Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

gpt4o视觉模型

Answer

GPT-4o 是 OpenAI 推出的模型。开发人员现在可在 API 中将其作为文本和视觉模型进行访问。与 GPT-4 Turbo 相比,具有速度快 2 倍、价格减半、速率限制高出 5 倍的优势。未来几周计划向 API 中的一小群受信任的合作伙伴推出对其新音频和视频功能的支持。

GPT-4o(“o”代表“omni”)是迈向更自然人机交互的一步,能接受文本、音频和图像的任意组合作为输入,并生成文本、音频和图像输出的任意组合。它在 232 毫秒内可响应音频输入,平均为 320 毫秒,与人类响应时间相似。在英语文本和代码上的 GPT-4 Turbo 性能相匹配,在非英语语言的文本上有显著改进,在 API 中更快且便宜 50%,在视觉和音频理解方面表现出色。

在 GPT-4o 之前,语音模式由三个独立模型组成的管道实现,存在信息丢失等问题。而 GPT-4o 是在文本、视觉和音频上端到端训练的新模型,所有输入和输出都由同一个神经网络处理,但对其能做什么及局限性仍在探索。

Content generated by AI large model, please carefully verify (powered by aily)

References

OpenAI 春季发布会:GPT-4o

开发人员现在还可以在API中将GPT-4o作为文本和视觉模型进行访问。与GPT-4 Turbo相比,GPT-4o的速度快2倍,价格减半,速率限制高出5倍。我们计划在未来几周内向API中的一小群受信任的合作伙伴推出对GPT-4o新音频和视频功能的支持。

OpenAI 春季发布会:GPT-4o

[OpenAI Spring Update-2.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/HxnUbe3EMocJsnxcLZ1c9bSAnmd?allow_redirect=1)官方demo视频也值得每个都看,点击跳转→[OpenAI春季发布会:GPT-4o](https://waytoagi.feishu.cn/wiki/Qy5Pw3IUZidKf4ky6YacopJBnNh#P0eddxgnOo0EZmxOe6Fc7P3tnSY)[heading2]中文翻译版本[heading2]大家一起直播看发布会回放[content]它其实是GPT-4l/GPT-4,也是前几天神秘出现的gpt2-chatbotgpt2-chatbots刚刚一跃成为最佳,超越所有模型,OpenAI的新GPT-4o模型首次在MathVista上超越人类!人类平均:60.3 GPT-4o:63.8[heading2]介绍[content]GPT-4o(“o”代表“omni”)是迈向更自然的人机交互的一步——它接受文本、音频和图像的任意组合作为输入,并生成文本、音频和图像输出的任意组合。它可以在短短232毫秒内响应音频输入,平均为320毫秒,这与对话中的人类响应时间相似。它在英语文本和代码上的GPT-4 Turbo性能相匹配,在非英语语言的文本上也有显著改进,同时在API中也更快且便宜50%。与现有模型相比,GPT-4o在视觉和音频理解方面尤其出色。

OpenAI 春季发布会:GPT-4o

在GPT-4o之前,您可以使用语音模式与ChatGPT交谈,平均延迟为2.8秒(GPT-3.5)和5.4秒(GPT-4)。为了实现这一点,语音模式是一个由三个独立模型组成的管道:一个简单的模型将音频转录为文本,GPT-3.5或GPT-4接收文本并输出文本,第三个简单模型将该文本转换回音频。这个过程意味着智能的主要来源GPT-4会丢失大量信息——它无法直接观察音调、多个扬声器或背景噪音,也无法输出笑声、歌声或表达情感。借助GPT-4o,我们在文本、视觉和音频上端到端地训练了一个新模型,这意味着所有输入和输出都由同一个神经网络处理。因为GPT-4o是我们第一个结合了所有这些模式的模型,所以我们仍然只是在探索该模型可以做什么及其局限性的表面。

Others are asking
你和GPT4o、MJ、suno有什么区别呢
GPT4o 能快速返回答案,但可能存在错误且无法自动纠错。 o1 推理模型在给出最终结果前会反复推演和验证,耗时更长但结果更准确,o1 Pro 计算时间更长,推理能力更强,适合复杂问题。 MJ (Midjourney)是一款专注于生成图像的工具。 Suno 相关的特点未在提供的内容中有明确提及。 由于不清楚您提到的“Suno”的具体情况,无法给出更详细的对比。但总体来说,不同的工具在功能、性能、适用场景等方面存在差异。
2024-12-26
免费试用chatgpt4o
ChatGPT 4o 于 5 月 13 日发布后引起热潮,目前 ChatGPT 官网有 3 个版本,分别是 GPT3.5、GPT4 和 ChatGPT 4o。发布会上称 ChatGPT 4o 可以免费体验,但次数有限。 GPT3.5 为免费版本,拥有 GPT 账号即可使用,但其智能程度不如 GPT4o,且无法使用 DALL.E3 等插件。ChatGPT 3.5 的知识更新到 2022 年 1 月,ChatGPT 4o 的知识更新到 2023 年 10 月,ChatGPT 4 则更新到 2023 年 12 月。 想要更多功能更智能的 GPT4o 需升级到 PLUS 套餐,收费标准为 20 美金一个月,GPT4 还有团队版和企业版,费用更贵,一般推荐使用 PLUS 套餐。 以下是安卓系统安装、订阅 GPT4 的教程: 1. 安装 Google Play:到小米自带的应用商店搜索 Google Play 进行安装,安装好后打开,按提示登录。 2. 下载安装 ChatGPT:在谷歌商店搜索“ChatGPT”进行下载安装,开发者是 OpenAI。可能会遇到“google play 未在您所在的地区提供此应用”的问题,可通过在 Google Play 点按右上角的个人资料图标,依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料,添加国内双币信用卡,地区选美。若仍搜不到,可卸载重装 Google Play 并保持梯子的 IP 一直是美。 3. 体验 ChatGPT:若只想体验 ChatGPT 3.5 版本,不升级 GPT4,直接登录第二部注册好的 ChatGPT 账号即可。 4. 订阅 GPT4 Plus 版本:先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡,然后在 ChatGPT 里订阅 Plus。
2024-11-19
GPT4o能免费用几次
ChatGPT 4o 可以免费体验,但免费体验次数很有限。截至 2024 年 5 月 13 日,Plus 用户在 GPT4o 上每 3 小时最多发送 80 条消息。免费套餐的用户将默认使用 GPT4o,且使用 GPT4o 发送的消息数量受到限制,具体数量会根据当前的使用情况和需求而有所不同。当不可用时,免费层用户将切换回 GPT3.5。
2024-10-26
chatgpt4o免费的模型和付费的模型有什么区别
ChatGPT 免费的模型(如 GPT3.5)和付费的模型(如 GPT4o 的 PLUS 套餐)主要有以下区别: 1. 知识更新时间:ChatGPT 3.5 的知识更新到 2022 年 1 月,ChatGPT 4o 的知识更新到 2023 年 10 月,而 ChatGPT 4 更新到 2023 年 12 月。 2. 智能程度:GPT3.5 的智能程度明显低于 GPT4o。 3. 功能:GPT3.5 无法使用 DALL.E3(AI 画图功能)、GPTs 商店和高级数据分析等插件。 4. 费用:想要使用更多功能更智能的 GPT4o 需要升级到 PLUS 套餐,收费标准是 20 美金一个月。GPT4 还有团队版企业版,费用更贵,一般推荐使用 PLUS 套餐即可。 此外,ChatGPT 4o 发布后,虽称可免费体验,但免费体验次数很有限。
2024-10-26
如何连接GPT4o
以下是连接 GPT4o 的方法: 1. 对于 ChatGPT Mac 客户端: 下载地址:persistent.oaistatic.com/sidekick/public/ChatGPT_Desktop_public_latest.dmg 使用 Proxyman、Charles 或您喜欢的网络代理来进行以下操作(需要有 ChatGPT 付费账号,以及网络技术基础):以 ProxyMan 为例 登录一次以触发 API 调用 对 ChatGPT 的 App 启用 SSL 代理(需要配置好 ProxyMan 证书) 再登录一次以触发 API 调用 然后右键点击 ab.chatgpt.com/v1/initialize 选择本地映射,并将所有的 false 替换为 true 再尝试一次,您就应该能顺利登录了。 详细版图文教程: 2. 对于安卓系统: 先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡 然后在区 chatgpt 里订阅 Plus,操作如下截图 完成后即可开始使用 ChatGPT 4o
2024-08-18
gpt4o mini有关的文档
以下是关于 GPT4o mini 的相关文档信息: Open AI 发布了 GPT4o mini 模型。其 MMLU 得分为 82%,碾压其他同级别小模型。价格较低,为 0.15 美元/100 万 token 输入和 0.6 美元/100 万 token 输出,比 GPT3.5 Turbo 便宜超过 60%。具有 128k 的大上下文窗口,非常适合 RAG。GPT4o mini 在 API 中支持文本和图片,未来将支持文本、图像、视频和音频输入和输出。GPT4o mini 接替 3.5 成为 ChatGPT 中的免费模型,目前还不支持多模态,而且 4o mini 的 API 一旦涉及到图片 Token 数量也会大增。
2024-08-17
视觉理解技术最新动态和趋势
以下是视觉理解技术的最新动态和趋势: 一、视觉分析技术 1. Transformer 视觉模型优点 2. Transformer 视觉模型的局限 二、图像语言模型 三、视频语言模型 四、LLM 多模态 Agent 五、应用场景 1. 多模态内容理解与处理 2. 智能交互与自动化 3. 具身智能 4. 未来发展趋势(2024 ?) 5. 视频生成模型 mapping 六、未来发展方向 1. 技术路径而言:利用预训练 LLMs 进行指令调整 最初,多模态融合方法常采用预训练的目标检测器,如 ViLBERT、VisualBERT 和 UnicoderVL,通过提取图像特征和执行交叉模态预训练任务,为后续的图像 文本任务奠定基础。 随着 ViT 的出现和普及,更多方法开始利用 ViT 作为图像编码器,强调大规模预训练,以提高模型的性能和泛化能力,例如 Flamingo。 近期,向多模态 LLMs 发展,从进行预训练到向指令调整(instruction tuning)转变,如 LLaVA 和 MiniGPT4,融合视觉和语言信息,能更有效地完成视觉理解相关任务,提升模型对于指令的理解能力和零样本性能,更好地泛化到未见过的任务和领域。 2. 应用场景而言:赋予机器理解多模态的能力 此外,李飞飞在 2015 年的 TED 演讲《我们怎么教计算机理解图片?》中提到了计算机视觉方面的研究进展,指出虽然在科技上取得了很多进步,但在计算机视觉方面仍存在一些问题,如自动驾驶车辆的视觉敏锐度、向盲人传递画面、无人机的视觉技术等。
2025-01-10
有没有视觉识别的模型
以下是一些视觉识别的模型: 1. siglipso400mpatch14384:由 Google 开发的视觉特征提取模型,负责理解和编码图像内容。工作流程包括接收输入图像、分析图像的视觉内容(如物体、场景、颜色、纹理等)、将这些视觉信息编码成一组特征向量。可在 ComfyUI\models\clip 中下载,若因环境问题,也可在网盘中下载。下载好后,目录的文件包括 image_adapter.pt(适配器),其连接视觉模型和语言模型,优化数据转换。工作流程包括接收来自视觉模型的特征向量、转换和调整这些特征使其适合语言模型处理、进行一些特定任务的优化或微调(如图片到文字)。可通过 https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 下载,放到 models 的 Joy_caption 文件夹里,若该文件夹不存在,新建一个。 2. Comfyui IPAdapter 中的图像模型: ,下载并重命名。 ,下载并重命名。下载后放入/ComfyUI/models/clip_vision。需要注意的是,clip vison 只能编码 224x224 大小的正方形图片,后续使用时若图片不是正方形,需进行裁剪。
2024-12-19
我想找关于视觉识别相关的api
很抱歉,目前知识库中没有关于视觉识别相关 API 的具体信息。但您可以通过以下途径寻找: 1. 一些知名的云服务提供商,如阿里云、腾讯云、百度云等,它们通常提供视觉识别相关的 API 服务。 2. 专门的人工智能和计算机视觉技术公司的官方网站,可能会有相关的 API 介绍和使用文档。 3. 技术社区和开发者论坛,例如 CSDN、掘金等,您可以在这些地方与其他开发者交流,获取相关的推荐和经验分享。
2024-12-19
国内做视觉理解的大模型厂商有哪些
国内做视觉理解的大模型厂商有以下这些: 北京: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com 上海: 商汤(日日新大模型):https://www.sensetime.com MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,在 0 基础手搓 AI 拍立得的模型供应商选择中,还有以下视觉类大模型厂商: 智谱 GLM4V:通用视觉类大模型,拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,一个接口支持图片/视频/文本,视频和图片类型不能同时输入,调用成本为 0.05 元/千 tokens, 阿里云百炼 qwenvlplus:通用视觉类大模型,拍立得目前使用的模型,指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高,调用成本为¥0.008/千 tokens,训练成本为¥0.03/千 tokens, 阶跃星辰:通用视觉类大模型,响应速度快,支持视频理解,输入成本为¥0.005~0.015/千 tokens,输出成本为¥0.02~0.07/千 tokens, 百度 PaddlePaddle:OCR,垂直小模型,文本识别能力补齐增强,私有化部署服务费,API 调用在¥0.05~0.1/次,
2024-12-19
有哪些好的将文本转换为视觉的AI工具
以下是一些将文本转换为视觉的 AI 工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作,支持视频编辑。 2. SVD:Stable Diffusion 的插件,可在图片基础上生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 6. Napkin AI:将文本内容转换为视觉图像,生成图表、流程图等,可编辑和个性化设计元素,并导出多种格式。 7. Trellis AI:能从非结构化内容中提取数据,将复杂数据源高效转换成结构化的 SQL 格式。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 。 此外,在软件架构设计中,以下工具可用于绘制逻辑视图、功能视图和部署视图: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建。 2. Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合使用支持逻辑视图创建。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 6. draw.io(现称 diagrams.net):免费在线图表软件,支持多种图表创建。 7. PlantUML:文本到 UML 转换工具,可自动生成多种视图。 8. Gliffy:基于云的绘图工具,提供架构图创建功能。 9. Archi:免费开源工具,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持多种视图创建。
2024-12-12
(defun 生成记忆卡片 (单词) "生成单词记忆卡片的主函数" (let* ((词根 (分解词根 单词)) (联想 (mapcar #'词根联想 词根)) (故事 (创造生动故事 联想)) (视觉 (设计SVG卡片 单词 词根 故事))) (输出卡片 单词 词根 故事 视觉))) (defun 设计SVG卡片 (单词 词根 故事) "创建SVG记忆卡片" (design_rule "合理使用负空间,整体排版要有呼
以下是关于生成记忆卡片和 SVG 卡片的相关信息: 卡片类的应用被定义为词生卡片,如李继刚的《汉语新解》、一泽的《名片设计》、云中江树的《AI 简历》等,都是通过给大模型优化过的 Prompt,让其生成 HTML 代码或 SVG 代码,再通过浏览器渲染效果。 把提示词丢给 Claude ,如在 Poe 平台上的 Claude 模型,大概率会直接输出 SVG 代码,但对于子步骤是否执行等情况难以知晓。Andrej Karpathy 认为,模型需要 tokens 来思考,如果大语言模型未将思考过程外化,则几乎等于没思考。 甲木介绍了让 Claude 生成古诗词卡片的方法,流程包括输入 Prompt 、用户输入主题和风格,AI 输出最终结果。获取提示词已开源,创作过程主要是根据给定主题和方向生成匹配的中国古诗词,创建设计感强烈、富有中国传统美学的 SVG 卡片展示诗词,并提供相关信息,还支持根据用户提供的主题和方向生成对应语境的 prompt 并配图生成 SVGCard 。但对于“逼格高”的看法因人而异,可将选择权交给 AI 。
2024-11-28
为什么要布置大模型到本地
布置大模型到本地主要有以下原因: 1. 无需科学上网,也无需支付高昂的 ChatGPT 会员费用。 2. 可以通过 Web UI 实现和大模型进行对话的功能,如 Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题),这也是构建知识库的基础之一。 3. 能够更加灵活地掌握个人知识库。 但需要注意的是,运行大模型需要很高的机器配置: 1. 生成文字大模型,最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型)。 2. 生成图片大模型(比如跑 SD),最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。 3. 生成音频大模型,最低配置为 8G VRAM,建议配置为 24G VRAM。 个人玩家的大多数机器可能负担不起,最低配置运行速度非常慢。但亲自实操一遍可以加深对大模型构建的知识库底层原理的了解。
2025-01-27
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
大语言模型
大语言模型相关知识如下: Encoder:在大型语言模型中,Encoder 是模型的编码器部分,负责对输入的文本序列进行编码,获取其对应的语义表示。具有词嵌入、位置编码、注意力机制、层叠编码、上下文建模等关键作用。其输出是输入序列对应的上下文化语义表示,会被模型的 Decoder 部分利用。 介绍:大型语言模型是深度学习的一个子集,可以预训练并进行特定目的的微调。能解决诸如文本分类、问题回答、文档摘要、跨行业的文本生成等常见语言问题,还可利用相对较小的领域数据集进行定制以解决不同领域的特定问题。其三个主要特征是大型(训练数据集规模和参数数量大)、通用性(能解决常见问题)、预训练微调(用大型数据集预训练,用较小数据集微调)。使用大型语言模型的好处包括一种模型可用于不同任务、微调所需领域训练数据较少、性能随数据和参数增加而增长等。视频中还提到了自然语言处理中的提示设计和提示工程,以及三种类型的大型语言模型:通用语言模型、指令调整模型和对话调整模型。 性能对比:对比不同大型语言模型的性能需考虑多个维度,如理解能力、生成质量、知识广度和深度、泛化能力、鲁棒性、偏见和伦理、交互性和适应性、计算效率和资源消耗、易用性和集成性等。可采用标准基准测试、自定义任务、人类评估、A/B 测试、性能指标等方法进行有效比较。
2025-01-27
客服系统,需要写一段提示词给大模型,需求是,先跟用户表示歉意,产品问题请咨询我另外一个同事,点击同事名称即可咨询,每次回复的内容不能一样
以下是为您生成的客服系统相关的大模型提示词示例,每次回复内容不同: 1. 非常抱歉给您带来了不便,关于产品问题,您可以咨询我的同事,点击即可进行咨询。 2. 很抱歉让您遇到了困扰,产品方面的疑问请找我的同事咨询,点击就能联系到。 3. 实在不好意思呀,产品的问题您向我的同事咨询会更清楚,点击即可开启咨询。 4. 深感抱歉,对于产品的情况,建议您咨询我的同事,点击就能和他交流。 5. 抱歉给您造成了不好的体验,产品相关问题请咨询我的同事,点击就能获取帮助。
2025-01-26
当前最强AI模型有哪些?
当前最强的 AI 模型包括: 1. OpenAI 的 o3 模型:在 ARCAGI 测试中达到了 87.5%的准确率,几乎与人类水平相当。能够进行自我对话、多角度分析和自我质疑,具备一定的“思考意识”。下一代 o3mini 模型的推理能力能够媲美 o1 模型。 2. Google 的 Gemini 2.0 Flash:在重要的基准能力上直接追平甚至部分超越了 Gemini 1.5 Pro,同时模型速度有极大提升。 3. OpenAI 的 GPT4:是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 4. Midjourney v5:具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能。 5. DALL·E 3:代表了生成完全符合文本的图像能力的一大飞跃。 6. Mistral 7B:在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,还有智谱·AI 开源的一些模型,如 WebGLM10B、MathGLM2B 等。
2025-01-25
有没有辅助文献阅读,并能对文献内容进行整理的ai模型
以下是一些能够辅助文献阅读并对文献内容进行整理的 AI 模型和工具: 1. 智谱 AI 大模型开放平台: 场景介绍:大模型技术能快速总结论文内容、进行精准翻译,节省研究者阅读和整理文献的时间,帮助聚焦核心问题。其通用性可适应不同学科和复杂文本,提炼核心观点,为研究工作提速。 论文处理全景图:包括文献预处理和 LLM 内容处理。海量文献需转换为可供模型解析的文本格式,可借助平台工具完成文件内容提取。将文件内容自动化提取并结合大模型可进行批量分析或任务处理。 2. 利用 AI 写课题的步骤和建议: 确定课题主题,明确研究兴趣和目标,选择有价值和创新性的主题。 收集背景资料,使用学术搜索引擎和文献管理软件搜集相关文献和资料。 分析和总结信息,利用文本分析工具提取关键信息和主要观点。 生成大纲,使用写作助手生成包括引言、文献综述等部分的大纲。 撰写文献综述,利用工具确保内容准确完整。 构建方法论,根据需求设计研究方法。 数据分析,使用工具处理和解释数据。 撰写和编辑,利用写作工具撰写并检查语法和风格。 生成参考文献,使用文献管理工具生成正确格式。 审阅和修改,利用审阅工具检查逻辑性和一致性并修改。 提交前检查,确保原创性和格式调整。 3. 论文写作中常用的 AI 工具和平台: 文献管理和搜索:Zotero 可自动提取文献信息管理参考文献;Semantic Scholar 是 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作:Grammarly 提供文本校对等帮助提高语言质量;Quillbot 可重写和摘要优化内容。 研究和数据分析:Google Colab 支持 AI 和机器学习研究便于数据分析和可视化;Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 结合自动化和模板处理格式和数学公式;Overleaf 是在线 LaTeX 编辑器,提供模板库和协作功能。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 检测抄袭确保原创性。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维,使用时应结合自身需求和写作风格,仔细甄别。
2025-01-25