Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

gpt4o视觉模型

Answer

GPT-4o 是 OpenAI 推出的模型。开发人员现在可在 API 中将其作为文本和视觉模型进行访问。与 GPT-4 Turbo 相比,具有速度快 2 倍、价格减半、速率限制高出 5 倍的优势。未来几周计划向 API 中的一小群受信任的合作伙伴推出对其新音频和视频功能的支持。

GPT-4o(“o”代表“omni”)是迈向更自然人机交互的一步,能接受文本、音频和图像的任意组合作为输入,并生成文本、音频和图像输出的任意组合。它在 232 毫秒内可响应音频输入,平均为 320 毫秒,与人类响应时间相似。在英语文本和代码上的 GPT-4 Turbo 性能相匹配,在非英语语言的文本上有显著改进,在 API 中更快且便宜 50%,在视觉和音频理解方面表现出色。

在 GPT-4o 之前,语音模式由三个独立模型组成的管道实现,存在信息丢失等问题。而 GPT-4o 是在文本、视觉和音频上端到端训练的新模型,所有输入和输出都由同一个神经网络处理,但对其能做什么及局限性仍在探索。

Content generated by AI large model, please carefully verify (powered by aily)

References

OpenAI 春季发布会:GPT-4o

开发人员现在还可以在API中将GPT-4o作为文本和视觉模型进行访问。与GPT-4 Turbo相比,GPT-4o的速度快2倍,价格减半,速率限制高出5倍。我们计划在未来几周内向API中的一小群受信任的合作伙伴推出对GPT-4o新音频和视频功能的支持。

OpenAI 春季发布会:GPT-4o

[OpenAI Spring Update-2.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/HxnUbe3EMocJsnxcLZ1c9bSAnmd?allow_redirect=1)官方demo视频也值得每个都看,点击跳转→[OpenAI春季发布会:GPT-4o](https://waytoagi.feishu.cn/wiki/Qy5Pw3IUZidKf4ky6YacopJBnNh#P0eddxgnOo0EZmxOe6Fc7P3tnSY)[heading2]中文翻译版本[heading2]大家一起直播看发布会回放[content]它其实是GPT-4l/GPT-4,也是前几天神秘出现的gpt2-chatbotgpt2-chatbots刚刚一跃成为最佳,超越所有模型,OpenAI的新GPT-4o模型首次在MathVista上超越人类!人类平均:60.3 GPT-4o:63.8[heading2]介绍[content]GPT-4o(“o”代表“omni”)是迈向更自然的人机交互的一步——它接受文本、音频和图像的任意组合作为输入,并生成文本、音频和图像输出的任意组合。它可以在短短232毫秒内响应音频输入,平均为320毫秒,这与对话中的人类响应时间相似。它在英语文本和代码上的GPT-4 Turbo性能相匹配,在非英语语言的文本上也有显著改进,同时在API中也更快且便宜50%。与现有模型相比,GPT-4o在视觉和音频理解方面尤其出色。

OpenAI 春季发布会:GPT-4o

在GPT-4o之前,您可以使用语音模式与ChatGPT交谈,平均延迟为2.8秒(GPT-3.5)和5.4秒(GPT-4)。为了实现这一点,语音模式是一个由三个独立模型组成的管道:一个简单的模型将音频转录为文本,GPT-3.5或GPT-4接收文本并输出文本,第三个简单模型将该文本转换回音频。这个过程意味着智能的主要来源GPT-4会丢失大量信息——它无法直接观察音调、多个扬声器或背景噪音,也无法输出笑声、歌声或表达情感。借助GPT-4o,我们在文本、视觉和音频上端到端地训练了一个新模型,这意味着所有输入和输出都由同一个神经网络处理。因为GPT-4o是我们第一个结合了所有这些模式的模型,所以我们仍然只是在探索该模型可以做什么及其局限性的表面。

Others are asking
你和GPT4o、MJ、suno有什么区别呢
GPT4o 能快速返回答案,但可能存在错误且无法自动纠错。 o1 推理模型在给出最终结果前会反复推演和验证,耗时更长但结果更准确,o1 Pro 计算时间更长,推理能力更强,适合复杂问题。 MJ (Midjourney)是一款专注于生成图像的工具。 Suno 相关的特点未在提供的内容中有明确提及。 由于不清楚您提到的“Suno”的具体情况,无法给出更详细的对比。但总体来说,不同的工具在功能、性能、适用场景等方面存在差异。
2024-12-26
免费试用chatgpt4o
ChatGPT 4o 于 5 月 13 日发布后引起热潮,目前 ChatGPT 官网有 3 个版本,分别是 GPT3.5、GPT4 和 ChatGPT 4o。发布会上称 ChatGPT 4o 可以免费体验,但次数有限。 GPT3.5 为免费版本,拥有 GPT 账号即可使用,但其智能程度不如 GPT4o,且无法使用 DALL.E3 等插件。ChatGPT 3.5 的知识更新到 2022 年 1 月,ChatGPT 4o 的知识更新到 2023 年 10 月,ChatGPT 4 则更新到 2023 年 12 月。 想要更多功能更智能的 GPT4o 需升级到 PLUS 套餐,收费标准为 20 美金一个月,GPT4 还有团队版和企业版,费用更贵,一般推荐使用 PLUS 套餐。 以下是安卓系统安装、订阅 GPT4 的教程: 1. 安装 Google Play:到小米自带的应用商店搜索 Google Play 进行安装,安装好后打开,按提示登录。 2. 下载安装 ChatGPT:在谷歌商店搜索“ChatGPT”进行下载安装,开发者是 OpenAI。可能会遇到“google play 未在您所在的地区提供此应用”的问题,可通过在 Google Play 点按右上角的个人资料图标,依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料,添加国内双币信用卡,地区选美。若仍搜不到,可卸载重装 Google Play 并保持梯子的 IP 一直是美。 3. 体验 ChatGPT:若只想体验 ChatGPT 3.5 版本,不升级 GPT4,直接登录第二部注册好的 ChatGPT 账号即可。 4. 订阅 GPT4 Plus 版本:先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡,然后在 ChatGPT 里订阅 Plus。
2024-11-19
GPT4o能免费用几次
ChatGPT 4o 可以免费体验,但免费体验次数很有限。截至 2024 年 5 月 13 日,Plus 用户在 GPT4o 上每 3 小时最多发送 80 条消息。免费套餐的用户将默认使用 GPT4o,且使用 GPT4o 发送的消息数量受到限制,具体数量会根据当前的使用情况和需求而有所不同。当不可用时,免费层用户将切换回 GPT3.5。
2024-10-26
chatgpt4o免费的模型和付费的模型有什么区别
ChatGPT 免费的模型(如 GPT3.5)和付费的模型(如 GPT4o 的 PLUS 套餐)主要有以下区别: 1. 知识更新时间:ChatGPT 3.5 的知识更新到 2022 年 1 月,ChatGPT 4o 的知识更新到 2023 年 10 月,而 ChatGPT 4 更新到 2023 年 12 月。 2. 智能程度:GPT3.5 的智能程度明显低于 GPT4o。 3. 功能:GPT3.5 无法使用 DALL.E3(AI 画图功能)、GPTs 商店和高级数据分析等插件。 4. 费用:想要使用更多功能更智能的 GPT4o 需要升级到 PLUS 套餐,收费标准是 20 美金一个月。GPT4 还有团队版企业版,费用更贵,一般推荐使用 PLUS 套餐即可。 此外,ChatGPT 4o 发布后,虽称可免费体验,但免费体验次数很有限。
2024-10-26
如何连接GPT4o
以下是连接 GPT4o 的方法: 1. 对于 ChatGPT Mac 客户端: 下载地址:persistent.oaistatic.com/sidekick/public/ChatGPT_Desktop_public_latest.dmg 使用 Proxyman、Charles 或您喜欢的网络代理来进行以下操作(需要有 ChatGPT 付费账号,以及网络技术基础):以 ProxyMan 为例 登录一次以触发 API 调用 对 ChatGPT 的 App 启用 SSL 代理(需要配置好 ProxyMan 证书) 再登录一次以触发 API 调用 然后右键点击 ab.chatgpt.com/v1/initialize 选择本地映射,并将所有的 false 替换为 true 再尝试一次,您就应该能顺利登录了。 详细版图文教程: 2. 对于安卓系统: 先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡 然后在区 chatgpt 里订阅 Plus,操作如下截图 完成后即可开始使用 ChatGPT 4o
2024-08-18
gpt4o mini有关的文档
以下是关于 GPT4o mini 的相关文档信息: Open AI 发布了 GPT4o mini 模型。其 MMLU 得分为 82%,碾压其他同级别小模型。价格较低,为 0.15 美元/100 万 token 输入和 0.6 美元/100 万 token 输出,比 GPT3.5 Turbo 便宜超过 60%。具有 128k 的大上下文窗口,非常适合 RAG。GPT4o mini 在 API 中支持文本和图片,未来将支持文本、图像、视频和音频输入和输出。GPT4o mini 接替 3.5 成为 ChatGPT 中的免费模型,目前还不支持多模态,而且 4o mini 的 API 一旦涉及到图片 Token 数量也会大增。
2024-08-17
人类接收外界信息的感官中,视觉占比高达83%,听觉占11%,其余触觉、嗅觉、味觉合计仅占6%。如何采用用AI画出图示呢
以下为您提供采用 AI 画出关于人类接收外界信息感官占比图示的相关指导: 首先,您可以选择合适的 AI 绘图工具,如 Creately、Whimsical 或 Miro 等。 Creately 是一个在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。它具有智能绘图功能,能自动连接和排列图形,还有丰富的模板库和预定义形状,支持实时协作。官网:https://creately.com/ Whimsical 是一个专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。其具有直观的用户界面,易于上手,支持拖放操作,快速绘制和修改图表,提供多种协作功能。官网:https://whimsical.com/ Miro 是一个在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。它支持无缝协作,支持远程团队实时编辑,有丰富的图表模板和工具,还支持与其他项目管理工具(如 Jira、Trello)集成。官网:https://miro.com/ 使用这些工具绘制图示的一般步骤如下: 1. 选择工具:根据您的具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择一个适合您需求的模板。 4. 添加内容:根据您的需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。
2025-02-28
视觉理解技术最新动态和趋势
以下是视觉理解技术的最新动态和趋势: 一、视觉分析技术 1. Transformer 视觉模型优点 2. Transformer 视觉模型的局限 二、图像语言模型 三、视频语言模型 四、LLM 多模态 Agent 五、应用场景 1. 多模态内容理解与处理 2. 智能交互与自动化 3. 具身智能 4. 未来发展趋势(2024 ?) 5. 视频生成模型 mapping 六、未来发展方向 1. 技术路径而言:利用预训练 LLMs 进行指令调整 最初,多模态融合方法常采用预训练的目标检测器,如 ViLBERT、VisualBERT 和 UnicoderVL,通过提取图像特征和执行交叉模态预训练任务,为后续的图像 文本任务奠定基础。 随着 ViT 的出现和普及,更多方法开始利用 ViT 作为图像编码器,强调大规模预训练,以提高模型的性能和泛化能力,例如 Flamingo。 近期,向多模态 LLMs 发展,从进行预训练到向指令调整(instruction tuning)转变,如 LLaVA 和 MiniGPT4,融合视觉和语言信息,能更有效地完成视觉理解相关任务,提升模型对于指令的理解能力和零样本性能,更好地泛化到未见过的任务和领域。 2. 应用场景而言:赋予机器理解多模态的能力 此外,李飞飞在 2015 年的 TED 演讲《我们怎么教计算机理解图片?》中提到了计算机视觉方面的研究进展,指出虽然在科技上取得了很多进步,但在计算机视觉方面仍存在一些问题,如自动驾驶车辆的视觉敏锐度、向盲人传递画面、无人机的视觉技术等。
2025-01-10
有没有视觉识别的模型
以下是一些视觉识别的模型: 1. siglipso400mpatch14384:由 Google 开发的视觉特征提取模型,负责理解和编码图像内容。工作流程包括接收输入图像、分析图像的视觉内容(如物体、场景、颜色、纹理等)、将这些视觉信息编码成一组特征向量。可在 ComfyUI\models\clip 中下载,若因环境问题,也可在网盘中下载。下载好后,目录的文件包括 image_adapter.pt(适配器),其连接视觉模型和语言模型,优化数据转换。工作流程包括接收来自视觉模型的特征向量、转换和调整这些特征使其适合语言模型处理、进行一些特定任务的优化或微调(如图片到文字)。可通过 https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 下载,放到 models 的 Joy_caption 文件夹里,若该文件夹不存在,新建一个。 2. Comfyui IPAdapter 中的图像模型: ,下载并重命名。 ,下载并重命名。下载后放入/ComfyUI/models/clip_vision。需要注意的是,clip vison 只能编码 224x224 大小的正方形图片,后续使用时若图片不是正方形,需进行裁剪。
2024-12-19
我想找关于视觉识别相关的api
很抱歉,目前知识库中没有关于视觉识别相关 API 的具体信息。但您可以通过以下途径寻找: 1. 一些知名的云服务提供商,如阿里云、腾讯云、百度云等,它们通常提供视觉识别相关的 API 服务。 2. 专门的人工智能和计算机视觉技术公司的官方网站,可能会有相关的 API 介绍和使用文档。 3. 技术社区和开发者论坛,例如 CSDN、掘金等,您可以在这些地方与其他开发者交流,获取相关的推荐和经验分享。
2024-12-19
国内做视觉理解的大模型厂商有哪些
国内做视觉理解的大模型厂商有以下这些: 北京: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com 上海: 商汤(日日新大模型):https://www.sensetime.com MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,在 0 基础手搓 AI 拍立得的模型供应商选择中,还有以下视觉类大模型厂商: 智谱 GLM4V:通用视觉类大模型,拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,一个接口支持图片/视频/文本,视频和图片类型不能同时输入,调用成本为 0.05 元/千 tokens, 阿里云百炼 qwenvlplus:通用视觉类大模型,拍立得目前使用的模型,指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高,调用成本为¥0.008/千 tokens,训练成本为¥0.03/千 tokens, 阶跃星辰:通用视觉类大模型,响应速度快,支持视频理解,输入成本为¥0.005~0.015/千 tokens,输出成本为¥0.02~0.07/千 tokens, 百度 PaddlePaddle:OCR,垂直小模型,文本识别能力补齐增强,私有化部署服务费,API 调用在¥0.05~0.1/次,
2024-12-19
有哪些好的将文本转换为视觉的AI工具
以下是一些将文本转换为视觉的 AI 工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作,支持视频编辑。 2. SVD:Stable Diffusion 的插件,可在图片基础上生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 6. Napkin AI:将文本内容转换为视觉图像,生成图表、流程图等,可编辑和个性化设计元素,并导出多种格式。 7. Trellis AI:能从非结构化内容中提取数据,将复杂数据源高效转换成结构化的 SQL 格式。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 。 此外,在软件架构设计中,以下工具可用于绘制逻辑视图、功能视图和部署视图: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建。 2. Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合使用支持逻辑视图创建。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 6. draw.io(现称 diagrams.net):免费在线图表软件,支持多种图表创建。 7. PlantUML:文本到 UML 转换工具,可自动生成多种视图。 8. Gliffy:基于云的绘图工具,提供架构图创建功能。 9. Archi:免费开源工具,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持多种视图创建。
2024-12-12
Manus的基础大模型是什么?
Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人(如 ChatGPT),具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的 AI”。 Manus AI 代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。这种架构通过规划、执行和验证三个子模块的分工协作,实现了对复杂任务的高效处理。具体来说,Manus AI 的核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。这种多模型驱动的设计不仅提高了系统的鲁棒性和准确性,还增强了其处理复杂任务的能力。 Manus AI 的技术架构还包括以下几个关键组件: 1. 虚拟机:Manus AI 运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。 2. 计算资源:Manus AI 利用计算资源生成算法,用于筛选简历等具体任务。 3. 生成物:Manus AI 能够生成各种类型的输出,如文本、表格、报告等。 4. 内置多个 agents:Manus AI 通过内置多个智能体,实现了任务的分解和协同工作。 此外,Manus AI 还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力。这种设计使得 Manus AI 在处理复杂任务时更加高效和准确。Manus AI 的技术架构通过多智能体协同工作、虚拟机运行和生成物输出等机制,实现了对复杂任务的高效处理和高质量输出。
2025-03-06
最新AI大模型
以下是关于最新 AI 大模型的相关知识: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习是利用有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习是在学习的数据没有标签的情况下,算法自主发现规律,经典任务如聚类。 强化学习是从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因层数多而称为深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-06
我是经济学研究者,经常写作学术论文,投稿SSCI期刊,大模型幻觉太严重,在辅助文献综述写作方面,基本没有用处。你有好的用于文献综述写作的AI辅助工具吗?
以下是一些可能有助于您在文献综述写作中应对大模型幻觉问题的方法和工具: 1. 对于 ChatGPT ,您可以使用 temporary chat 功能,保证其在没有任何记忆的情况下生成最新鲜的回答。 2. 当发现模型回答不理想时,可以采取以下技巧: 告诉模型忘掉之前的所有内容,重新提问或新建会话窗口。 让模型退一步,重新审视整个结构,从零开始设计。 对于像 Claude 这种会自己猜测的模型,如果不确定,可以给它看日志,让其依据日志判断问题所在。 3. 您可以参考 Hallucination Leaderboard (大语言模型幻觉排行榜),了解不同模型的幻觉情况,该排行榜使用 Vectara 的 Hughes 幻觉评估模型计算各大模型在总结文档时引入幻觉的频率,用于评估 LLM 的事实一致性,并为 RAG 系统提供参考。完整榜单可通过查看。 4. Claude APP 即将添加网页搜索和推理功能,这或许意味着新模型即将发布,预计发布时间在一两周内。
2025-03-06
你用的大模型是?
我所使用的大模型相关信息未明确告知。但为您介绍一下大模型的相关知识: 大模型指的是用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行“文本生成”“推理问答”“对话”“文档摘要”等工作。 大模型的训练和使用过程可以类比为“上学参加工作”: 1. 找学校:训练 LLM 需要大量的计算,因此 GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。比如:The cat sat on the mat,会被分割成“The”“cat”“sat”等的同时,会生成相应的词汇表。
2025-03-06
yolov 和resnet咋做成大模型?
要将 YOLOv 和 ResNet 做成大模型,需要考虑以下几个方面: 1. 数据准备:收集大量的相关数据,并进行清洗、预处理和标注,以满足模型训练的需求。 2. 模型架构调整:根据具体任务和数据特点,对 YOLOv 和 ResNet 的架构进行适当的修改和优化,例如增加层数、调整通道数等。 3. 训练策略:选择合适的优化算法、学习率调整策略等,以提高训练效果和收敛速度。 4. 计算资源:大模型的训练需要强大的计算资源,包括硬件设施和云计算平台等。 此外,从相关的研究和趋势来看,大模型架构呈现出日益明显的混合趋势,多种有代表性的技术路径在不同程度保留 Transformer 架构优势的基础上,结合 RNN、CNN 等思想做出创新发展。例如类循环神经网络模型(以 RWKV 为代表)、状态空间模型(以 Mamba 为代表)、层次化卷积模型(以 UniRepLKNet 为代表)、多尺度保持机制模型(以 RetNet 为代表)、液体神经网络模型(以 LFM 为代表)等。但需要注意的是,将 YOLOv 和 ResNet 做成大模型是一个复杂的过程,需要深入的研究和实践。
2025-03-06
大模型调优
大模型调优的方法主要包括以下几个方面: 1. 更换大模型:例如从 ChatGLM26B 替换成 baichuan213b,针对特定场景,后者性能可能提升一倍左右。 2. 更换 embedding 模型:将默认的 embedding 模型如 LangChain Chatchat 的 m3ebase 替换为 bgelargezh,后者可能更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果最优。 4. 对文档名称进行处理:人工对文件重命名,上传相同文件构建知识库,同时在构建时勾选【开启中文标题加强】选项,重命名文件对结果提升不明显,但勾选该选项后回答的无关信息减少,效果有所提升。 从产品视角考虑大模型调优,主要从以下两个维度分析问题: 1. Context optimization(上下文优化):所创建的 LLM 应用若需要特定数据、系统和流程等预训练 LLM 中缺失的知识和信息,需进行上下文优化,如企业内部智能问答机器人,应将相关知识提供给大模型,RAG 是解决该问题的技术。 2. LLM optimization(大模型优化):在进行足够的 prompt 工程后,若 LLM 应用在垂直领域表现仍不足或希望输出特定格式风格等稳定性不及预期,可考虑微调,且需与良好的 prompt 工程结合。 大模型的安全保障可通过对齐,也叫指令调优实现,包括监督微调、获取 reward model 与进行强化学习调整输出分布。但即使如 GPT4 和 Claude 等模型已几乎不回复危险问题,Alignment 仍不足以防护所有安全问题,存在越狱现象。LLAMA2 专门使用安全有监督微调确保语言模型安全。强化学习能让模型根据人类反馈调整分布,面对训练分布外数据也可能学会拒绝不当回答。
2025-03-06