直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大模型有哪些前沿论文

回答

以下是一些关于大模型的前沿论文:

  • 2017 年发布的《Attention Is All You Need》,开启了大模型发展的序幕。
  • 2018 年 Google 提出的 BERT(Bidirectional Encoder Representations from Transformers),创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模,参数规模在 110M 到 340M 之间。
  • 2018 年 OpenAI 提出的 GPT(Generative Pre-trained Transformer),开创了仅使用自回归语言建模作为预训练目标的方式,参数规模达 1750 亿。
  • 2021 年 Meta 提出的 Large LAnguage Model Approach(LLAMA),是首个开源模型,为构建更大规模、更通用的语言模型提供了方法与工具,参数规模在十亿到千亿之间。
  • 2024 年苹果公布的《MM1:Methods,Analysis & Insights from Multimodal LLM Pre-training》,这是一个具有高达 30B 参数的多模态 LLM 系列,探讨了不同架构组件和数据选择的重要性。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

大模型入门指南

这一切的起源是2017年发布的Attention Is All You Need([4])论文,之后基于大量语料的预训练模型百花齐放,比如:BERT(Bidirectional Encoder Representations from Transformers):Google在2018年提出,创新性的双向预训练并行获取上下文语义信息,以及掩码语言建模(MLM)让模型更好地推断语义信息。它开创了预训练语言表示范式,对自然语言处理产生了深远影响。参数规模:110M到340MGPT(Generative Pre-trained Transformer):OpenAI在2018年提出,开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号。它展示了通过无监督大规模预训练获得的语言生成能力,对研究与应用都带来重大影响。参数规模:1750亿Large LAnguage Model Approach(LLAMA):Meta在2021年提出,首个开源模型。为构建更大规模、更通用的语言模型提供了系统化的方法与工具。参数规模:十亿到千亿

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

这个可能有些同学不怎么听过这个词,但这个是大模型里,我认为最核心的个概念。因为其实经上面的原理讲解,其实大家不难发现,这与目前大模型所表现出来的,仍然对不上啊。为什么只是在计算相关性和概率,就能让大模型表现出难以解释的表达?所以这就是涌现…也就是科学家们认为,当训练的数据到了一定程度后,模型的能力会涌现出很多难以用逻辑去解释的现象。说实话在我看来,因为本身模型的学习就是在一个降维的latentspace中进行的,那我们尝试去用三维世界中的if-else去解释其行为,似乎本身也不靠谱不是么。不过现在倒也有一些论文使用跟踪标注等的的方式来尝试解释大模型内部的行为,这个看看就好了

苹果大模型MM1杀入场:300亿参数、多模态、MoE架构,超半数作者是华人

原创关注大模型的机器之心2024-03-15 12:44北京原文地址:https://mp.weixin.qq.com/s/i9bx6M32uk4Jq2KSRhv4ng机器之心报道机器之心编辑部苹果也在搞自己的大型多模态基础模型,未来会不会基于该模型推出相应的文生图产品呢?我们拭目以待。今年以来,苹果显然已经加大了对生成式人工智能(GenAI)的重视和投入。此前在2024苹果股东大会上,苹果CEO蒂姆・库克表示,今年将在GenAI领域实现重大进展。此外,苹果宣布放弃10年之久的造车项目之后,一部分造车团队成员也开始转向GenAI。如此种种,苹果向外界传达了加注GenAI的决心。目前多模态领域的GenAI技术和产品非常火爆,尤以OpenAI的Sora为代表,苹果当然也想要在该领域有所建树。今日,在一篇由多位作者署名的论文《MM1:Methods,Analysis & Insights from Multimodal LLM Pre-training》中,苹果正式公布自家的多模态大模型研究成果——这是一个具有高达30B参数的多模态LLM系列。论文地址:https://arxiv.org/pdf/2403.09611.pdf该团队在论文中探讨了不同架构组件和数据选择的重要性。并且,通过对图像编码器、视觉语言连接器和各种预训练数据的选择,他们总结出了几条关键的设计准则。具体来讲,本文的贡献主要体现在以下几个方面。首先,研究者在模型架构决策和预训练数据选择上进行小规模消融实验,并发现了几个有趣的趋势。建模设计方面的重要性按以下顺序排列:图像分辨率、视觉编码器损失和容量以及视觉编码器预训练数据。

其他人在问
可以找到产品相关的前沿科技报道和论文 的AI工具
以下是一些可以帮助找到产品相关前沿科技报道和论文的 AI 工具: 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。 此外,在“AI+教育”方面,也有一些相关案例和投稿,如: 《AI 洞察:一线医生如何实际使用 ChatGPT》:来自纽约时报最新报道,再现了 ChatGPT 在美国一流医院的实际场景。 《笔记:与 AI+教育前辈聊天》:亲测有效的让某人主动学习 AI 的方式。 《数学:OpenAI 发表论文大幅提高 ChatGPT 的数学准确性》:探讨了 ChatGPT 在数学方面的挑战和改进。 《书籍推荐:三本神经科学书籍》:强调多学科交叉对学习和运用 AI 的作用。
2024-10-30
ai行业前沿技术突破
以下是关于 AI 行业前沿技术突破的相关内容: 2024 年,AI 模型在生物医学、气象预测等领域取得了重要突破。诺贝尔物理学奖和化学奖先后颁给了 AI,这不仅推动了机器学习的理论创新,还揭示了蛋白质折叠问题,标志着人工智能已成为一门科学学科和加速科学的工具。 在具体的技术应用方面: 基于深度学习和 Transformer 架构的蛋白质结构预测模型 AlphaFold 3 能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用,将为细胞功能解析、药物设计和生物科学的发展提供有力支持。 DeepMind 展示的新的实验生物学能力 AlphaProteo 是一种能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。 生物学前沿模型的扩展方面,Meta 发布的 ESM3 是一种前沿多模态生成模型,它在蛋白质序列、结构和功能上进行训练,能够学习预测任何模态组合的完成情况。 此外,在学习路径方面,偏向技术研究方向需要掌握数学基础(如线性代数、概率论、优化理论等)、机器学习基础(监督学习、无监督学习、强化学习等)、深度学习(神经网络、卷积网络、递归网络、注意力机制等)、自然语言处理(语言模型、文本分类、机器翻译等)、计算机视觉(图像分类、目标检测、语义分割等)等,还包括前沿领域如大模型、多模态 AI、自监督学习、小样本学习等以及科研实践。 偏向应用方向则需要具备编程基础(Python、C++等)、机器学习基础(监督学习、无监督学习等)、深度学习框架(TensorFlow、PyTorch 等),了解应用领域(自然语言处理、计算机视觉、推荐系统等)、数据处理(数据采集、清洗、特征工程等)、模型部署(模型优化、模型服务等),并进行行业实践。 AI 技术的发展历程大致为:早期阶段有专家系统、博弈论、机器学习初步理论;知识驱动时期有专家系统、知识表示、自动推理;统计学习时期有机器学习算法(决策树、支持向量机、贝叶斯方法等);深度学习时期有深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点包括: 大模型,如 GPT、PaLM 等。 多模态 AI,如视觉语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 小样本学习,如元学习、一次学习、提示学习等。 可解释 AI,包括模型可解释性、因果推理、符号推理等。 机器人学,涉及强化学习、运动规划、人机交互等。 量子 AI,包含量子机器学习、量子神经网络等。 AI 芯片和硬件加速。
2024-10-28
帮忙生写最近人工智能领域的前沿技术新闻简报
以下是最近人工智能领域的前沿技术新闻简报: 1. Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位,详情可访问: 2. Shopify 的 AI 助手现已上线。Sidekick 是一个帮助机器人,它知道如何在 Shopify 中执行任何操作,包括提取相关数据、操作新功能或创建报告,详情可访问: 3. Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能,详情可访问: 4. OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,主要目的是确保 AI 模型的安全发展,详情可访问: 5. Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器,详情可访问:
2024-10-14
有哪些前沿的大语言模型公司
目前,前沿的大语言模型公司包括: OpenAI:其 GPT4 是先进且广泛使用的大型语言模型,在多种任务上表现卓越。 Anthropic 公司:推出了 Claude 3 。 谷歌:有 Gemini 等大语言模型。 百度:文心一言。 阿里巴巴:通义大模型。 如果想了解国内的大模型效果,可以参考第三方基准评测报告: 。内容由 AI 大模型生成,请仔细甄别。
2024-09-28
了解人智能前沿
以下是关于人工智能前沿的一些信息: 在具身智能赛道方面,目前其底层动作技能还没看到可以泛化的办法。相关参考资料包括:Li,Junnan 等人的“Blip2: Bootstrapping languageimage pretraining with frozen image encoders and large language models”,Sun,Quan 等人的“Generative pretraining in multimodality”,BAI 资本的万字干货带你入门“具身智能”,以及中金的一系列关于人形机器人的研究等。 在职业变迁方面,充分发展的行业可能会被完全自动化,AI 本质上是人类经验的自动化回放,会雇佣更少人力,但技术也会开辟新行业。尽管技术变革可能突然涌现,但人类职业显著变化通常需一代人时间。若 AI 抢走多数人类工作机会,政府可用税收平衡差异,如全民基本收入(Universal basic income UBI)。 在机器之心的进化方面,涵盖了 AI 进化史、软件 2.0 的崛起、面向智能的架构、一统江湖的模型、现实世界的 AI 以及 AI 进化的未来等内容。文中提到在无特别指明情况下,为书写简洁,会用 AI(Artifical Intelligence)代表人工智能,用 ML(Machine Learning)代表机器学习,DL(Deep Learning)代表深度学习等。
2024-09-20
24小时内中国AI前沿科技最新消息
以下是 24 小时内中国 AI 前沿科技的最新消息: 阿里 CEO 吴泳铭表示将开源国内最大 720 亿参数模型。 京东 CEO 称正在测试 AI 自动生成营销内容。 此外,还有一些国际上的 AI 相关消息: 苹果新专利:CGR 技术生成虚拟形象,展示穿戴效果。 微软 AI 专利:充当治疗师,疏导心理问题。 苹果改造 Siri:明年或用大语言模型。 谷歌 Open Se Cura:为 Pixel 带来低功耗 AI。 微软计划:AI 助手 Copilot 将进入 Windows 10。 亚马逊成立 AI 训练团队,投资数百万美金。 ChatGPT 持续宕机,CEO 道歉。 GitHub Universe 2023 新功能:新的 Copilot 聊天功能,Copilot 支持手机应用,GitHub Copilot Workspace,产问题查询 GitHub Copilot 企业版:每月 39 美元的高级服务。GitHub Copilot 合作伙伴计划,GitHub 高级安全功能。
2024-09-17
有没有帮研究生查看课题,整理论文的ai
在研究生查看课题和整理论文方面,AI 技术提供了多种辅助工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化,协助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 对于医学课题需要 AI 给出修改意见,您可以考虑以下专业工具: 1. Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 2. Scholarcy:能从文档提取结构化数据,生成文章概要,包含多个分析板块。 3. ChatGPT:强大的自然语言处理模型,可提供修改意见和帮助。 使用这些工具时,要结合自身写作风格和需求,选择最适合的辅助工具。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-16
可以解释论文中词汇的ai工具有什么?
以下是一些可以解释论文中词汇的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,以下 AI 工具在论文写作的其他方面也有帮助: 1. 文章排版: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 LaTeX:常用于学术论文排版,使用标记语言描述格式,有 AI 辅助的编辑器和插件简化排版。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成。 Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具。 2. 文章润色: Wordvice AI:集校对、改写转述和翻译等功能于一体,提供全面英文论文润色服务。 ChatGPT:由 OpenAI 开发的大型语言模型,用于多方面写作辅助。 Quillbot:人工智能文本摘要和改写工具,快速筛选和改写文献资料。 HyperWrite:基于 AI 的写作助手和大纲生成器,写作前进行头脑风暴和大纲规划。 Wordtune:AI 驱动的文本改写和润色工具,优化语言表达。 Smodin:提供 AI 驱动的论文撰写功能,生成符合要求的学术论文。 选择工具时应结合具体需求,如文档类型、出版标准和个人偏好。对于学术论文,LaTeX 和 Overleaf 常受欢迎;一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2024-11-14
现在在学术论文文献查询方面做的最好的ai是哪个
在学术论文文献查询方面,以下是一些表现较好的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,还有一些专门的工具,如: 1. TXYZ: 帮助搜索、查询专业文献并进行对话,提供一站式服务。 是与预印本文库 arxiv.org 官方合作的 AI 工具,ArXiv 的每篇论文下有直达 TXYZ 的按钮。 支持用户上传 PDF 论文或链接,迅速找到所需答案和内容。 在对话中提供论文参考,给出可信背书。 2. 开搜 AI 搜索: 免费无广告,直达结果。 帮助在校学生快速搜集学术资料,智能总结关键信息,助力撰写论文和报告,且支持查看来源出处。 为教师群体获取教学资源、生成教案和课题研究报告提供帮助。 方便职场办公人群高效查找工作信息,简化文案撰写、PPT 制作和工作汇报准备。 为学术研究人员提供行业分析,整合和总结大量数据形成研究报告。 需要注意的是,使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2024-11-14
论文写作相关的AI推荐
以下是为您推荐的与论文写作相关的 AI 工具: 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 论文结构和格式: LaTeX:虽非纯粹 AI 工具,但结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 如果您的医学课题需要 AI 给出修改意见,以下工具可供考虑: Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 Scholarcy:可提取文档结构化数据,生成文章概要,包含多个分析板块。 ChatGPT:强大的自然语言处理模型,能提供修改意见和帮助。 在 AI 文章排版方面,以下工具较为流行: Grammarly:不仅检查语法拼写,还有排版功能,改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 LaTeX:常用于学术论文排版,使用标记语言描述格式,有 AI 辅助编辑器和插件。 PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化文档生成。 Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 Overleaf:在线 LaTeX 编辑器,有丰富模板和协作工具,适合学术写作排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。学术论文常选 LaTeX 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-13
论文写作工具
以下是关于论文写作工具的相关信息: 一、论文写作中常用的 AI 工具和平台 1. 文献管理和搜索 Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作 Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析 Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式 LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测 Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 二、常见的文章润色 AI 工具 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可生成符合要求的学术论文。 三、AI 文章排版工具 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. Latex:广泛用于学术论文排版的软件,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档常用 Grammarly 和 PandaDoc 等。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-13
论文全文生成摘要
以下是关于您问题的回答: “Chain of Density”(CoD)是一种通过建立一系列相互关联的紧密提示来指导 AI 生成具体和连续输出的方法。它由美国哥伦比亚大学、麻省理工和 Salesforce 公司的研究人员共同发表。具体来说,是使用 GPT4 生成初始的稀疏摘要,然后通过迭代加入缺失的重要内容,在不增加摘要长度的情况下,添加更多实体信息,让摘要更具细节和丰富性、可读性及抽象性。这些提示相互链接,形成一个“密度链”,更有针对性地引导 AI 达到预期的输出。论文以“如何从文章提炼萃取出最合适的摘要”为重点,发布后有网友实测将 CoD 提示法用于翻译,翻译质量有飞跃提升。 在论文写作方面,有以下常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化内容。 3. 研究和数据分析: Google Colab:提供云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,进行复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。需注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-12
如何可以使用到chatgpto1大模型
目前 ChatGPT 没有 ChatGPT1 这个大模型。ChatGPT 有多个版本,如 ChatGPT3、ChatGPT3.5、ChatGPT4 等。您可以通过以下方式使用 ChatGPT 相关模型: 1. 访问 OpenAI 的官方网站,按照其指引进行注册和使用。 2. 部分应用和平台可能集成了 ChatGPT 的接口,您可以在这些应用中体验其功能。 需要注意的是,使用 ChatGPT 时应遵循相关的使用规则和法律法规。
2024-11-16
什么工具/模型/API 可以根据宠物照片生成数字宠物 可以有简单的活动。
以下是一个可以根据宠物照片生成数字宠物并具有简单活动的工具/模型/API: 出门问问 Mobvoi 的照片数字人工作流及语音合成(TTS)API。 出门问问是一家以生成式 AI 和语音交互为核心的人工智能公司,为全球多个国家提供面向创作者的 AIGC 工具、AI 政企服务,以及 AI 智能硬件。致力于打造国际领先的通用大模型,通过 AI 技术、产品及商业化三位一体发展,致力成为全球 AI CoPilot 的引领者。 在 ComfyUI 全球领导力峰会上,特意搭建了数字人 workflow(照片数字人驱动),仅需上传一张照片,输入一段文字或者上传一段音频,就可以生成短视频让“照片开口说话”。本次活动特意提供了免费 api 额度及操作指南给大家进行体验。以下是一些不同风格的照片驱动效果展示:
2024-11-16
大模型微调
大模型微调是在较小的、特定领域的数据集上继续大模型的训练过程,具有重要意义和多种方式: 意义: 提高模型在特定任务中的性能:可以输入更多示例,经过微调的模型在特定任务中表现更好,但可能会失去一些通用性。 提高模型效率:实现更低的延迟和成本,可通过专门化模型使用更小的模型,以及舍弃示例或指令来改善。 方式: 从参数规模的角度,分为全量微调 FFT(Full Fine Tuning)和 PEFT(ParameterEfficient Fine Tuning)。全量微调是对全量的模型参数进行全量的训练,而 PEFT 只对部分模型参数进行训练。从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 对于 Llama3 的微调,需要下载数据集,如可参考文档: 。有了数据集后,将其上传到服务器,编写并执行微调代码,大概 15 分钟左右可完成微调。 此外,通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。大模型的训练、使用过程可类比上学参加工作:找学校(需要大量 GPU 进行训练)、确定教材(需要大量数据)、找老师(选择合适算法)、就业指导(即微调)、搬砖(推导)。在 LLM 中,Token 被视为模型处理和生成的文本单位,会对输入进行分词并数字化形成词汇表。 OpenAI 官方微调教程:
2024-11-16
什么是大模型
大模型通俗来讲,是输入大量语料,让计算机获得类似人类的“思考”能力,从而能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程可以用“上学参加工作”来类比: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 在大模型中,Token 被视为模型处理和生成的文本单位,会被数字化形成词汇表,便于计算机处理。为让计算机理解 Token 之间的联系,还需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 大模型的“大”指用于表达 token 之间关系的参数多,主要是模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数。 所谓的大模型,简而言之就是拥有庞大参数数量的模型,通过处理和理解海量数据,能够胜任一系列复杂的任务。大模型强大的原因在于庞大的参数数量和大量的数据,参数帮助模型更深入地理解和生成数据,大量数据是学习的基础,使其能掌握丰富的知识和技能。
2024-11-16
混元大模型
腾讯混元大模型(HunyuanLarge)是全球最大的 MoE 开源模型,具有以下特点: 拥有 3890 亿参数,其中活跃参数为 520 亿。 具备强大的长文本处理和常识推理能力,支持 256K 上下文窗口。 通过数据增强,使用合成数据提升对未见内容的理解。 详细介绍: 模型下载: 技术报告:
2024-11-15
整合多家大预言模型的工具
以下为整合多家大语言模型的工具介绍: 1. Poe: 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验,但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性。 支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导能够启发用户,支持 Explore Chatbot,但丰富度不如后续要介绍的 Character,midjourney prompt 扩写 Chatbot 能力很惊人。 2. Ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小,以满足不同需求和硬件条件。模型库可通过 https://ollama.com/library 查找。 用户可通过简单步骤自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 提供 REST API,用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 下载安装地址:https://ollama.com/download/ ,安装完后,在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动,可通过 ollama list 确认,未下载模型时正常显示空,可通过 ollama 命令下载模型。 3. 未来还会不断丰富大模型的外延能力,例如知识库检索、计算工具、WolframAlpha、操作软件等。首先集成了 LangChain 框架,可更方便地基于 Llama2 开发文档检索、问答机器人和智能体应用等。针对 LangChain 框架封装的 Llama2 LLM 类见,简单的调用代码示例如下。
2024-11-15