索、问答机器人和智能体应用等。针对 LangChain 框架封装的 Llama2 LLM 类见,简单的调用代码示例如下。
2024-11-15
现在有哪些大模型效果与性能的对齐工具
目前对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的理解程度,涵盖语法、语义、上下文和隐含意义。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:衡量对广泛主题的知识掌握及特定领域的理解深度。 4. 泛化能力:测试处理未见过任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊指令的能力。 6. 偏见和伦理:评估生成文本是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,对用户反馈的适应和持续对话能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务,提供的 API 和工具的易用性。 为进行有效比较,可采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准评估基准。 2. 自定义任务:根据特定需求设计任务评估特定领域表现。 3. 人类评估:结合人类评估者的主观评价,尤其在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中比较不同模型表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等量化比较。 对于大模型的安全对齐,通过对齐(指令调优)能使语言模型更好理解人类意图并增加安全保障,避免输出有害内容。对齐任务可拆解为监督微调及获取 reward model 与进行强化学习调整输出分布两部分。LLAMA2 专门使用安全有监督微调确保安全。强化学习能根据人类反馈调整分布,使模型面对训练分布外数据时能拒绝不当回答。但 Alignment 并非能防护所有安全问题,存在越狱情况使模型对齐失效。 Qwen 2 开源后模型性能超越目前所有开源模型和国内闭源模型。玉宝搞过的 LLM 在线评估中可看到国内闭源大模型的 HUMANEVAL 测评得分,可与 Qwen 2 对比,参考网址:https://www.llmrank.cn/ 。2023 年 8 月起,通义千问推出 Qwen 系列,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen 2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,也已上线中国大语言模型评测竞技场 Compass Arena,测评地址:https://opencompass.org.cn/arena 。Compass Arena 集齐了国内主流的 20 多款大模型,用户可选择两两“对战”。
2024-11-14
lama模型
Llama 模型相关信息如下: 基于多模态大模型给现实世界加一本说明书:后端采用 llama.cpp 挂载 LLaVA 模型,为应用提供推理服务。同时,部署了一个 Flask 应用用于数据前处理和后处理,提供 Stream 流服务。前端页面采用 HTML5,用于采集画面和用户输入。 LLM 开源中文大语言模型及数据集集合:未直接提及 Llama 模型的具体内容。 LayerStyle 副本中的 LayerUtility 中的 LaMa:根据图像遮罩擦除物体,是对 IOPaint 的封装,由 SOTA AI 模型提供支持。提供 LaMa 等模型以及多种擦除方法,可下载模型文件放到指定位置,并对节点选项进行了说明,如选择模型或方法、设备选择、遮罩反转、遮罩扩张幅度、遮罩模糊幅度等。
2024-11-14
gpt4o视觉模型
GPT4o 是 OpenAI 推出的模型。开发人员现在可在 API 中将其作为文本和视觉模型进行访问。与 GPT4 Turbo 相比,具有速度快 2 倍、价格减半、速率限制高出 5 倍的优势。未来几周计划向 API 中的一小群受信任的合作伙伴推出对其新音频和视频功能的支持。 GPT4o(“o”代表“omni”)是迈向更自然人机交互的一步,能接受文本、音频和图像的任意组合作为输入,并生成文本、音频和图像输出的任意组合。它在 232 毫秒内可响应音频输入,平均为 320 毫秒,与人类响应时间相似。在英语文本和代码上的 GPT4 Turbo 性能相匹配,在非英语语言的文本上有显著改进,在 API 中更快且便宜 50%,在视觉和音频理解方面表现出色。 在 GPT4o 之前,语音模式由三个独立模型组成的管道实现,存在信息丢失等问题。而 GPT4o 是在文本、视觉和音频上端到端训练的新模型,所有输入和输出都由同一个神经网络处理,但对其能做什么及局限性仍在探索。
2024-11-14
什么是知识库,以及他的运作原理是什么,请用小白也能理解的语言进行说明
知识库可以用比较通俗的方式来理解: 想象一个大语言模型就像一个非常聪明、读过无数书的人,但对于一些特定的工作场景中的细节,比如见到老板娘过来吃饭要打三折,张梦飞过去吃饭要打骨折,它可能并不清楚。这时候,知识库就像是给这个聪明的人发的一本工作手册。 从更专业的角度来说,知识库的运作原理通常包括以下几个步骤: 1. 文档加载:从各种不同的来源,比如 PDF、SQL 数据、代码等加载相关的文档。 2. 文本分割:把加载的文档分割成指定大小的块,称为“文档块”或“文档片”。 3. 存储:这包括两个环节,一是将分割好的文档块进行嵌入,转换成向量的形式;二是将这些向量数据存储到向量数据库中。 4. 检索:当需要使用数据时,通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给大语言模型,大语言模型会根据问题和检索出来的提示一起生成更合理的答案。 以车型数据为例,每个知识库的分段中保存了一种车型的基础数据。当用户问宝马 X3 的售价是多少时,就能匹配到对应车型的分段,然后从其中获取到售价信息。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2024-11-13
现在国内语言生成式AI有多少个在做的,比如说百度的文心一言和阿里的通义
目前国内在做语言生成式 AI 的有不少,例如百度的文心一言、阿里的通义千问、讯飞的讯飞星火、智谱华章的智谱清言、字节跳动的豆包、腾讯的元宝、昆仑万维的天工 AI 等。 此外,还有一些在特定时间上线的大模型,如 8 月正式上线的包括北京的百度(文心一言)、抖音(云雀大模型)、智谱 AI(GLM 大模型)、中科院(紫东太初大模型)、百川智能(百川大模型),上海的商汤(日日新大模型)、MiniMax(ABAB 大模型)、上海人工智能实验室(书生通用大模型)。 需要注意的是,不同的大模型具有各自的特点和功能,在使用和应用场景上可能存在差异。
2024-11-06
大语言模型综述论文有哪些
以下是一些大语言模型的综述论文: 参考文献: B.Wang, W.Chen, H.Pei, C.Xie, M.Kang, C.Zhang, C.Xu, Z.Xiong, R.Dutta, R.Schaeffer 等,“Decodingtrust:GPT 模型中信任度的全面评估”,arXiv 预印本 arXiv:2306.11698,2023。 Z.Zhang, L.Lei, L.Wu, R.Sun, Y.Huang, C.Long, X.Liu, X.Lei, J.Tang, 和 M.Huang, “Safetybench:使用多项选择题评估大型语言模型的安全性”,2023。 X.Shen, Z.Chen, M.Backes, Y.Shen, 和 Y.Zhang, “现在就做任何事:在大型语言模型上表征和评估野外越狱提示”,arXiv 预印本 arXiv:2308.03825,2023。 X.Liu, N.Xu, M.Chen, 和 C.Xiao, “Autodan:在对齐的大型语言模型上生成隐蔽的越狱提示”,arXiv 预印本 arXiv:2310.04451,2023。 S.Zhu, R.Zhang, B.An, G.Wu, J.Barrow, Z.Wang, F.Huang, A.Nenkova, 和 T.Sun, “Autodan:对大型语言模型的可解释梯度基对抗攻击”,2023。 A.Zhou, B.Li, 和 H.Wang, “针对越狱攻击保护语言模型的强健提示优化”,arXiv 预印本 arXiv:2401.17263,2024。 X.Guo, F.Yu, H.Zhang, L.Qin, 和 B.Hu, “Coldattack:用隐蔽性和可控性越狱 LLMs”,2024。 T.Shen, R.Jin, Y.Huang, C.Liu, W.Dong, Z.Guo, X.Wu, Y.Liu, 和 D.Xiong, “大型语言模型对齐:一项调查”,arXiv 预印本 arXiv:2309.15025,2023 年。 X.Liu, X.Lei, S.Wang, Y.Huang, Z.Feng, B.Wen, J.Cheng, P.Ke, Y.Xu, W.L.Tam, X.Zhang, L.Sun, H.Wang, J.Zhang, M.Huang, Y.Dong, 和 J.Tang, “Alignbench:大型语言模型中文对齐的基准测试”,2023 年。 P.Christiano, J.Leike, T.B.Brown, M.Martic, S.Legg, 和 D.Amodei, “基于人类偏好的深度强化学习”,2023 年。 T.Yu, Y.Yao, H.Zhang, T.He, Y.Han, G.Cui, J.Hu, Z.Liu, H.T.Zheng, M.Sun, 和 T.S.Chua, “RLHFV:通过细粒度校正人类反馈实现可信赖的 MLLMs 行为对齐”,2023 年。 M.S.Jahan 和 M.Oussalah, “使用自然语言处理进行仇恨言论自动检测的系统综述。”,《神经计算》,第 126232 页,2023 年。 OpenAI, “Sora 安全。”https://openai.com/sorasafety,2024 年。 Z.Fei, X.Shen, D.Zhu, F.Zhou, Z.Han, S.Zhang, K.Chen, Z.Shen, 和 J.Ge, “Lawbench:大型语言模型的法律知识基准测试”,arXiv 预印本 arXiv:2309.16289,2023 年。 市场分析 其他观点 相关论文: :斯坦福大学对基础模型的概述论文。 :年度回顾,涵盖 AI 领域的所有事物。 :对大型语言模型(LLMs)在劳动力市场潜在影响的早期研究。 :Eric Topol 医生揭示了人工智能如何有可能将医生从耗费大量时间的任务中解放出来,从而不会干扰到人与人之间的连接。
2024-11-02
AI与语言学习
以下是关于 AI 与语言学习的相关内容: 使用 AI 工具学习外语的方法和工具: 1. 语言学习应用: Duolingo:使用 AI 个性化学习体验,根据进度和错误调整练习内容,通过游戏化方式提供词汇、语法、听力和口语练习。下载应用,选择语言,按课程指引学习。 Babbel:结合 AI 技术提供个性化课程和练习,重点是实际交流所需语言技能。注册账户,选择课程,按学习计划学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析学习进度,提供适合练习和反馈。注册并选择语言,使用多种练习模式学习。 2. AI 对话助手: ChatGPT:可模拟对话练习,提高语言交流能力。在聊天界面选择目标语言,进行对话练习,询问语法、词汇等问题,模拟实际交流场景。 Google Assistant:支持多种语言,可进行日常对话练习和词汇学习。设置目标语言,通过语音或文本输入互动。 学习方法建议: 1. 设定目标:明确学习目标和时间表,分阶段完成学习任务。 2. 多样化练习:结合听、说、读、写多种方式进行练习,全面提升语言技能。 3. 模拟真实环境:尽量多与母语者交流,或使用 AI 对话助手模拟真实对话场景。 4. 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容,巩固记忆。 通过这些 AI 工具和方法,可以有效地学习一门外语,提升语言能力。坚持使用,并结合实际交流,不断进步。
2024-10-29
国内大语言模型的应用,比如像豆包,这种,都有哪些
国内大语言模型的应用较为广泛,以下为您介绍部分常见的大语言模型及其应用: 1. 云雀大模型(豆包):在信息安全相关的在线课程和讲座等方面有应用。 2. AndesGPT(OPPO):已接入 OPPO 智能助理新小布,可用于用机助手、内容创作、超级问答、专属 AI、日程管理等全新能力,正在公测中。其聚焦在移动设备端的应用,主要涵盖知识、记忆、工具、创作四个方向,目前已支持使用“系统设置、一方应用、三方服务、代码解释器”等各类工具,并且全面支持文生文、文生图等场景。 3. 文心一言 4.0(百度):已有 7000 万用户。在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一。另外在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三。能力栈较为广泛,可应用的场景较多,重点推荐在查询搜索知识应用、任务拆解规划 Agent、文案写作以及代码编写及纠错等方面的应用。由于在逻辑推理方面的不俗表现,可以重点关注在科学研究、教育、工业方面的落地能力。
2024-10-27
国内大语言模型都有哪些
国内的大语言模型主要有通用模型如百度的文心一言、科大讯飞的讯飞星火等,还有在特定领域表现出色的垂直模型,如专注于小语种交流、临床医学、AI 蛋白质结构预测等领域的模型。在传统安全能力的测评中,文心一言 4.0(API)表现较好。此外,国内大模型在传统安全测评方面总体表现不俗。如果想了解国内大模型的效果,可以参考第三方基准评测报告:
2024-10-27
perplexity公司
Perplexity 是一家专注于开发新一代 AI 搜索引擎的公司,创立于 2022 年 8 月,由前 OpenAI 研究科学家 Aravind Srinivas 与前 Meta 研究科学家 Denis Yarats(Perplexity CTO)等合伙人共同创办。 其优势包括: 1. 理解能力强:能够深入理解查询的语义,而非仅仅匹配关键词,提供更准确和相关的结果。 2. 生成式回答:可以生成通顺的自然语言回答,而非简单返回网页链接和片段,使结果更易于理解和使用。 3. 个性化和上下文感知:能根据用户的历史查询和偏好个性化结果,提供更贴合需求的答复。 劣势有: 1. 训练成本高:训练大型 LLM 模型需要大量计算资源和高质量训练数据,成本较高。 2. 可解释性差:LLM 的工作原理较为黑箱,难以解释为何给出某个结果,缺乏透明度。 3. 潜在的偏差和不当内容:由于训练数据的局限性,可能产生偏见或不当内容。 独特之处在于将 LLM 技术应用于搜索引擎领域,试图颠覆传统基于关键词匹配的搜索范式,为用户提供更自然和智能的搜索体验,还融合了个性化和上下文感知等功能,努力成为新一代的“智能助手”。 在成立的 18 个月内,Perplexity 达到了 10 亿美元估值。但它与其他由 LLM 驱动的服务一样面临着幻觉问题等挑战,同时人工智能驱动的搜索也存在可靠性问题。
2024-11-14
有哪些著名的AI咨询公司?提供方案解决的那种
以下是一些著名的提供方案解决的 AI 咨询公司及相关信息: 在 AI 心理咨询产品方面,有 Woebot、Replika、Talkspace、Wysa、Moodfit、Youper 等。Woebot 是基于聊天机器人的心理健康平台,使用认知行为疗法原理引导用户。Replika 是 AI 驱动的个人朋友,提供情感支持和指导。Talkspace 是在线心理咨询平台,使用 AI 技术匹配咨询师。Wysa 提供情绪管理和心理健康支持。Moodfit 分析用户情绪模式并提供建议。Youper 结合 AI 和虚拟现实改善心理健康。但对于严重心理问题仍需专业帮助,且应作为传统咨询的补充。 在其他 AI 应用方面,如 14 号的小红书穿搭推荐,是 AI 时尚穿搭建议平台,利用图像识别和数据分析,根据用户身材和风格提供穿搭建议。15 号的蚂蚁财富智能理财助手,通过数据分析和机器学习为用户提供专业投资建议。16 号的法信智能法律咨询,运用自然语言处理和知识图谱解答法律问题。17 号的慧植农当家等是 AI 农业病虫害识别系统,借助图像识别和机器学习帮助农民识别病虫害。18 号的小米智能家居系统,基于物联网技术和机器学习实现家居设备智能化控制。19 号的文案狗等是 AI 广告文案生成工具,通过自然语言处理快速生成吸引人的广告文案。 在生成式 AI 平台的基础设施供应商方面,英伟达是目前该领域最大的幕后赢家,其数据中心 GPU 收入可观,建立了坚固的护城河。同时也有其他供应商,如甲骨文等挑战者,以及一些提供针对大模型开发人员解决方案的初创公司,如 Coreweave 和 Lambda Labs 等。此外还有谷歌张量处理单元(TPU)、AMD Instinct GPU、AWS Inferentia 和 Trainium 芯片,以及来自 Cerebras、Sambanova 和 Graphcore 等初创公司的 AI 加速器,英特尔也带着高端芯片进入市场,但新芯片占据的市场份额有限。
2024-11-13
最近有什么值得关注的AI公司
以下是一些值得关注的 AI 公司: 在移动应用领域,ChatGPT 占据榜首位置,其月活跃用户数大幅领先。此外,微软 Edge、Photomath、微软基于 AI 技术全新打造的搜索引擎 Bing 以及照片美化和虚拟形象制作工具 Remini 也在移动应用前五强中。同时,有五家 AI 公司实现了“双线作战”,其网页端、移动端应用双双跻身前 50 强榜单,分别是 ChatGPT、Character.AI、chatbot 平台 Poe、图片编辑应用 Photoroom 和 Pixelcut。 AI Friendship 是令人惊讶的应用之一,其用户和使用指标显示出强烈的用户喜爱。 工作流程自动化平台 ServiceNow 通过 AI 驱动的 Now Assist 实现了近 20%的事件避免率。Palo Alto Networks 利用 AI 降低了处理费用的成本。Hubspot 利用 AI 扩大了能够支持的用户规模。瑞典金融科技公司 Klarna 通过将 AI 融入用户支持,在运行率方面节省了 4000 多万美元。
2024-10-29
中国上市公司在ai应用方面的进展
目前,中国上市公司在 AI 应用方面取得了一定进展。 一方面,许多公司正将 AI 融入其工作流程,以快速达成 KPI、扩张规模和降低成本。例如,工作流程自动化平台 ServiceNow 通过 AI 驱动的 Now Assist,实现了近 20%的事件避免率;Palo Alto Networks 利用 AI 降低了处理费用的成本;Hubspot 利用 AI 扩大了能够支持的用户规模。瑞典金融科技公司 Klarna 最近宣布,通过将 AI 融入用户支持,他们在运行率方面节省了 4000 多万美元。 另一方面,对于 AI 应用层的创业者来说,存在一些问题和探索。中国企业软件的发展曾受人均 GDP 不够高、人力成本等因素限制,但如果 AI 能极大降低软件成本并提高效率,可能带来价值突破。我们期待中国 2B 的 AI 软件应用实现跨越式发展。 此外,还有一些相关的资源可供参考,如 2022 2024 年融资 2000 万美金以上的公司列表和详细公司分析、AI Grant 公司列表和详细公司分析、AIGC 行业与商业观察等。同时,也有关于 AI 变革公司/产业实践探索的相关内容,如 2023 年年报中中国上市公司对生成式 AI 的使用,以及安克创新的 AI 实践分析等。
2024-10-28
近期融资的ai行业上市公司
以下是近期融资的 AI 行业上市公司的相关信息: Celestial AI 融资 1 亿美元,用于使用基于光的互连传输数据。 Zenarate 融资 1500 万美元,是提供 AI 模拟培训平台的公司。 Augmedics 获得 8250 万美元,用于使用 AR 和 AI 进行脊柱手术。 CalypsoAI 筹集了 2300 万美元,用于生成 AI 模型的护栏。 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15): |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Weka|20240513|1.4|E|16|AI 原生数据平台|应用|数据|Valor Equity Partners, 高通创投, Nvidia, 日立创投| |CoreWeave|20240501|11|C|190|GPU 基础设施|基础设施|硬件和云平台|Coatue, Fidelity, Altimeter Capital, Magnetar Capital| |Scale AI|202405|10|F|140|数据标记服务|应用|数据|Accel, Tiger Global, Spark Capital, 亚马逊| |Blaize|20240429|1.06|D||AI 边缘计算平台|基础设施|硬件和云平台|淡马锡, 富兰克林邓普顿, Bess Ventures| |Augment|20240424|2.27|B|10|AI 编码辅助|应用|编程|Lightspeed Venture Partners, Index Ventures, Sutter Hill Ventures| |Cognition|20240424|1.75||20|端到端软件 Agents|应用|编程|Founders Fund, Ramp 联合创始人 Eric Glyman, Stripe 联合创始人 Patrick 和 John Collison, DoorDash 联合创始人 Tony Xu| |Xaira Therapeutics|20240423|10|A||AI 药物研发|应用|医学|Foresite Capital, ARCH Venture Partners| 近期热门融资 AI 产品速递 1 st : You.com 已完成多轮融资,包括来自 Salesforce CEO Marc Benioff 的 2000 万美元资金和 4500 万美元的募资。目前,You.com 用户数量稳定增长,已超过 10 万。体验链接:www.you.com
2024-10-28
AI公司的评测标准
以下是为您整理的关于 AI 公司评测标准的相关内容: 在 AI 领域,对公司的评测可能涉及多个方面。例如,从宏观角度来看,一个国家在 AI 方面的领先地位可能取决于其研究基础、高校培养的专业人才、创新者的创造力以及政府的长期投资和支持。同时,良好的监管环境对于确保创新者能够发展并应对 AI 带来的风险至关重要。 在具体的活动如麦乐园 AI 选美大赛中,评审标准包括审美(美的人、服装、场景)、创意(令人耳目一新)、氛围(情绪和故事性饱满,令人回味)、技术(精致执行,无明显瑕疵)。但需要注意的是,这只是特定活动中的评审标准,不能完全代表对 AI 公司的普遍评测标准。 总体而言,AI 公司的评测标准是复杂且多维度的,会因具体的应用场景和行业需求而有所不同。
2024-10-23