直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

ai行业前沿技术突破

回答

以下是关于 AI 行业前沿技术突破的相关内容:

2024 年,AI 模型在生物医学、气象预测等领域取得了重要突破。诺贝尔物理学奖和化学奖先后颁给了 AI,这不仅推动了机器学习的理论创新,还揭示了蛋白质折叠问题,标志着人工智能已成为一门科学学科和加速科学的工具。

在具体的技术应用方面:

  • 基于深度学习和 Transformer 架构的蛋白质结构预测模型 AlphaFold 3 能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用,将为细胞功能解析、药物设计和生物科学的发展提供有力支持。
  • DeepMind 展示的新的实验生物学能力 AlphaProteo 是一种能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。
  • 生物学前沿模型的扩展方面,Meta 发布的 ESM3 是一种前沿多模态生成模型,它在蛋白质序列、结构和功能上进行训练,能够学习预测任何模态组合的完成情况。

此外,在学习路径方面,偏向技术研究方向需要掌握数学基础(如线性代数、概率论、优化理论等)、机器学习基础(监督学习、无监督学习、强化学习等)、深度学习(神经网络、卷积网络、递归网络、注意力机制等)、自然语言处理(语言模型、文本分类、机器翻译等)、计算机视觉(图像分类、目标检测、语义分割等)等,还包括前沿领域如大模型、多模态 AI、自监督学习、小样本学习等以及科研实践。

偏向应用方向则需要具备编程基础(Python、C++等)、机器学习基础(监督学习、无监督学习等)、深度学习框架(TensorFlow、PyTorch 等),了解应用领域(自然语言处理、计算机视觉、推荐系统等)、数据处理(数据采集、清洗、特征工程等)、模型部署(模型优化、模型服务等),并进行行业实践。

AI 技术的发展历程大致为:早期阶段有专家系统、博弈论、机器学习初步理论;知识驱动时期有专家系统、知识表示、自动推理;统计学习时期有机器学习算法(决策树、支持向量机、贝叶斯方法等);深度学习时期有深度神经网络、卷积神经网络、循环神经网络等。

当前 AI 前沿技术点包括:

  • 大模型,如 GPT、PaLM 等。
  • 多模态 AI,如视觉-语言模型(CLIP、Stable Diffusion)、多模态融合。
  • 自监督学习,如自监督预训练、对比学习、掩码语言模型等。
  • 小样本学习,如元学习、一次学习、提示学习等。
  • 可解释 AI,包括模型可解释性、因果推理、符号推理等。
  • 机器人学,涉及强化学习、运动规划、人机交互等。
  • 量子 AI,包含量子机器学习、量子神经网络等。
  • AI 芯片和硬件加速。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

[title]2024人工智能报告|一文迅速了解今年的AI界都发生了什么?[heading2]三、2024年AI模型在生物医学、气象预测等领域突破与应用最重要的突破是——在2024年,诺贝尔物理学奖和化学奖先后颁给AIAI不仅推动了机器学习的理论创新,还揭示了蛋白质折叠问题。其标志了人工智能AI已经真正成为一门科学学科和加速科学的工具。AI在生物医学气象等突破应用有哪些?基于深度学习和Transformer架构的蛋白质结构预测模型——AlphaFold 3由DeepMind和Isomorphic Labs发布的AlphaFold 3是一个基于深度学习和Transformer架构的蛋白质结构预测模型,能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用。它的出现将为细胞功能解析、药物设计和生物科学的发展提供有力支持。DeepMind展示新的实验生物学能力——AlphaProteo其秘密蛋白质设计团队推出第一个模型AlphaProteo是一种能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。生物学前沿模型的扩展:进化规模ESM3自2019年以来,Meta一直在发布基于Transformer的语言模型(进化规模模型),这些模型是通过大型氨基酸和蛋白质数据库进行训练的。今年,他们发布了ESM3,这是一种前沿多模态生成模型,它是在蛋白质序列、结构和功能上进行训练的,而不是仅仅在序列上进行训练。与传统的掩码语言建模不同,ESM3的训练过程使用可变掩码计划,使模型暴露于各种掩码序列、结构和功能的组合。ESM3能够学习预测任何模态组合的完成情况。学习设计人类基因组编辑器的语言模型——CRISPR-Cas图谱

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.数学基础:线性代数、概率论、优化理论等2.机器学习基础:监督学习、无监督学习、强化学习等3.深度学习:神经网络、卷积网络、递归网络、注意力机制等4.自然语言处理:语言模型、文本分类、机器翻译等5.计算机视觉:图像分类、目标检测、语义分割等6.前沿领域:大模型、多模态AI、自监督学习、小样本学习等7.科研实践:论文阅读、模型实现、实验设计等[heading3]偏向应用方向[content]1.编程基础:Python、C++等2.机器学习基础:监督学习、无监督学习等3.深度学习框架:TensorFlow、PyTorch等4.应用领域:自然语言处理、计算机视觉、推荐系统等5.数据处理:数据采集、清洗、特征工程等6.模型部署:模型优化、模型服务等7.行业实践:项目实战、案例分析等无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。内容由AI大模型生成,请仔细甄别。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

其他人在问
帮忙生写最近人工智能领域的前沿技术新闻简报
以下是最近人工智能领域的前沿技术新闻简报: 1. Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位,详情可访问: 2. Shopify 的 AI 助手现已上线。Sidekick 是一个帮助机器人,它知道如何在 Shopify 中执行任何操作,包括提取相关数据、操作新功能或创建报告,详情可访问: 3. Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能,详情可访问: 4. OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,主要目的是确保 AI 模型的安全发展,详情可访问: 5. Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器,详情可访问:
2024-10-14
AI基础知识
以下是关于 AI 基础知识的介绍: 一、AI 背景知识 1. 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:简介强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: 根据自己的兴趣选择特定的模块进行深入学习,如图像、音乐、视频等。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 对于中学生学习 AI 的建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。
2024-10-30
我想用ai作ppt
以下为您介绍一些利用 AI 制作 PPT 的相关信息: 卓 sir 分享了自己使用 AI 完成 PPT 作业的经历,用到的 AI 工具包括 GPT4、WPS AI 和 chatPPT。您可以通过飞书链接查看相关 PPT:https://fr3qe44cid.feishu.cn/docx/DW44djbRioSL4lxURmlcn5cEnte?from=from_copylink 。 熊猫 Jay 因企业内部要求编写了相关文章并公开分享,介绍了通过 AI 工具高效制作 PPT 的思路和指南,还获得了 1000 元红包奖励。文中提到了市面上最受欢迎的 5 款 AI PPT 工具:MindShow、爱设计、闪击、Process ON、WPS AI 。 目前市面上大多数 AI 生成 PPT 的思路通常是:AI 生成 PPT 大纲,手动优化大纲,导入工具生成 PPT,优化整体结构。 为您推荐 2 篇市场分析的文章供参考:《》 另外,市面上还有一些其他做 PPT 的 AI 产品,您可以根据自己的需求和喜好选择合适的工具。
2024-10-30
学习AI
以下是为新手提供的学习 AI 的全面指导: 一、了解 AI 基本概念 1. 建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 2. 体验 AI 产品,与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 五、持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习,可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-10-30
有对建筑规范在行得AI吗
以下是一些能够在建筑规范方面提供帮助的 AI 工具: 1. HDAidMaster:这是一款云端工具,在建筑设计、室内设计和景观设计领域表现出色,搭载了自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值在线。 2. Maket.ai:主要面向住宅行业,在户型设计和室内软装设计方面有 AI 技术探索,能根据输入的房间面积需求和土地约束自动生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入相关标准和规范约束设计结果,保证合规性。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,能将建筑全寿命周期内的信息集成,实现数据汇总与管理。 但每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。
2024-10-30
AI智能体
AI 智能体是拥有各项能力来帮助人们完成特定事情的一种存在。目前,不少大厂推出了自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。 生成式 AI 应用当前有三个核心用例与强大的产品市场契合度:搜索、合成和生成。Menlo Ventures 投资组合公司在这些类别中都是早期突破性的代表,其中心是 LLMs 的少样本推理能力。但生成式人工智能的承诺不止于此,能为您阅读和写作的人工智能很棒,更令人兴奋的是能够代表您思考和行动的人工智能。借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,下一波智能体正在拓展 AI 能力的边界,实现端到端流程自动化。 在品牌卖点提炼中,AI 智能体也有应用。AI 在逻辑推理、数据分析、内容理解和输出上有独特的强项,但在搭建智能体之前,需要先明确 AI 的能力边界,比如 AI 对公司的主要产品、独特之处、获得的认可、核心渠道、核心购买人群、营销手段、期望的新渠道结果等了解程度接近于 0。AI 真正的能力在于能够通过分析数据和信息进行逻辑推理,解决复杂问题,擅长快速处理和分析数据,能够从中提取有价值的信息和模式,有大量的训练数据,可以输出比人类更全面的相关信息,可以理解用户所提供的内容,按照正确的结构梳理有效的输出内容。因此,在品牌卖点探索中,智能体更适合做一个引导型的助手,在思考路径陷入停滞时提供更多思考维度。 以扣子为例,它是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论用户是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot,功能涵盖从解决简单问答到处理复杂逻辑对话的广泛范围。开发完成后,还可以将构建的 Bot 发布到各种社交平台和通讯软件上。创建智能体可以通过简单 3 步:起一个智能体的名称,写一段智能体的简单介绍,使用 AI 创建一个头像。
2024-10-30
什么是AI 智能体?具体有哪些形式的产品?
AI 智能体简单来说就是 AI 机器人小助手。参照移动互联网,类似 APP 应用的概念。随着 ChatGPT 与 AI 概念的爆火,出现了诸如“智能体 Agent”、bot 和 GPTs 等新名词。 AI 大模型是技术,面向用户提供服务的是产品,因此很多公司关注 AI 应用层的产品机会,出现了不少做 Agent 创业的公司。 在 C 端,比如社交方向,用户注册后先捏一个自己的 Agent,让其与他人的 Agent 聊天,聊到一起后真人再介入,这是一种有趣的场景;还有借 Onlyfans 入局打造个性化聊天的创业公司。 在 B 端,如果字节扣子和腾讯元器是面向普通人的低代码平台,类似 APP 时代的个人开发者,那么还有帮助 B 端商家搭建 Agent 的机会,类似 APP 时代专业做 APP 的。 以 ChatGPT 的 GPTs 举例,一个智能体应用通常由以下几部分自定义操作组成: 1. 提示词:描述智能体的作用,定义智能体的回复格式。 2. 知识库:上传私有文件作为回答参考。 3. 外挂 API:请求第三方 API 获取实时数据。 4. 个性化配置:包括是否联网、是否使用图片生成、是否使用数据分析等。 常见的智能体开发平台有字节的扣子 Coze、Dify.AI 等。
2024-10-30
审计行业可以使用什么ai
在审计行业,以下是一些可以使用的 AI 应用: 1. 自动化文档处理:利用 AI 技术自动处理和分析大量的审计文档,提高工作效率。 2. 数据分析与预测:通过 AI 对财务数据进行深入分析,发现潜在的风险和趋势,辅助做出更准确的审计判断。 3. 智能检索与分类:借助自然语言处理和机器学习算法,对相关资料进行高效检索和分类。 在专利审查方面,AI 也得到了广泛应用: 1. 专利检索与分类:AI 能够进行高效的专利检索和分类,例如通过 Google Patents、IBM Watson for IP 等平台,利用自然语言处理和机器学习算法,自动识别和分类专利文献。 2. 专利分析和评估:可以分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。如 TurboPatent、PatentBot 等平台。 3. 自动化专利申请:帮助自动生成专利申请文件,减少人工编写和审查时间,如 Specifio、PatentPal 等平台。 4. 专利图像和图表分析:利用 Aulive 等平台的 AI 技术分析专利中的图像和图表,自动识别技术内容和创新点。 在金融服务业中,生成式 AI 也发挥了重要作用: 1. 更动态的预测:帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析的自动化,发现模式,并从更广泛、更复杂的数据集中为预测建议输入。 2. 报告:自动创建文本、图表、图形等内容,并根据不同的示例调整此类报告。 3. 会计和税务:综合、总结税法相关内容,并就税法和潜在的扣除项提出可能的答案。 4. 采购和应付账款:帮助自动生成和调整合同、采购订单和发票以及提醒。
2024-10-29
审计行业和ai相关的产品和文章有哪些
以下是一些与审计行业和 AI 相关的产品和文章: 1. 案例方面: “AI 产品案例和投稿”中提到了七大行业的商业化应用,包括企业运营(如日常办公文档材料撰写整理、营销对话机器人等)、教育、游戏/媒体、零售/电商、金融/保险等领域的应用。您可以通过查看详情。 2. 应用方面: 100 个 AI 应用涵盖了辅助创作与学习(如 AI 智能写作助手、语言学习助手等)、推荐与规划(如图像识别商品推荐、旅游行程规划器等)、监控与预警(如宠物健康监测设备、家居安全监控系统等)、优化与管理(如办公自动化工具、物流路径优化工具等)、销售与交易(如 AI 艺术作品生成器、汽车销售平台等)等多个方面。 3. 研究报告方面: 2023 年 11 月 15 日更新了一批 AI 相关的研究报告,特别推荐的有《红杉中国:2023 企业数字化年度指南》(基于对 235 家企业数字化负责人的调研,63.5%的企业已把 AIGC 列入企业发展战略)、《华为:加速行业智能化白皮书》(结合华为行业智能化实践及面向智能世界 2030 的展望,与各界进行万场以上座谈研讨)。如需下载,可访问我们的知识星球。此外,还有《一文带你了解提示攻击!》这篇文章,带您从零开始了解越狱、提示攻击、与传统安全的关系以及大语言模型的安全问题。
2024-10-29
近期融资的ai行业上市公司
以下是近期融资的 AI 行业上市公司的相关信息: Celestial AI 融资 1 亿美元,用于使用基于光的互连传输数据。 Zenarate 融资 1500 万美元,是提供 AI 模拟培训平台的公司。 Augmedics 获得 8250 万美元,用于使用 AR 和 AI 进行脊柱手术。 CalypsoAI 筹集了 2300 万美元,用于生成 AI 模型的护栏。 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15): |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Weka|20240513|1.4|E|16|AI 原生数据平台|应用|数据|Valor Equity Partners, 高通创投, Nvidia, 日立创投| |CoreWeave|20240501|11|C|190|GPU 基础设施|基础设施|硬件和云平台|Coatue, Fidelity, Altimeter Capital, Magnetar Capital| |Scale AI|202405|10|F|140|数据标记服务|应用|数据|Accel, Tiger Global, Spark Capital, 亚马逊| |Blaize|20240429|1.06|D||AI 边缘计算平台|基础设施|硬件和云平台|淡马锡, 富兰克林邓普顿, Bess Ventures| |Augment|20240424|2.27|B|10|AI 编码辅助|应用|编程|Lightspeed Venture Partners, Index Ventures, Sutter Hill Ventures| |Cognition|20240424|1.75||20|端到端软件 Agents|应用|编程|Founders Fund, Ramp 联合创始人 Eric Glyman, Stripe 联合创始人 Patrick 和 John Collison, DoorDash 联合创始人 Tony Xu| |Xaira Therapeutics|20240423|10|A||AI 药物研发|应用|医学|Foresite Capital, ARCH Venture Partners| 近期热门融资 AI 产品速递 1 st : You.com 已完成多轮融资,包括来自 Salesforce CEO Marc Benioff 的 2000 万美元资金和 4500 万美元的募资。目前,You.com 用户数量稳定增长,已超过 10 万。体验链接:www.you.com
2024-10-28
具身智能在制造行业的落地方向有哪些?
具身智能在制造行业的落地方向主要包括以下几个方面: 1. 预测性维护:利用具身智能技术预测机器故障,帮助工厂避免停机,提高生产效率。 2. 质量控制:检测产品缺陷,提升产品质量。 3. 供应链管理:优化供应链,实现效率提升和成本降低。 4. 机器人自动化:控制工业机器人,进一步提高生产效率。 具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。它的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,也可以是虚拟形态。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发算法使智能体理解和解释视觉信息,进行有效的空间导航和物体识别。 作为一个系统性的工程,具身智能涉及算法层、不同技术流派、数据、模拟器、传感器、视觉方案、力学结构等多个维度,并整体向着更鲁棒性、各层级之间过渡更加平滑的方向发展。但也存在一些问题,比如力矩控制、电流控制做到哪一步才算端到端,机器人的 foundation model 或者 GPT 时刻会是什么样,触觉等感知信号以什么样的形式进入模型当中等。
2024-10-26
如何快速了解AI行业动态
以下是快速了解 AI 行业动态的一些方法: 1. 持续学习和跟进:AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 2. 明确主题:在开始获取信息之前,先选定一个吸引人的主题。以当前 AI 领域的热度为例,每天都有众多新闻值得关注。可以通过阅读各类 AI 主题的公众号、追踪相关博主的动态、参与行业微信群讨论等多元化渠道,来捕捉 AI 界的最新动态。 3. 持续学习与更新: 鼓励员工学习 AI 相关知识和技能。通过提升员工对 AI 技术的理解和应用能力,增强企业整体的 AI 适应能力。组织 AI 相关的培训课程,提供在线学习资源,帮助员工了解 AI 的基础知识和应用实例。在企业内部培养持续学习和创新的文化,鼓励员工探索和实践 AI 相关技术。通过激励机制(如奖励、认证)鼓励员工参与 AI 学习和应用。例如,提供机器学习、数据分析等相关课程,帮助员工掌握 AI 在实际工作中的应用技能。 关注 AI 技术的最新发展,及时更新和优化 AI 应用。保持企业 AI 应用的先进性和竞争力,适应技术发展的快速变化。持续关注 AI 领域的最新研究和行业动态,包括新技术、工具、最佳实践等。定期评估现有 AI 应用的性能和效果,根据最新技术进展进行更新和优化。与 AI 领域的专家和机构保持交流和合作,获取最新的知识和支持。建立有效的反馈机制,收集员工和客户对 AI 应用的反馈,作为持续改进的依据。根据市场需求和竞争环境的变化,及时调整 AI 策略和应用。
2024-10-23
请问现在国内外AI都已实现什么功能?在金融行业都有什么应用?
目前国内外 AI 已经实现了众多功能,以下为您列举部分主要功能及在金融行业的应用: 主要功能: 1. 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 2. 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 3. 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 4. 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 5. 交通运输:例如自动驾驶等。 在金融行业的应用: 1. 风控和反欺诈:利用 AI 识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:通过 AI 评估借款人的信用风险,辅助金融机构做出更优的贷款决策。 3. 投资分析:借助 AI 分析市场数据,帮助投资者做出更明智的投资决策。 4. 客户服务:使用 AI 提供 24/7 的客户服务,并回答常见问题。 此外,还有一些具体的应用案例,如东方财富网的投资分析工具利用 AI 技术分析金融市场数据,为投资者提供投资建议和决策支持;金融风险预警软件利用 AI 分析金融市场数据,提前预警可能出现的风险,如股市下跌、汇率波动等。
2024-10-23