以下是关于人工智能前沿的一些信息:
泛化:目前具身智能的底层动作技能还没看到可以泛化的办法【智谱清言智能体推荐】了解更多关于硬件,点击互动👇参考资料:[1]Li,Junnan,et al."Blip-2:Bootstrapping language-image pre-training with frozen image encoders and large language models."International Conference on Machine Learning.PMLR,2023.[2]Sun,Quan,et al."Generative pretraining in multimodality."arXiv preprint arXiv:2307.05222(2023).[3]BAI资本:万字干货带你入门“具身智能”|BAI观点[4]https://mp.weixin.qq.com/s/IqVLvNHJ3OMdaHpITK57Jw[5]中金|人形机器人前沿系列:力触觉,牵引感官革命[6]中金|人形机器人前沿03:运动控制,产业命脉守护者[7]中金•联合研究|产业龙头纷至沓来,人形机器人大幕拉开[8]中金六组共同深度解读全球人形机器人发展历程、零部件产业链、参与者发展历程梳理及终端应用。建议关注各类机器人技术变迁带来的机会,其中重点关注人形机器人产业化落地需拉通的技术与终端应用相关链条机会。[9]浙商证券《图拆特斯拉Optimus——走进机器人》[10]华泰|机械:人形机器人再探讨——训练数据的来源
充分发展的行业会被完全自动化,现在的AI本质上也是人类经验的自动化回放,因此会雇佣更少的人力;但技术也开辟了新的行业,这些领域需要更多的人手。而且,因为计算的不可约,事物通常会变得越来越复杂,更多的知识和组织结构将会出现,这也就开辟了需要更多人类参与的“前沿”领域。尽管有时会突然涌现出新的技术变革,但在人类职业上出现显著变化通常需要一代人的时间。想象一下你在第二次工业革命的前夕,你能预知所有将在未来半个世纪内出现的神奇技术么?例如大规模生产、电力、汽车、电话、飞机等等。这些技术哪些会扼杀工作机会,哪些又会创造就业机会呢?你一定预测不到!所以请保持乐观,新机会一定存在的;需要做的就是提升自己的认知,不要在当下选择已经是趋势之外的行业就行。最后,如果AI确实抢走了大多数人类的工作机会,那也意味着让部分企业以及某些精英人类赚了更多的钱,政府可以用税收来平衡这个差异,全民基本收入(Universal basic income - UBI)就是一个很好的解决方法。
1.AI进化史-前神经网络时代、Machine Learning的跃迁、开启潘多拉的魔盒2.软件2.0的崛起-软件范式的转移和演化、Software 2.0与Bug 2.03.面向智能的架构- Infrastructure 3.0、如何组装智能、智能架构的先锋4.一统江湖的模型- Tran sformer的诞生、基础模型、AI江湖的新机会5.现实世界的AI -自动驾驶新前沿、机器人与智能代理6.AI进化的未来-透视神经网络、千脑理论、人工智能何时能通用?文章较长,累计22800字,请留出一小时左右的阅读时间,欢迎先收藏再阅读!文中每一个链接和引用都是有价值的,特别作为衍生阅读推荐给大家。阅读之前先插播一段Elon Musk和Jack Ma在WAIC 2019关于人工智能的对谈的经典老视频,全程注意Elon Ma的表情❓❓大家觉得机器智能能否超过人类么?带着这个问题来阅读,相信看完就会有系统性的答案!本文在无特别指明的情况下,为了书写简洁,在同一个段落中重复词汇大量出现时,会用AI(Artifical Intelligence)来代表人工智能,用ML(Machine Learning)来代表机器学习,DL(Deep Learning)来代表深度学习,以及各种英文缩写来优先表达。