直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

现在业内比较主流的 RAG 方案 开源/商业的都有哪些啊

回答

目前业内比较主流的 RAG 方案包括开源和商业的,以下为您介绍:

  1. Dify:这是一个开源的大模型应用开发平台。它结合后端即服务和 LLMOps 的理念,为用户提供直观界面来快速构建和部署生产级别的生成式 AI 应用。具备强大工作流构建工具、广泛的模型集成、功能丰富的提示词 IDE 以及全面的 RAG Pipeline 用于文档处理和检索。还允许定义 Agent 智能体,并通过 LLMOps 功能对应用程序性能进行持续监控和优化。提供云服务和本地部署选项,满足不同用户需求。其设计理念注重简单性、克制和快速迭代,适合个人研究和企业级落地项目。
    • 官方手册:https://docs.dify.ai/v/zh-hans
    • 一般来说,如果是个人研究,推荐单独使用;如果是企业级落地项目,推荐多种框架结合使用。
  2. LangChain:这是一个为简化大模型应用开发而设计的开源框架。通过提供模块化的工具和库,允许开发者轻松集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。设计注重简化开发流程,支持广泛模型,具备良好可扩展性,适应不断变化的业务需求。作为社区广泛支持的开源项目,拥有活跃贡献者和持续更新,提供全面文档和示例代码,充分考虑应用安全性和用户数据隐私保护,是多语言支持的灵活框架,适用于各种规模项目和不同背景开发者。
    • 官方手册:https://python.langchain.com/docs/get_started/introduction/
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

RAG 提示工程(三):迈向工程化应用

Dify是一个开源的大模型应用开发平台,它通过结合后端即服务和LLMOps的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式AI应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词IDE,以及一个全面的RAG Pipeline,用于文档处理和检索。此外,Dify还允许用户定义Agent智能体,并通过LLMOps功能对应用程序的性能进行持续监控和优化。Dify提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify的设计理念注重简单性、克制和快速迭代,旨在帮助用户将AI应用的创意快速转化为现实,无论是创业团队构建MVP、企业集成LLM以增强现有应用的能力,还是技术爱好者探索LLM的潜力,Dify都提供了相应的支持和工具。Dify官方手册:https://docs.dify.ai/v/zh-hans一般地,如果是个人研究,推荐大家单独使用Dify,如果是企业级落地项目推荐大家使用多种框架结合,效果更好。

RAG提示工程(一):基础概念

RAG是检索增强生成(Retrieval Augmented Generation)的简称,是当前最火热的企业级LLM应用方案。RAG概括起来就是知识检索+内容生成。这么说太抽象,可以理解为大模型的开卷考试,既然是开卷考试,那么谁带的书和资料内容更全,谁翻书翻的更快更准,谁开卷考试的结果就往往更好。下面来看RAG的主要组成,依次是数据提取——embedding(向量化)——创建索引——检索——自动排序(Rerank)——LLM归纳生成。当然这里少了使用环节,我们暂时先忽略。大家知道,开卷考试时,往往大家的参考资料都差不多,在有限的考试时间内如何又快又准的锁定问题在书上的相关内容更为重要。RAG做的好不好也是如此,核心就看能不能将内容检索的又快又准。如果抄错了书上(知识库)内容,往往大模型给出的答案也南辕北辙。

RAG 提示工程(三):迈向工程化应用

LangChain是一个为简化大模型应用开发而设计的开源框架。它通过提供一套模块化的工具和库,允许开发者轻松地集成和操作多种大模型,从而将更多的精力投入到创造应用的核心价值上。LangChain的设计注重简化开发流程,支持广泛的模型,并且具备良好的可扩展性,以适应不断变化的业务需求。作为一个得到社区广泛支持的开源项目,LangChain拥有活跃的贡献者和持续的更新,同时提供了全面的文档和示例代码帮助新用户快速掌握。此外,LangChain在设计时也充分考虑了应用的安全性和用户数据的隐私保护,是一个多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。LangChain官方手册:https://python.langchain.com/docs/get_started/introduction/

其他人在问
RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构。 大模型需要 RAG 进行检索优化,是因为大模型存在一些缺点: 1. 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. 输出难以解释和验证,存在内容黑盒、不可控及受幻觉问题干扰的情况。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且不影响原有知识。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt 中,提交给大模型,此时大模型的回答会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 RAG 由一个“检索器”和一个“生成器”组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息来制作精确和连贯的答案,非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。
2024-12-19
如何搭建一个RAG应用?
搭建一个 RAG 应用可以使用 LangChain 平台,以下是相关步骤和组件: 1. 数据加载器(DocumentLoader):这是一个对象,能从数据源加载数据并转换为包含 page_content(文本内容)和 metadata(元数据,如标题、作者、日期等)的文档对象。 2. 文本分割器(DocumentSplitter):可将文档对象分割成多个较小的文档对象,方便后续检索和生成,因为大模型输入窗口有限,短文本更易找到相关信息。 3. 文本嵌入器(Embeddings):能将文本转换为高维向量的嵌入,用于衡量文本相似度以实现检索功能。 4. 向量存储器(VectorStore):可存储和查询嵌入,通常使用 Faiss 或 Annoy 等索引技术加速检索。 5. 检索器(Retriever):能根据文本查询返回相关文档对象,常见实现是向量存储器检索器,利用向量存储器的相似度搜索功能检索。 6. 聊天模型(ChatModel):可根据输入序列生成输出消息,通常基于大模型如 GPT3 实现文本生成功能。 使用 LangChain 构建 RAG 应用的一般流程如下: 首先,使用合适的数据加载器根据数据源类型加载数据。例如,数据源是网页可用 WebBaseLoader 加载和解析网页得到文档对象。 然后,用合适的文本分割器将文档对象分割成较小的符合要求的文档对象。如文本是博客文章,可用 RecursiveCharacterTextSplitter 分割。 接下来,用文本嵌入器将文档对象转换为嵌入,并存储到向量存储器中。可根据嵌入质量和速度选择合适的嵌入器和存储器,如 OpenAIEmbeddings 和 ChromaVectorStore。 之后,创建向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数。 最后,创建聊天模型,根据性能和成本选择合适的模型,如 OpenAIChatModel。 以下是一个使用 LangChain 构建 RAG 应用的示例代码。
2024-12-15
RAG 如何测评?
RAG(检索增强生成)的测评方法如下: 1. 可以使用 TruLens 来实现 RAG 三角形的评估方法,具体步骤为: 在 LangChain 中,创建一个 RAG 对象,使用 RAGPromptTemplate 作为提示模板,指定检索系统和知识库的参数。 在 TruLens 中,创建一个 TruChain 对象,包装 RAG 对象,指定反馈函数和应用 ID。反馈函数可以使用 TruLens 提供的 f_context_relevance、f_groundness、f_answer_relevance,也可以自定义。 使用 with 语句来运行 RAG 对象,并记录反馈数据。输入一个问题,得到一个回答,以及检索出的文档。 查看和分析反馈数据,根据 RAG 三角形的评估指标,评价 RAG 的表现。 2. 评估 RAG 生成的文本质量,常用的评估方法包括自动评估指标(如 BLEU、ROUGE 等)、人工评估和事实验证,以衡量生成文本的流畅性、准确性和相关性。 3. 评估 RAG 检索的效果,包括检索的准确性、召回率和效率,其好坏直接影响生成文本的质量。 4. 通过用户调查、用户反馈和用户交互数据来实现用户满意度评估。 5. 对于生成多模态内容的 RAG 系统,需要通过多模态评估指标来评估不同模态之间的一致性和相关性。 6. 对于需要实时更新的 RAG 任务,要考虑信息更新的及时性和效率进行实时性评估。 7. 为了进行客观的评估,通常会使用基准测试集来进行实验和比较不同的 RAG 系统。这些基准测试集包含了多样化的任务和查询,以涵盖不同的应用场景。 评估方法和指标的选择取决于具体的任务和应用场景。综合使用多种评估方法可以更全面地了解 RAG 系统的性能和效果,评估结果可以指导系统的改进和优化,以满足用户的需求。
2024-12-13
RAG 案例
以下是为您提供的关于 RAG 案例的相关内容: 在商业化问答场景中,存在大模型根据知识库回复不准确的情况,如回答牛头不对马嘴、未依据正确内容回答等错误场景,这凸显了优化大模型根据知识库回答准确性的重要性,而在 AI 领域中,此优化过程称为 RAG。 RAG(RetrievalAugmented Generation)即检索增强生成,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统。 在案例研究中: 案例 B 中,用户查询特定研究论文中的“表格 8”及所列因变量,ChatDOC 能有效检索整个表格,包括标题和内容,准确响应查询,而 Baseline 模型未检索到真正的“表格 8”。 OpenAI 在提升 RAG 准确率方面,从 45%开始,尝试多种方法,如假设性文档嵌入和精调嵌入等效果不理想,通过调整信息块大小、嵌入不同内容部分、Reranking、对不同类别问题特别处理、提示工程、查询扩展等方法,最终达到 98%的准确率,强调了模型精调和 RAG 结合使用的潜力。
2024-12-12
rag调优
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合信息检索和文本生成能力的技术,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息来制作精确和连贯的答案,非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。 LLM 需要 RAG 进行检索优化的原因在于 LLM 存在一些缺点: 1. 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. 知识容易过时且不好更新,微调模型的接受能力不高且慢,甚至有丢失原有知识的风险。 3. 输出难以解释和验证,最终输出内容黑盒且不可控,可能受到幻觉等问题干扰。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,对原有知识无影响。 3. 数据库内容明确、结构化,加上模型本身的理解能力,大模型输出出错的可能大大降低。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 性能提升的策略和方法包括: 1. 优化索引: 按照子部分索引,将文本块再拆分为较小的文本(例如单句),然后对这些小块进行多次索引,适用于有多个主题、有冲突信息的复杂长文本信息。 按照文本框可以回答的问题索引,让 LLM 生成与拆分的文本块相关的假设性问题,并将这些问题用于索引,适用于用户没有提出非常明确问题的情况,可减少模糊性。 按照文本块的摘要进行索引,适用于文本框中有多余信息或者与用户查询无关细节的情况。 2. 重排 rerank:搜到相似信息后选择合适的信息,大部分场景下选择最相似的即可。
2024-12-05
RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构。 其旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息,通过检索模式为大语言模型的生成提供帮助,使大模型生成的答案更符合要求。 LLM 需要 RAG 进行检索优化的原因在于 LLM 存在一些缺点: 1. 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. 输出难以解释和验证,存在内容黑盒、不可控及受幻觉问题干扰的情况。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,可降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt 中,提交给大模型,此时大模型的回答会充分考虑到“包含答案的内容”。其最常见应用场景为知识问答系统。在商业化问答场景中,优化 AI 更准确回答问题的过程称为 RAG,它由“检索器”和“生成器”两部分组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确和连贯的答案,非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。
2024-11-30
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
开源的开源的 LLM 微调推理,agent开发平台
以下是为您整理的关于开源的 LLM 微调推理、agent 开发平台的相关内容: LLM 作为 Agent 的“大脑”的特点: 1. 知识获取能力:通过预训练学习大量语言数据,掌握丰富语言信息和常识知识,能处理多种任务。 2. 指令理解:擅长解析人类语言指令,采用深度神经网络进行自然语言理解和生成,精准理解意图。 3. 泛化能力:在未见过的数据上表现良好,能利用先前知识处理新挑战,形成对语言结构的通用理解。 4. 推理和规划:能够进行逻辑推理和未来预测,分析条件制定最佳行动方案,在复杂环境中做出理性选择。 5. 交互能力:拥有强大对话能力,在多人多轮次对话中自然流畅交流,改善用户体验。 6. 自我改进:基于用户反馈和效果评估,通过调整参数、更新算法提升性能和准确性。 7. 可扩展性:可根据具体需求定制化适配,针对特定领域数据微调提高处理能力和专业化水平。 相关产品和平台: 1. ComfyUI:可在其中高效使用 LLM。 2. Vercel AI SDK 3.0:开源的工具,可将文本和图像提示转换为 React 用户界面,允许开发者创建丰富界面的聊天机器人。 3. OLMo7BInstruct:Allen AI 开源的微调模型,可通过资料了解从预训练模型到 RLHF 微调模型的所有信息并复刻微调过程。 4. Devv Agent:能提供更准确、详细的回答,底层基于 Multiagent 架构,根据需求采用不同 Agent 和语言模型。 实例探究: 1. ChemCrow:特定领域示例,通过 13 个专家设计的工具增强 LLM,完成有机合成、药物发现和材料设计等任务。 2. Boiko et al. 研究的 LLM 授权的科学发现 Agents:可处理复杂科学实验的自主设计、规划和执行,能使用多种工具。
2024-12-12
开源大模型训练推理,应用开发agent 平台
以下是一些关于开源大模型训练推理、应用开发 agent 平台的相关信息: Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,可将 Copilot 部署到多种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 Gemini 相关:大型语言模型的推理能力在构建通用 agents 方面有潜力,如 AlphaCode 团队构建的基于 Gemini 的 agent 在解决竞争性编程问题方面表现出色。同时,Gemini Nano 提升了效率,在设备上的任务中表现出色。 成为基于 Agent 的创造者的学习路径:未来的 AI 数字员工以大语言模型为大脑串联工具。Agent 工程如同传统软件工程学有迭代范式,包括梳理流程、任务工具化、建立规划、迭代优化。数字员工的“进化论”需要在 AI 能力基础上对固化流程和自主思考作出妥协和平衡。
2024-12-12
对企业来说直接用开源大模型和用国内大厂收费的大模型有哪些区别
对于企业来说,直接使用开源大模型和使用国内大厂收费的大模型主要有以下区别: 数据方面: 开源大模型的数据获取相对容易,但数据质量可能参差不齐。例如,OpenAI 训练大模型所用的中文数据虽源自中国互联网平台,但经过了深度处理,而国内中文互联网数据质量普遍被认为相对较低。 国内大厂收费的大模型可能在数据处理和质量上更具优势,但获取高质量数据对于企业尤其是初创企业来说成本较高且存在风险。 商业化落地方面: 客户在商业化落地时更关注实用性而非原创性,有时因成本低会倾向选择开源大模型的非原创技术。 但使用开源大模型可能存在拼装和套壳后强调原创,从而影响迭代能力,导致内耗、刷榜和作假等问题。 其他方面: 金沙江创投主管合伙人朱啸虎指出,使用大模型要有垂直行业数据,能实现数据闭环,并持续保持和客户的连接。对于大厂而言,要关心自身边界,而创业公司必须对客户和大厂有自身价值才能立足。 目前国内大模型的商业化落地仍处于拿着锤子找钉子的阶段,预计到今年年底头部大模型能基本达到 3.5 水平,明年 11 月有望到 4,但真正能落地的商业化场景有限。
2024-12-07
最新的开源的关于大语言模型的书有哪些?
以下是一些最新的开源的关于大语言模型的书籍和资源: 《LLM 开源中文大语言模型及数据集集合》: Awesome Totally Open Chatgpt: 地址: 简介:This repo record a list of totally open alternatives to ChatGPT. AwesomeLLM: 地址: 简介:This repo is a curated list of papers about large language models, especially relating to ChatGPT. It also contains frameworks for LLM training, tools to deploy LLM, courses and tutorials about LLM and all publicly available LLM checkpoints and APIs. DecryptPrompt: 地址: 简介:总结了 Prompt&LLM 论文,开源数据&模型,AIGC 应用。 Awesome Pretrained Chinese NLP Models: 地址: 简介:收集了目前网上公开的一些高质量中文预训练模型。 《AIGC Weekly 19》:包含了多篇相关文章,如腾讯的开源图像模型 Stable Diffusion 入门手册、马丁的关于 AIGC 的碎片化思考、多邻国创始人 Luis von Ahn 专访、Meta AI 发布的自监督学习 CookBook 等。 《进阶:a16z 推荐进阶经典》: 《GPT4 technical report》(2023 年):来自 OpenAI 的最新和最伟大的论文。 《LLaMA:Open and efficient foundation language models》(2023 年):来自 Meta 的模型。 《Alpaca:A strong,replicable instructionfollowing model》(2023 年):来自斯坦福大学的模型。
2024-12-03
强化学习+开源代码
以下是关于强化学习的开源代码入门指南: 1. 基础知识准备: 若概率论和线性代数基础薄弱,可利用周末约一天时间学习相关课程,若不关注公式可忽略。 若机器学习基础为零,先看吴恩达课程,再以李宏毅课程作补充,若仅为入门强化学习,看李宏毅课程前几节讲完神经网络部分即可,此课程约需 25 小时。 2. 动手实践: 跟随《动手学深度学习 https://hrl.boyuai.com/》学习并写代码,入门看前五章,约 10 小时。 观看 B 站王树森的深度学习课程前几节学习强化学习基础知识点,约 5 小时。 3. 项目实践: 参考《动手学强化学习》(已开源 https://hrl.boyuai.com/),看到 DQN 部分,约十几小时。 模型构建:DQN 的网络模型采用一层 128 个神经元的全连接并以 ReLU 作为激活函数,选用简单的两层网络结构。 缓存区:需要一个缓存区来存放从环境中采样的数据。 训练函数:批量从缓存区获取数据,使用 DQN 算法进行训练。 主循环函数:在每个 episode 中,选择一个动作(使用 εgreedy 策略),执行该动作,并将结果存储在 replay buffer 中。训练完使用保存好的 model.pth 参数即可实际使用。 4. Qlearning 算法: 比如在状态 s1 上,根据 Q 值表选择行动,如发现向下行动 Q 值最大则向下走。获取 Q(s1,下)乘上衰减值 gamma(如 0.9)并加上到达下一个状态的奖励 R,作为“Q 现实”,之前根据 Q 表得到的是“Q 估计”。通过公式更新 Q(s1,下)的值,公式为:。 算法流程:初始化 Q,for 序列 e = 1 > E do: 用 ε Greedy 策略根据 Q 选择当前状态 s 下的动作 a,得到环境反馈的 r,s‘,得到初始状态 s,for 时间步 t = 1> T do: ,End for,End for。启动程序训练 100 次后可较好进行游戏。
2024-11-21
请画出一张图,显示主流大语言 模型擅长领域
以下是主流大语言模型擅长领域的相关信息: 1. Encoderonly 模型:通常适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 2. Encoderdecoder 模型:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是 Google 的 T5。 3. Decoderonly 模型:更擅长自然语言生成任务,如故事写作和博客生成,众多 AI 助手基本采用此结构,包括 ChatGPT。 大模型的特点: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,先进的大模型一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 国内大模型分类: 1. 通用模型:如文心一言、讯飞星火等,处理自然语言。 2. 垂直模型:专注特定领域,如小语种交流、临床医学、AI 蛋白质结构预测等。 大型模型主要分类: 1. 大型语言模型:专注于处理和生成文本信息。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。 大型多模态模型与大型语言模型的不同: 1. 处理的信息类型不同:大型语言模型专注于文本信息,大型多模态模型能处理多种类型信息。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,大型多模态模型可应用于更广泛领域,如图像识别与描述、视频分析、语音识别与生成等。 3. 数据需求不同:大型语言模型主要依赖大量文本数据训练,大型多模态模型需要多种类型数据训练。 相对大型模型的“小模型”:是在相对比较下规模较小的模型,实际是被设计来完成特定任务的,如最初用于图像分类的模型,只能分辨是或不是某一个东西。
2024-12-08
现在主流的AI都具备哪些能力
现在主流的 AI 具备以下能力: 1. 对话能力:如聊天机器人,具备基本对话功能,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理能力:像推理者,具备人类推理水平,能够解决复杂问题,例如 ChatGPT 能根据上下文和文件提供详细分析和意见。 3. 执行能力:智能体不仅具备推理能力,还能执行全自动化业务,不过目前许多 AI 智能体产品在执行任务后仍需人类参与。 4. 创新能力:创新者能够协助人类完成新发明,例如谷歌 DeepMind 的 AlphaFold 模型可预测蛋白质结构,加速科学研究和新药发现。 5. 组织能力:最高级别的组织能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 AI 的应用场景广泛,包括: 1. 医疗保健: 医学影像分析:用于辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:为患者提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为。 信用评估:帮助金融机构做出贷款决策。 投资分析:辅助投资者做出投资决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:向客户推荐感兴趣的产品。 搜索和个性化:提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障避免停机。 质量控制:检测产品缺陷提高质量。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:控制工业机器人提高生产效率。 以下是一些辅助写邮件的 AI 工具: 1. Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和语言,网站:https://www.grammarly.com/ 2. Hemingway Editor:简化句子结构提高可读性,标记复杂句和冗长句,界面简洁,重点突出,适用于改善写作风格和简洁性,网站:http://www.hemingwayapp.com/ 3. ProWritingAid:全面的语法和风格检查,提供详细写作报告和建议,功能强大,支持多种平台和集成,适合专业写作者,网站:https://prowritingaid.com/ 4. Writesonic:基于 AI 生成各种类型文本,包括电子邮件、博客文章、广告文案等,生成速度快,适合需要快速创作和灵感的用户,网站:https://writesonic.com/ 5. Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助提高邮件打开率和回复率。
2024-12-06
目前市面主流的AI AGENT工具是?
目前市面上主流的 AI Agent 工具包括: 1. Ranger:通过为大模型增加工具、记忆、行动、规划等能力来实现,行业里主要用到的框架如 langchain,在 prompt 层和工具层完成主要设计。 2. Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具拓展 Bot 能力边界。 3. Microsoft 的 Copilot Studio:具备外挂数据、定义流程、调用 API 和操作以及部署等功能。 4. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者按需打造产品能力。 5. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并访问第三方数据和服务或执行工作流。 6. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 7. 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2024-11-30
目前各大主流模型的 max output token
以下是目前各大主流模型的 max output token 情况: Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 token。 需要注意的是,token 限制同时对一次性输入和一次对话的总体上下文长度生效。不是达到上限就停止对话,而是会遗忘最前面的对话。 如果想直观查看 GPT 如何切分 token,可以打开: 。此外,GPT3 和 GPT3.5/4 的 token 计算方式不同,英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。
2024-11-24
目前主流ai软件的功能及区别
目前主流的 AI 软件具有多种功能,以下为您介绍部分软件的功能及区别: 在软件架构设计方面: Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 Gliffy:基于云的绘图工具,提供创建各种架构图功能,包括逻辑视图和部署视图。 Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 在其他应用方面: AI 摄影参数调整助手:利用图像识别、数据分析技术,如一些摄影 APP 的参数调整功能,根据场景自动调整摄影参数。 AI 音乐情感分析平台:通过机器学习、音频处理技术,如音乐情感分析软件,分析音乐的情感表达。 AI 家居智能照明系统:结合物联网技术、机器学习,如小米智能照明系统,实现家居照明的智能化控制。 AI 金融风险预警平台:运用数据分析、机器学习,如金融风险预警软件,提前预警金融风险。 AI 旅游路线优化平台:借助数据分析、自然语言处理,如马蜂窝的路线优化功能,根据用户需求优化旅游路线。 在辅助写邮件方面: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和多种语言,网站:https://www.grammarly.com/ 。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁,重点突出,网站:http://www.hemingwayapp.com/ 。 ProWritingAid:全面的语法和风格检查,提供详细写作报告和建议,功能强大,支持多种平台和集成,网站:https://prowritingaid.com/ 。 Writesonic:基于 AI 生成各种类型文本,包括电子邮件、博客文章、广告文案等,生成速度快,网站:https://writesonic.com/ 。 Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助提高邮件打开率和回复率。
2024-11-20
目前国外主流的图像类AICG应用有哪些
目前国外主流的图像类 AICG 应用包括 DALL·E2、StableDiffusion 等。DALL·E2 能够根据输入的文本描述生成逼真且富有创意的图像;StableDiffusion 则以其强大的生成能力和广泛的自定义选项受到众多用户的青睐。
2024-11-13
有做企业工作助手智能体的解决方案吗?结合企业内部数据+外部市场环境,做企业工作助手和客服助手
以下是关于企业工作助手智能体的一些解决方案: 职业规划导师(校招版): 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来职业趋势。 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 职业匹配与推荐:根据兴趣、技能和职业目标,推荐适合的职业路径和职位,提供个性化职业建议。 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 智能客服助手搭建思路: 利用企业已有的知识积累,结合大模型的能力,为用户提供准确简洁的答案。 创建企业私有知识库,收录企业过去的问答记录和资料。 利用大模型处理用户咨询问题,确保回答的准确性和一致性,必要时提供原回答的完整版。 对接人工客服,在智能助手无法解决问题时,用户可快速转接,确保问题及时解决,提升整体服务质量和客户满意度。 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 用 Coze 在微信里搭建机器人并挖掘销售线索: 目的:训练公司自有数据,让机器人提供客服功能;将机器人与企业微信绑定提供客服功能;进阶版可根据客户咨询信息收集用户联系方式形成销售线索。 使用工具:字节旗下的 Coze AI 智能机器人工具,需要有微信公众号订阅号或服务号的管理权。 功能体验:扣子画小二智能小助手:https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cjksvpbk000a ;B站公开视频
2024-12-21
业内关于AI电影的最新资讯
以下是关于 AI 电影的最新资讯: 12 月 28 日的 Xiaohu.AI 日报中提到,传统广告片与 Pika 翻拍 AI 视频存在对比,且预测 AI 视频领域将出现首部真正的 AI 电影,相关链接:https://x.com/xiaohuggg/status/1740375887613501770?s=20 。 2023 年 9 月 1 日的历史更新中,在 8 分以上的 AI 电影中新增了《阿尔法围棋 AlphaGo》,这是 2017 年 4 月上映的由格雷格执导的纪录片,全方位展示了人机大战的过程,并揭示了人类思维和人工智能未来的工作方式。相关链接:https://waytoagi.feishu.cn/record/1sfvv03wMdV8t4AE14c5ViBiw
2024-12-01
你是一名课程开发专家,现在要以“AI技术在课程设计中的应用“为题展开培训,课程对象是企业内部培训师,时长1天。 课程要解决以下问题: 1.用AI工具做需求数据统计 2.用AI工具设计课程题目 3.用AI工具设计课程大纲。4.用AI工具制作PPT5.用AI工具画配图。 要求如下: 1.需要到三级大纲。 2、结构完整。 格式如下: 一、(一级大纲) 1、(二级大纲) 1.1(三级大纲)
一、AI 技术在课程设计中的应用 1、AI 工具与需求数据统计 1.1 Chat Excel 处理数据 1.2 让 AI 辅助编写苹果系统右键“快速操作”实现一键视频压缩、加速 1.5x 1.3 让 AI 辅助编写苹果“自动操作”实现批量统计学生作业字数 2、AI 工具与课程题目设计 3、AI 工具与课程大纲设计 4、AI 工具与 PPT 制作 5、AI 工具与配图绘制 二、生成式人工智能在教学中的应用 1、生成式人工智能的基本原理 1.1 文生文 1.2 文生图 1.3 文生音频 1.4 文生视频 2、生成式人工智能的最少必要知识 2.1 生成式 AI 原理 2.2 能力范围 2.3 性能参数 3、人工智能的学习方式 3.1 监督学习 3.2 无监督学习 3.3 强化学习 4、生成式人工智能的应用案例 4.1 根据消费者购买行为偏好分组 4.2 手机相册里的人脸识别分类 4.3 根据房屋特征面积预测价格 4.4 垃圾短信检测分类 4.5 汽车自动驾驶或路径规划导航 4.6 高级游戏人机对弈 5、AI 与教育的关系 5.1 AI 辅助教师的一天 5.2 各大模型之间的使用差异 5.3 教师使用 AI 小技巧
2024-10-28
你是一名课程开发专家,现在要以“AI技术在课程设计中的应用“为题展开培训,课程对象是企业内部培训师,时长1天。 课程要解决以下问题: 1.用AI工具做需求数据统计 2.用AI工具设计课程题目 3.用AI工具设计课程大纲。4.用AI工具制作PPT5.用AI工具画配图。 要求如下: 需要到三级大纲。 2、结构完整。 格式如下: 一级大纲) 二级大纲) (三级大纲)
以下是以“AI 技术在课程设计中的应用”为题,为企业内部培训师设计的一天培训课程大纲: 一级大纲) AI 技术在课程设计中的应用概述 二级大纲) AI 技术的基本概念与分类 三级大纲) 监督学习 三级大纲) 无监督学习 三级大纲) 强化学习 三级大纲) 生成式 AI 二级大纲) AI 技术的应用领域与案例 三级大纲) 根据消费者购买行为偏好分组 三级大纲) 手机相册里的人脸识别分类 三级大纲) 根据房屋特征面积预测价格 三级大纲) 垃圾短信检测分类 三级大纲) 汽车自动驾驶或路径规划导航 三级大纲) 高级游戏人机对弈 一级大纲) AI 工具在课程设计中的具体应用 二级大纲) 用 AI 工具做需求数据统计 三级大纲) Chat Excel 处理 Excel 数据 三级大纲) 让 AI 辅助编写苹果系统右键“快速操作”实现一键视频压缩、加速 1.5x 三级大纲) 让 AI 辅助编写苹果“自动操作”实现批量统计学生作业字数 二级大纲) 用 AI 工具设计课程题目 三级大纲) 基于数据分析生成题目 三级大纲) 利用自然语言处理优化题目表述 二级大纲) 用 AI 工具设计课程大纲 三级大纲) 依据需求分析生成大纲框架 三级大纲) 完善大纲细节与逻辑 二级大纲) 用 AI 工具制作 PPT 三级大纲) 内容排版与布局设计 三级大纲) 图表与图片的生成与插入 二级大纲) 用 AI 工具画配图 三级大纲) 选择合适的 AI 绘画工具 三级大纲) 明确配图需求与风格 一级大纲) 相关法规与注意事项 二级大纲) 国家互联网信息办公室等七部门的相关规定 三级大纲) 《生成式人工智能服务管理暂行办法》的解读 一级大纲) 总结与交流 二级大纲) 课程设计实践经验分享 二级大纲) 问题答疑与交流互动
2024-10-28
你是一名课程开发专家,现在要以“AI技术在课程设计中的应用“为题展开培训,课程对象是企业内部培训师,时长1天。 课程要解决以下问题: 1.用AI工具做需求数据统计 2.用AI工具设计课程题目 3.用AI工具设计课程大纲。4.用AI工具制作PPT5.用AI工具画配图。 要求如下: 需要到三级大纲。 2、结构完整。 格式如下: 一级大纲) 二级大纲) (三级大纲)
一级大纲) AI 技术在课程设计中的应用 二级大纲) 用 AI 工具做需求数据统计 利用 Chat Excel 处理 Excel 数据,如批量统计学生作业字数 二级大纲) 用 AI 工具设计课程题目 无 二级大纲) 用 AI 工具设计课程大纲 无 二级大纲) 用 AI 工具制作 PPT 无 二级大纲) 用 AI 工具画配图 无 二级大纲) 生成式人工智能的相关知识 生成式人工智能的基本原理、能力范围、性能参数 二级大纲) 人工智能的学习方式 监督学习、无监督学习、强化学习 二级大纲) AI 的应用场景 根据消费者购买行为偏好分组、手机相册里的人脸识别分类、根据房屋特征面积预测价格、垃圾短信检测分类、汽车自动驾驶或路径规划导航、高级游戏人机对弈
2024-10-28
Ai对于企业内部提效的产品有什么
以下是一些 AI 对于企业内部提效的产品: 1. AI 面试官相关产品: 用友大易 AI 面试产品:具有强大技术底座、高度场景贴合度、招聘全环节集成解决方案、先进防作弊技术及严密数据安全保障。能完成面试、初筛并自动发送面试邀约。 海纳 AI 面试:通过在线方式自动面试、评估,精准度高达 98%,面试效率比人工提升 5 倍以上,候选人到面率提升最高达 30%。 InterviewAI:在线平台提供面试职位相关问题及 AI 生成的推荐答案,候选人用麦克风回答,每个问题最多回答三次并收到评估、建议和得分。 2. 服务小型企业的生成式 AI 工具: Sameday 可以接电话并预约。 Truelark 可以处理短信、电子邮件和聊天。 Osome 可以管理后台办公室。 Durable 可以创建完整的专业网站。 通用内容创建工具如 Jasper、Copy 和 Writer 在小型和中型企业中已有显著用户基础。 针对特定类型企业的垂直化工具,如 Harvey 和 Spellbook 帮助法律团队自动化任务,Interior AI 用于房地产代理商虚拟布置房产,Zuma 帮助物业经理转化潜在客户。 使用这些产品时,企业需要考虑数据安全性和隐私保护问题。
2024-10-24