以下是一些主流的 Agent 开发方案,并从功能性、开发难易程度、适用场景进行对比:
Copilot 和 Agent 的区别:
搭建工作流驱动的 Agent 简单情况分为 3 个步骤:
以下是一些Agent构建平台:1.Coze:Coze是一个新一代的一站式AI Bot开发平台,适用于构建基于AI模型的各类问答Bot。它集成了丰富的插件工具,可以极大地拓展Bot的能力边界。2.Mircosoft的Copilot Studio:这个平台的主要功能包括外挂数据、定义流程、调用API和操作,以及将Copilot部署到各种渠道。3.文心智能体:这是百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。4.MindOS的Agent平台:允许用户定义Agent的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。5.斑头雁:这是一个2B基于企业知识库构建专属AI Agent的平台,适用于客服、营销、销售等多种场景。它提供了多种成熟模板,功能强大且开箱即用。6.钉钉AI超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能。这使得它在处理高频工作场景如销售、客服、行程安排等方面表现更加出色。以上信息提供了关于6个平台的概述,您可以根据自己的需求选择适合的平台进行进一步探索和应用。内容由AI大模型生成,请仔细甄别
目前大模型的产品类型,主要有两种:Copilot:翻译成副驾驶,助手。在帮助用户解决问题时起辅助作用,例如github copilot是帮助程序员编程的助手Agent:更像一个主驾驶,智能体,可以根据任务目标进行自主思考和行动,具有更强的独立性和执行复杂任务的能力我们从核心功能、流程决策、应用范围和开发重点几个方面对比Copilot和Agent:1.核心功能Copilot:更像是一个辅助驾驶员,更多地依赖于人类的指导和提示来完成任务。Copilot在处理任务时,通常是在人为设定的范围内操作,比如基于特定的提示生成答案。它的功能很大程度上局限于在给定框架内工作。Agent:像一个初级的主驾驶,具有更高的自主性和决策能力。能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。2.流程决策Copilot:在处理流程方面,Copilot往往依赖于Human确定的流程,这个流程是静态的。它的参与更多是在局部环节,而不是整个流程的设计和执行。Agent:Agent解决问题的流程是由AI自主确定的,这个流程是动态的。它不仅可以自行规划任务的各个步骤,还能够根据执行过程中的反馈动态调整流程。3.应用范围Copilot:主要用于处理一些简单的、特定的任务,更多是作为一个工具或者助手存在,需要人类的引导和监督。Agent:能够处理复杂的、大型的任务,并在LLM薄弱的阶段使用工具或者API等进行增强。4.开发重点Copilot:主要依赖于LLM的性能,Copilot的开发重点在于Prompt Engineering。Agent:同样依赖于LLM的性能,但Agent的开发重点在于Flow Engineering,也就是在假定LLM足够强大的基础上,把外围的流程和框架系统化,坐等一个强劲的LLM核心。
在上篇文章[Prompt工程|样例驱动的渐进式引导法:利用AI高效设计提示词,生成预期内容](https://mp.weixin.qq.com/s/3pFG_Tx7gcnnjOyqgM1P_w)中,我已经提到过Prompt工程的必备能力:通过逻辑思考,从知识经验(KnowHow)中抽象表达出关键方法与要求。这一理念同样适用在Coze中创建AI Agent。本文主要讨论工作流驱动的Agent,搭建工作流驱动的Agent,简单情况可分为3个步骤:1.规划:制定任务的关键方法总结任务目标与执行形式将任务分解为可管理的子任务,确立逻辑顺序和依赖关系设计每个子任务的执行方法2.实施:分步构建和测试Agent功能在Coze上搭建工作流框架,设定每个节点的逻辑关系详细配置子任务节点,并验证每个子任务的可用性3.完善:全面评估并优化Agent效果整体试运行Agent,识别功能和性能的卡点通过反复测试和迭代,优化至达到预期水平接下来,我们从制定关键方法与流程,梳理「结构化外文精读专家」Agent的任务目标。