直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

gpt4o视觉模型

回答

GPT-4o 是 OpenAI 推出的模型。开发人员现在可在 API 中将其作为文本和视觉模型进行访问。与 GPT-4 Turbo 相比,具有速度快 2 倍、价格减半、速率限制高出 5 倍的优势。未来几周计划向 API 中的一小群受信任的合作伙伴推出对其新音频和视频功能的支持。

GPT-4o(“o”代表“omni”)是迈向更自然人机交互的一步,能接受文本、音频和图像的任意组合作为输入,并生成文本、音频和图像输出的任意组合。它在 232 毫秒内可响应音频输入,平均为 320 毫秒,与人类响应时间相似。在英语文本和代码上的 GPT-4 Turbo 性能相匹配,在非英语语言的文本上有显著改进,在 API 中更快且便宜 50%,在视觉和音频理解方面表现出色。

在 GPT-4o 之前,语音模式由三个独立模型组成的管道实现,存在信息丢失等问题。而 GPT-4o 是在文本、视觉和音频上端到端训练的新模型,所有输入和输出都由同一个神经网络处理,但对其能做什么及局限性仍在探索。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

OpenAI 春季发布会:GPT-4o

开发人员现在还可以在API中将GPT-4o作为文本和视觉模型进行访问。与GPT-4 Turbo相比,GPT-4o的速度快2倍,价格减半,速率限制高出5倍。我们计划在未来几周内向API中的一小群受信任的合作伙伴推出对GPT-4o新音频和视频功能的支持。

OpenAI 春季发布会:GPT-4o

[OpenAI Spring Update-2.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/HxnUbe3EMocJsnxcLZ1c9bSAnmd?allow_redirect=1)官方demo视频也值得每个都看,点击跳转→[OpenAI春季发布会:GPT-4o](https://waytoagi.feishu.cn/wiki/Qy5Pw3IUZidKf4ky6YacopJBnNh#P0eddxgnOo0EZmxOe6Fc7P3tnSY)[heading2]中文翻译版本[heading2]大家一起直播看发布会回放[content]它其实是GPT-4l/GPT-4,也是前几天神秘出现的gpt2-chatbotgpt2-chatbots刚刚一跃成为最佳,超越所有模型,OpenAI的新GPT-4o模型首次在MathVista上超越人类!人类平均:60.3 GPT-4o:63.8[heading2]介绍[content]GPT-4o(“o”代表“omni”)是迈向更自然的人机交互的一步——它接受文本、音频和图像的任意组合作为输入,并生成文本、音频和图像输出的任意组合。它可以在短短232毫秒内响应音频输入,平均为320毫秒,这与对话中的人类响应时间相似。它在英语文本和代码上的GPT-4 Turbo性能相匹配,在非英语语言的文本上也有显著改进,同时在API中也更快且便宜50%。与现有模型相比,GPT-4o在视觉和音频理解方面尤其出色。

OpenAI 春季发布会:GPT-4o

在GPT-4o之前,您可以使用语音模式与ChatGPT交谈,平均延迟为2.8秒(GPT-3.5)和5.4秒(GPT-4)。为了实现这一点,语音模式是一个由三个独立模型组成的管道:一个简单的模型将音频转录为文本,GPT-3.5或GPT-4接收文本并输出文本,第三个简单模型将该文本转换回音频。这个过程意味着智能的主要来源GPT-4会丢失大量信息——它无法直接观察音调、多个扬声器或背景噪音,也无法输出笑声、歌声或表达情感。借助GPT-4o,我们在文本、视觉和音频上端到端地训练了一个新模型,这意味着所有输入和输出都由同一个神经网络处理。因为GPT-4o是我们第一个结合了所有这些模式的模型,所以我们仍然只是在探索该模型可以做什么及其局限性的表面。

其他人在问
GPT4o能免费用几次
ChatGPT 4o 可以免费体验,但免费体验次数很有限。截至 2024 年 5 月 13 日,Plus 用户在 GPT4o 上每 3 小时最多发送 80 条消息。免费套餐的用户将默认使用 GPT4o,且使用 GPT4o 发送的消息数量受到限制,具体数量会根据当前的使用情况和需求而有所不同。当不可用时,免费层用户将切换回 GPT3.5。
2024-10-26
chatgpt4o免费的模型和付费的模型有什么区别
ChatGPT 免费的模型(如 GPT3.5)和付费的模型(如 GPT4o 的 PLUS 套餐)主要有以下区别: 1. 知识更新时间:ChatGPT 3.5 的知识更新到 2022 年 1 月,ChatGPT 4o 的知识更新到 2023 年 10 月,而 ChatGPT 4 更新到 2023 年 12 月。 2. 智能程度:GPT3.5 的智能程度明显低于 GPT4o。 3. 功能:GPT3.5 无法使用 DALL.E3(AI 画图功能)、GPTs 商店和高级数据分析等插件。 4. 费用:想要使用更多功能更智能的 GPT4o 需要升级到 PLUS 套餐,收费标准是 20 美金一个月。GPT4 还有团队版企业版,费用更贵,一般推荐使用 PLUS 套餐即可。 此外,ChatGPT 4o 发布后,虽称可免费体验,但免费体验次数很有限。
2024-10-26
如何连接GPT4o
以下是连接 GPT4o 的方法: 1. 对于 ChatGPT Mac 客户端: 下载地址:persistent.oaistatic.com/sidekick/public/ChatGPT_Desktop_public_latest.dmg 使用 Proxyman、Charles 或您喜欢的网络代理来进行以下操作(需要有 ChatGPT 付费账号,以及网络技术基础):以 ProxyMan 为例 登录一次以触发 API 调用 对 ChatGPT 的 App 启用 SSL 代理(需要配置好 ProxyMan 证书) 再登录一次以触发 API 调用 然后右键点击 ab.chatgpt.com/v1/initialize 选择本地映射,并将所有的 false 替换为 true 再尝试一次,您就应该能顺利登录了。 详细版图文教程: 2. 对于安卓系统: 先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡 然后在区 chatgpt 里订阅 Plus,操作如下截图 完成后即可开始使用 ChatGPT 4o
2024-08-18
gpt4o mini有关的文档
以下是关于 GPT4o mini 的相关文档信息: Open AI 发布了 GPT4o mini 模型。其 MMLU 得分为 82%,碾压其他同级别小模型。价格较低,为 0.15 美元/100 万 token 输入和 0.6 美元/100 万 token 输出,比 GPT3.5 Turbo 便宜超过 60%。具有 128k 的大上下文窗口,非常适合 RAG。GPT4o mini 在 API 中支持文本和图片,未来将支持文本、图像、视频和音频输入和输出。GPT4o mini 接替 3.5 成为 ChatGPT 中的免费模型,目前还不支持多模态,而且 4o mini 的 API 一旦涉及到图片 Token 数量也会大增。
2024-08-17
我想搞一个ChatGPT4o的账号,有什么办法吗?
以下是注册 ChatGPT 4o 账号的办法: 1. 访问官方网站:打开浏览器,输入。如有账号直接登录,没有的话点击“注册”。 2. 使用建议: 苹果用户:需要 ChatGPT 账号、美区 AppleID、谷歌账号。 安卓用户:需要 ChatGPT 账号、下载 GooglePlay、谷歌账号。 国外很多软件支持谷歌账号一键登录,ChatGPT 也可以用谷歌账号登录,非常方便。目前注册谷歌账号支持国内手机号码和国内邮箱验证,过程也非常简单。 注:使用以上软件需要会科学上网,不会的可以私信。以下是详细注册流程。
2024-08-12
gpt4o跟gpt4的区别是什么
GPT4o 与 GPT4 的区别主要体现在以下方面: 1. 模型评估:在 M3Exam 基准测试中,GPT4o 在所有语言上都比 GPT4 强。对于斯瓦希里语和爪哇语的视力结果,因相关语言只有 5 个或更少的视力问题而省略。 2. 型号可用性:开发人员可在 API 中将 GPT4o 作为文本和视觉模型访问。与 GPT4 Turbo 相比,GPT4o 速度快 2 倍,价格减半,速率限制高出 5 倍。未来几周计划向 API 中的一小群受信任的合作伙伴推出 GPT4o 新的音频和视频功能支持。 3. 任务处理:有别于 GPT4,GPT4o 在处理复杂约束及追问任务时,会首先主动询问用户的背景信息,以更好地判断用户的提问意图,总体显得更聪明。
2024-08-07
介绍一下视觉算法产品,以及该方向产品经理需要做的内容,以及面试可能会考察的知识点
目前知识库中暂时没有关于视觉算法产品、该方向产品经理工作内容以及面试考察知识点的相关信息。但一般来说,视觉算法产品是利用计算机视觉技术来实现特定功能的产品,例如图像识别、目标检测、视频分析等。 视觉算法产品经理需要做的工作内容可能包括: 1. 市场调研与需求分析:了解市场需求、竞争对手情况,挖掘潜在的用户需求。 2. 产品规划与定义:明确产品的目标、功能、性能指标等。 3. 算法选型与整合:根据需求选择合适的视觉算法,并进行整合和优化。 4. 项目管理与推进:协调开发团队、测试团队等,确保项目按时交付。 5. 与客户沟通:收集反馈,优化产品。 在面试视觉算法产品经理时,可能会考察以下知识点: 1. 计算机视觉基础知识,如常见的算法和模型。 2. 对相关行业和市场的了解。 3. 产品管理的方法和流程。 4. 项目管理经验和能力。 5. 沟通协调和团队合作能力。
2024-11-01
AI 辅助文案创作与视觉设计
以下是关于 AI 辅助文案创作与视觉设计的相关内容: 视觉设计: 在名片设计的最后阶段——视觉设计中,核心是将名片文案转化为精美的可视化样式。考虑到用户模块文案长度差异,采用前端网页代码构建样式框架比直接文生图兼容性更好。Claude Artifacts 功能在网页布局设计和前端开发方面表现出色,能自动生成代码并提供实时预览效果。通过连续对话验证其能生成符合审美要求的社交名片,证明完全依赖 AI 完成视觉设计可行。若能通过一段提示词让 AI 稳定输出预期结果,还可省去单独工程化处理,降低应用开发复杂度,引入随机样式提升用户体验。 文案创作: 在制作《AI 你·南京》AIGC 城市宣传 MV 时,一开始打算用旁白朗诵方式,对文案要求高。直接让 GPT 写文案结果平淡,需更具体提需求。利用 360 浏览器字幕提取功能捕捉《爱我中华》视频文案,让 kimi 和 gpt 分析学习,对比两者结果,kimi 在中文理解和写作能力上更突出。完成文案分析后让 AI 按风格写作,整合调整,使文案更顺口,还可让 AI 输出简单画面分镜。 生成 Logo 的 AI 产品: 以下是一些生成 Logo 的 AI 产品: 1. Looka:在线 Logo 设计平台,根据用户品牌信息和设计偏好生成方案供选择定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过回答问题生成 Logo 选项。 3. Designhill:利用 AI 技术创建个性化 Logo 设计,用户选择元素和风格生成方案。 4. LogoMakr:提供简单易用的设计工具,可利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素及 AI 辅助建议。 6. LogoAI by Tailor Brands:根据用户输入快速生成 Logo 设计方案。 7. 标小智:中文 AI Logo 设计工具,创建个性化 Logo。 使用这些工具时,用户可根据品牌理念和视觉偏好通过简单交互获得设计方案,并进一步定制优化。还可访问获取更多好用工具。
2024-10-29
视觉模型有哪些
以下为一些常见的视觉模型: Sora:符合视觉模型的规模化原则,展示了新兴能力,包括遵循指令、视觉提示工程和视频理解等显著功能。 智谱·AI 开源模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持高分辨率图像理解,具备 GUI 图像的 Agent 能力。 CogVLM17B:强大的开源视觉语言模型,在多模态权威学术榜单上综合成绩优异。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,整体模型共 78 亿参数。 RDM:Relay Diffusion Model,级联扩散模型,能从任意给定分辨率的图像快速生成。 ComfyUI IPAdapter 中的图像模型:如 CLIPViTH14laion2Bs32Bb79K.safetensors 和 CLIPViTbigG14laion2B39Bb160k.safetensors,下载后需按特定名称命名并放入指定文件夹。
2024-10-25
qwen大语言模型有视觉模式吗?
Qwen 大语言模型具有视觉模式。以下是相关信息: 有博主称 QwenVL 已迁移到 ComfyUI 中,它支持本地图像、上下文窗口多轮对话,支持 PLUS 和 MAX 双视觉模型,支持百万像素、任意规格图像,具有超强细节和文字识别能力,在开源领域表现出色,中文能力突出,目前 API 免费开放。 关于部署 Qwen 大语言模型,如在 Windows 电脑上,可点击 win+R,输入 cmd 回车;在 Mac 电脑上,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”选择“终端”应用程序,然后复制相关命令行粘贴回车进行下载。
2024-10-11
有代码基础和数学基础,帮我制定一份AI的学习计划,主要方向是数据分析、计算机视觉和AIGC
以下是一份针对您有代码基础和数学基础,以数据分析、计算机视觉和 AIGC 为主要方向的 AI 学习计划: 一、基础知识学习 1. 深入学习 AI 相关的基本概念,包括但不限于: AI(人工智能):了解其定义、发展历程和应用领域。 机器学习:掌握监督学习、无监督学习和强化学习的原理和应用。 深度学习:理解神经网络和神经元的工作原理。 2. 学习相关数学知识,如线性代数、概率论、统计学等,为后续的学习打下坚实基础。 二、数据分析方向 1. 学习数据分析的基本流程和方法,包括数据收集、清洗、预处理和可视化。 2. 掌握常见的数据分析工具和库,如 Python 的 Pandas、NumPy、Matplotlib 等。 3. 学习数据挖掘和机器学习算法在数据分析中的应用,如分类、回归、聚类等。 三、计算机视觉方向 1. 学习计算机视觉的基本概念和原理,如图像处理、特征提取、目标检测等。 2. 掌握深度学习框架,如 TensorFlow、PyTorch 等,并学习使用它们进行计算机视觉任务的开发。 3. 实践常见的计算机视觉项目,如人脸识别、图像分类、目标跟踪等。 四、AIGC 方向 1. 了解 AIGC 的发展现状和应用场景。 2. 学习生成式模型,如生成对抗网络(GAN)、变分自编码器(VAE)等。 3. 实践 AIGC 相关的项目,如文本生成、图像生成等。 五、学习资源推荐 1. 在线课程:Coursera 上的《机器学习》《深度学习专项课程》等。 2. 书籍:《机器学习》(周志华)、《深度学习》(伊恩·古德费洛等)。 3. 开源项目:在 GitHub 上寻找相关的优秀开源项目进行学习和实践。 4. 视频资源: :某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频,一共两期,内容硬核,值得观看。 六、实践与项目经验积累 积极参与实际项目,将所学知识应用到实际中,不断提升自己的能力。 请注意,学习是一个持续的过程,需要不断地实践和总结,祝您学习顺利!
2024-09-18
AI视觉算法
以下是关于 AI 视觉算法的相关内容: GPT4 Vision GPT4 Vision 是 OpenAI 高级模型 GPT4 的创新功能,于 2023 年 9 月推出,能够解释视觉内容和文本,为用户提供更丰富、更直观的交互体验。 GPT4V 模型使用带有预训练组件的视觉编码器进行视觉感知,将编码的视觉特征与语言模型对齐。它建立在复杂的深度学习算法之上,能有效处理复杂的视觉数据。 GPT4V 允许用户上传图像作为输入并询问有关图像的问题,这种任务类型称为视觉问答(VQA)。 GPT4V 的工作原理: 利用先进的机器学习技术解释和分析视觉和文本信息。 对庞大数据集进行训练,包括文本和各种视觉元素。 训练过程结合强化学习,采用两阶段训练方法,先掌握视觉语言知识,再对更小、更高质量的数据集进行微调,以提高生成的可靠性和可用性。 计算机视觉 图像分类和物体识别:将图片作为输入,输出图像的内容分类,应用于面部识别。 物体识别:不仅分类或识别物体,还检测物体是否出现在图像中。 图像分割算法:识别物体位置,并标记不同物体对应的像素点,如用于识别 X 光照射图片。 视觉追踪:检测视频中的奔跑者,并追踪其轨迹和运动方向。 自然语言处理 文本分类:识别邮箱或文本中的内容并归类,可用于情绪识别。 信息检索:输入关键字,找出相关文档。 名称实体识别:找出句子中的名称,自动提取电话、姓名、国籍等。 机械翻译:进行语言翻译。 解析与语音部分标注技术:标注句子词性,让 AI 系统找出需留意的词语。 解析器:将单词组合成短语和句子,也是一种分类标签。 语音识别:将麦克风记录的空气高速压力变化数据转化为文本。 触发词检测:识别触发词。 语音 ID 识别:通过倾听说话来识别身份。
2024-09-05
现在有哪些大模型效果与性能的对齐工具
目前对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的理解程度,涵盖语法、语义、上下文和隐含意义。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:衡量对广泛主题的知识掌握及特定领域的理解深度。 4. 泛化能力:测试处理未见过任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊指令的能力。 6. 偏见和伦理:评估生成文本是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,对用户反馈的适应和持续对话能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务,提供的 API 和工具的易用性。 为进行有效比较,可采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准评估基准。 2. 自定义任务:根据特定需求设计任务评估特定领域表现。 3. 人类评估:结合人类评估者的主观评价,尤其在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中比较不同模型表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等量化比较。 对于大模型的安全对齐,通过对齐(指令调优)能使语言模型更好理解人类意图并增加安全保障,避免输出有害内容。对齐任务可拆解为监督微调及获取 reward model 与进行强化学习调整输出分布两部分。LLAMA2 专门使用安全有监督微调确保安全。强化学习能根据人类反馈调整分布,使模型面对训练分布外数据时能拒绝不当回答。但 Alignment 并非能防护所有安全问题,存在越狱情况使模型对齐失效。 Qwen 2 开源后模型性能超越目前所有开源模型和国内闭源模型。玉宝搞过的 LLM 在线评估中可看到国内闭源大模型的 HUMANEVAL 测评得分,可与 Qwen 2 对比,参考网址:https://www.llmrank.cn/ 。2023 年 8 月起,通义千问推出 Qwen 系列,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen 2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,也已上线中国大语言模型评测竞技场 Compass Arena,测评地址:https://opencompass.org.cn/arena 。Compass Arena 集齐了国内主流的 20 多款大模型,用户可选择两两“对战”。
2024-11-14
lama模型
Llama 模型相关信息如下: 基于多模态大模型给现实世界加一本说明书:后端采用 llama.cpp 挂载 LLaVA 模型,为应用提供推理服务。同时,部署了一个 Flask 应用用于数据前处理和后处理,提供 Stream 流服务。前端页面采用 HTML5,用于采集画面和用户输入。 LLM 开源中文大语言模型及数据集集合:未直接提及 Llama 模型的具体内容。 LayerStyle 副本中的 LayerUtility 中的 LaMa:根据图像遮罩擦除物体,是对 IOPaint 的封装,由 SOTA AI 模型提供支持。提供 LaMa 等模型以及多种擦除方法,可下载模型文件放到指定位置,并对节点选项进行了说明,如选择模型或方法、设备选择、遮罩反转、遮罩扩张幅度、遮罩模糊幅度等。
2024-11-14
2023年大模型发展有什么重要技术
2023 年大模型发展的重要技术包括以下方面: 模型发布:百川智能发布 Baichuan2—Turbo,字节云雀大模型等。 涉及领域:涵盖通用、医疗、汽车、教育、金融、工业、文化/零售/交通等多个行业。 关键进展:从 22 年 11 月 ChatGPT 的惊艳面世,到 23 年 3 月 GPT4 作为“与 AGI(通用人工智能)的第一次接触”,再到 23 年末多模态大模型的全面爆发。 多模态大模型的应用: 优点:适应性极好,方便适应各种奇葩需求;对算法要求降低,大部分功能由大模型提供,特别是非结构化信息处理;API 访问方式简化了边缘设备要求,方便在多种设备适配。 缺点:推理时长是最大障碍,传统目标检测或人脸识别优化后能达到 100 300ms,而大模型动则需要 10 秒的延时,限制了许多场景;模型的幻象和错误率较高,在多链路复杂应用中迅速变得不可行;在大多数生产模式下,仍需使用云服务数据中心,存在隐私问题;商业私有化部署是刚需,当下开源模型与 GPT4 有代差。
2024-11-14
给出指令,让AI帮我执行的网页,app,大模型,小程序
以下为一些可以给出指令让 AI 帮您执行的网页、app、大模型和小程序: 1. Midjourney:在生成 UI 界面方面表现出色。如果想指定生成某个页面(如首页、登录页等),只需添加页面指令描述,例如“landing page”(社交平台登录页)、“Profile Page”(人力资源类产品的个人资料页)。其产出的设计图视觉效果不错,适合在 APP 设计的初始阶段提供灵感和创意,但目前直接用于落地开发仍有距离。 2. 很多 AI 网站可以创建“智能体”,例如您可以为其配置提示词、知识库、能力配置等,让其为您工作,如出试题、找资料、画插图、专业翻译等。 3. 在使用生成式人工智能时,要把大模型当作大学生而非专家,“实习生”只能执行任务,需要您指明方向、拆解任务、教其一步步操作,像导演一样编排具体流程、检查结果、修改流程并反复迭代。提示语的核心是逻辑,要将复杂任务拆分成科学合理的步骤,且确保每个步骤的结果能为后续步骤提供基础。同时,即使在 Prompt 里指明了步骤,如果没有打印出来,也无法达到理想效果。
2024-11-13
如何用ai模型做训练
以下是关于如何用 AI 模型做训练的相关内容: 要在医疗保健领域让 AI 产生真正的改变,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。成为顶尖人才通常从多年密集信息输入和学徒实践开始,AI 也应如此。当前的学习方式存在问题,应通过堆叠模型训练,如先训练生物学、化学模型,再添加特定数据点。就像预医学生从基础课程学起,设计新疗法的科学家经历多年学习和指导,这种方式能培养处理细微差别决策的直觉。 大模型的构建过程包括: 1. 收集海量数据:如同教孩子博学多才要让其阅读大量资料,对于 AI 模型要收集互联网上的各种文本数据。 2. 预处理数据:像为孩子整理适合的资料,AI 研究人员要清理和组织收集的数据,如删除垃圾信息、纠正拼写错误等。 3. 设计模型架构:为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是复杂的神经网络,如 Transformer 架构。 4. 训练模型:像孩子开始学习,AI 模型开始“阅读”数据,通过反复预测句子中的下一个词等方式逐渐学会理解和生成人类语言。 为提高 AI 模型的鲁棒性,应对可能的“恶意”样本数据导致的幻觉,可使用对抗训练技术,让模型在训练中接触并学会识别和抵抗。
2024-11-13
大模型排名
以下是关于大模型排名的相关信息: 斯坦福发布了大模型排行榜 AlpacaEval,这是一种基于 LLM 的全自动评估基准,更加快速、廉价和可靠。项目链接:https://github.com/tatsulab/alpaca_eval ,排行榜链接:https://tatsulab.github.io/alpaca_eval/ 。 该排行榜分为以 GPT4 和 Claude 为元标注器的两个子榜单。 在 GPT4 评估榜单中,GPT4 稳居第一,胜率超过 95%;Claude 和 ChatGPT 胜率都在 80%以上,分别排名第二和第三,Claude 以不到 3%的优势超越 ChatGPT。 开源模型中,WizardLM 以仅 130 亿的参数版本排名第一,击败了 650 亿参数量的 Guanaco;Vicuna 发挥稳定,胜率超过 70%排在第六,紧追 Guanaco 65B;Falcon Instruct 40B 表现不佳,仅位居 12 名,略高于 Alpaca Farm 7B。 AlpacaEval 团队已开源所有模型评估代码和分析数据,以及支持未来新模型榜单更新的测试工具,但它仍不是一个全面的模型能力评测系统,存在指令比较简单、评分可能更偏向风格而非事实、没有衡量模型可能造成的危害等局限性。 中国国内的大模型排名可能在短时间内会有变化,作为 AI 机器人无法提供最新的信息。要获取最新的中国国内大模型排名,您可以查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台,在会定期更新相关的排名报告,可以供您查阅。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-13