Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

开源模型和闭源模型

Answer

开源模型和闭源模型的情况如下:

  • 专有模型(闭源模型):如 OpenAI、Google 等公司的模型,需访问其官方网站或平台(如 ChatGPT、Gemini AI Studio)使用。
  • 开源模型:
    • 可使用推理服务提供商(如 Together AI)在线体验和调用。
    • 可使用本地应用程序(如 LM Studio)在个人电脑上运行和部署较小的开源模型。
    • 例如 DeepSeek、Llama 等开源模型。
    • Qwen 2 开源,具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进性能,超越目前所有开源模型和国内闭源模型,在代码和数学性能等方面显著提高。
    • 金融量化领域的大模型正趋向闭源,几个巨头的核心模型如 OpenAI 最新一代的 GPT4、Google 的 Bard 以及未来的 Gemini 短时间内不会公开。Meta 的 LLaMA 目前开源,但未来可能改变。OpenAI 未来可能开源上一代模型。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI 大神Karpathy再发LLM入门介绍视频,入门必看!

专有模型(Proprietary Models)(03:18:38-03:19:23):对于OpenAI、Google等公司的专有模型,需要访问其官方网站或平台(如ChatGPT、Gemini AI Studio)使用。开源模型(Open-Weight Models)(03:19:23-03:21:16):对于DeepSeek、Llama等开源模型,可以使用以下方式:Inference Provider(Together AI)(03:19:23-03:21:16):使用Together AI等推理服务提供商,在线体验和调用各种开源模型。LM Studio(03:20:36-03:21:16):使用LM Studio等本地应用程序,在个人电脑上运行和部署较小的开源模型。[heading3]总结:ChatGPT的本质与未来展望[content]ChatGPT的本质(03:21:46-03:25:18):ChatGPT本质上是OpenAI数据标注员的神经网络模拟器,它模仿人类标注员在遵循OpenAI标注指南的情况下,对各种提示词的理想助手式回应。LLM的局限性(03:25:18-03:26:49):LLM并非完美,存在幻觉、瑞士奶酪式能力缺陷等问题。用户应谨慎使用,并进行人工检查和验证。LLM的优势(03:26:49-03:30:25):LLM是强大的工具,能够显著加速工作效率,并在各领域创造巨大价值。用户应将其视为工具箱中的工具,用于启发灵感、撰写初稿等,并始终对最终产品负责。LLM的未来(03:30:25-03:31:12):LLM的未来发展令人兴奋,多模态、Agent智能体、持续学习等趋势值得期待。虽然LLM仍处于早期发展阶段,但其潜力无限,未来可期。整理和翻译不易,可以的话希望给个三连,谢谢🙏

Qwen 2开源了 模型性能超越目前所有开源模型和国内闭源模型

5种尺寸的预训练和指令调整模型,包括Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B和Qwen2-72B;(Qwen2-57B-A14B这个模型可以重点看看除英语和中文外,还接受过另外27种语言的数据训练;在大量基准评估中表现出最先进的性能;在大量基准评估中获得SOTA性能。代码和数学性能显著提高,全面超越llama3增大了上下文长度支持,最高达到128K tokens(Qwen2-72B-Instruct)。HF最新榜第一72B和7B可处理128k上下文57B-A14B可处理64k上下文0.5B和1.5B可处理32k上下文相比2月推出的通义千问Qwen1.5,Qwen2实现了整体性能的代际飞跃。在权威模型测评榜单OpenCompass中,此前开源的Qwen1.5-110B已领先于文心4.0等一众中国闭源模型。刚刚开源的Qwen2-72B,整体性能相比Qwen1.5-110B又取得了大幅提升。(图说:在上海人工智能实验室推出的OpenCompass大模型测评榜单上,此前开源的Qwen1.5-110B已领先于文心4.0等一众中国闭源模型)通义千问Qwen2系列模型大幅提升了代码、数学、推理、指令遵循、多语言理解等能力。在MMLU、GPQA、HumanEval、GSM8K、BBH、MT-Bench、Arena Hard、LiveCodeBench等国际权威测评中,Qwen2-72B获十几项世界冠军,超过美国的Llama3。(图说:Qwen2-72B在十多个权威测评中获得冠军,超过美国的Llama3-70B模型)

预训练大模型与金融量化

这个也是感触最深刻的点。金融量化是一个非常闭源的系统,各家的交易系统是最大的秘密武器,公开的部分非常少。现在大模型正在往这个方向发展,几个巨头的核心模型都开始走向闭源,最为各自最核心的秘密。OpenAI最新一代的GPT4,Google的Bard以及未来的Gemini短时间内都不会公开。这里肯定有人说Meta的LLaMA开源了啊,可以回到上一篇对于开源模型的思考。从预训练层面来看,Meta和OpenAI的差距极大,差不多差了一个代际吧。如果未来Meta发现大模型可以赚钱,也可能不会继续开源了。OpenAI未来可能也会开源上一代模型,有点像量化公司在用了更好的交易系统后把之前的交易系统公开一样。[【LLM系列】开源模型和闭源模型之争--写在LLaMA2开源之后](https://zhuanlan.zhihu.com/p/644892671)

Others are asking
大模型讲解
大模型是指输入大量语料,使计算机获得类似人类“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程可以用“上学参加工作”来类比: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 3. 找老师:选择合适算法让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,会被数字化形成词汇表,便于计算机处理。为让计算机理解 Token 之间的联系,还需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”在于用于表达 token 之间关系的参数多,主要是模型中的权重(weight)与偏置(bias)。 从整体分层的角度来看,大模型整体架构分为以下几层: 1. 基础层:为大模型提供硬件支撑、数据支持,如 A100、数据服务器等。 2. 数据层:包括静态的知识库和动态的三方数据集。 3. 模型层:有 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)或多模态模型(如文生图、图生图等模型,训练数据与 llm 不同,用图文或声音等多模态数据集)。 4. 平台层:如大模型的评测体系、langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:即应用层,是用户实际看到的地方。
2025-02-20
生成3d模型可以让模型动起来吗?
生成 3D 模型后是可以让模型动起来的。例如,通过以下工具和流程可以实现: 工具链:Midjourney(生成等距图像)→Trellis(图像转 3D 模型)→Browser Lab(浏览器内 3D 编辑器)。 步骤: 使用 Midjourney 生成等距 3D 场景,提示词示例:3D isometric bedroom with a bed and desk。(DALLE 3 也可测试) 用 Trellis 工具将图像转为 3D 模型(支持 Tripo 3D 等其他工具)。工具地址: 下载生成的 3D 模型(GLB 文件或高斯分布文件),然后导入 Browser Lab 编辑器中进一步编辑。编辑器地址: 结合可灵 AI、Hailuo AI、Runway 等工具可让场景中的人物动起来。 对于文物雕塑上色,可使用 runway 让固有想法的物体变得动态,runway gen3 的 V2V 可以让物体重新建模、重新上色,再把背景上个色,传到剪映,加上 BGM。 先上传图片,运用提示词,只要让物体动起来就行,一次可能不成功,可以多次抽卡(分够的话)。 生成好的视频的左下方,点击“Reuse”,再点击上方出现的“Video to Video”,视频就会跳转到我们的工作台。 再在下方输入提示词“3D modeling with vibrant colors”等待生成。 再重复上面一个步骤,把提示词换成“Changing the background to the universe,the body emits light”。 最后导入剪映,按照自己喜欢的风格,剪成一个小短片。 另外,可以用即梦 S2.0(或其他可以动效的工具)出动态视频,在剪映提前转成 9:16 或 16:9 的大小,否则 runway 会裁剪尺寸。
2025-02-20
你用的是什么ai模型
以下是关于所使用的 AI 模型的相关信息: 我使用的是 GPT4,其他模型的效果不太好。如果您使用 GPT4 总结的内容质量不行,可以点击“重试”按钮让其重新总结。 默认情况下,Cursor Chat 将 OpenAI 的 GPT4(具体为 GPT4Turbo 实例)用于其 AI 模型,您可以通过选择喜欢的 AI 模型,且为 Chat 选择的模型会保存供未来使用。 有实例中使用的是阿里千问模型。
2025-02-20
你是基于什么模型?
我调用的是抖音集团的云雀大模型。 Gemini 模型是基于 Transformer 解码器构建的,对模型结构进行了优化,主要为大规模稳定训练及在 Google 的 TPU 上推理优化。它能适应与各种音频和视觉输入交织的文本输入,并生成文本和图像输出,经过训练支持 32k 的上下文长度,采用高效的注意机制。 麦橘超然 MajicFlus 是一款基于 flux.dev 微调融合的模型,专注于高质量人像生成,尤其擅长亚洲女性,有卓越人像生成能力、广泛适用性、简单易用等特点。多位社区成员基于模型制作的 LoRA 一同发布,扩展了功能与表现力,但它对社区大部分的 lora 不完美兼容,需降低权重至 0.5 以下。
2025-02-20
模型微调是怎么实现的
模型微调是一种迁移学习技术,常用于深度学习中。其基本思路是先有一个在大量数据上预训练的模型,已学会一些基本模式和结构,然后在特定任务数据上继续训练以适应新任务。 以下是关于模型微调的具体实现步骤: 1. 准备和上传训练数据。 2. 训练新的微调模型: LoRA 微调: 脚本见:。 具体实现代码见。 单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调: 脚本见:。 具体实现代码见。 3. 加载微调模型: LoRA 微调:基于 LoRA 微调的模型参数见基于 Llama2 的中文微调模型,LoRA 参数需和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数。 全量参数微调:调用方式同模型调用代码示例,只需修改其中的模型名称或保存路径。 微调的优点包括: 1. 比即时设计更高质量的结果。 2. 能够训练比提示中更多的例子。 3. 由于更短的提示而节省了 Token。 4. 更低的延迟请求。 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。 以下是两个帮助理解微调概念的例子: 1. 情感分类:先使用大量语料库预训练模型,使其学会基本语法和单词语义,再收集标注过的电影评论(积极或消极)继续训练模型,使其学会判断评论情感。 2. 图像分类:先使用大量图片(如 ImageNet 数据集)预训练模型,使其学会识别图片中的基本形状和纹理,再收集标注过的猫和狗的图片继续训练模型,使其学会区分猫和狗。
2025-02-19
汇总一下现在的大语言模型都有哪些,国外和国内的模型分别列出来
以下是国内外的大语言模型汇总: 国外大语言模型: GPT4(OpenAI):目前最先进的自然语言生成模型,可用于回答问题、撰写文章等。 Gemini Ultra(Google):多模态人工智能模型,采用神经网络架构,对标 GPT4,可用于回答问题、生成代码、处理文本等。 Claude 3 Opus(Anthropic):多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能;实现了接近完美的召回率。 国内大语言模型: 文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 讯飞星火:目前体验效果较好。 悟道・天鹰(北京智源人工智能研究院):首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。 清华 ChatGLM 。 此外,国内还有通用模型如通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。
2025-02-19
闭源模型分类和典型案例
以下是一些常见的闭源模型分类和典型案例: 通用大模型:字节云雀大模型。 行业大模型:如蚂蚁金融大模型等。 在 2023 年,还有众多闭源模型的发布和升级,例如: 文心一言:经历了从 1.0 到 V3.5 的版本升级。 星火:科大讯飞发布的星火 1.0 及后续的升级版本。 此外,Qwen 系列模型也有出色表现,Qwen2 在性能上超越了目前所有开源模型和国内闭源模型,如文心 4.0 等。Qwen2 具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进的性能,提升了代码、数学、推理等多方面的能力,并在多个国际权威测评中获得冠军。
2025-02-14
开源模型与闭源模型调用
以下是关于开源模型与闭源模型调用的相关信息: 1. 通义千问自 2023 年 8 月起密集推出 Qwen、Qwen1.5、Qwen2 三代开源模型,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。同时,Qwen272binstruct 模型已上线中国大语言模型评测竞技场 Compass Arena,所有人都可登录体验其性能或进行对比测评,测评地址为。Compass Arena 集齐了国内主流的 20 多款大模型,用户可在平台选择大模型的两两“对战”。 2. 部分声称性能卓越的中国大模型被揭露为“套壳”产品,如李开复创办的“零一万物”被国外开发者质疑为“套壳”产品,其团队承认在训练过程中沿用了开源架构,但坚称发布的模型从零开始训练并进行了大量原创优化和突破。此外,字节跳动被曝出在其秘密研发的大模型项目中调用了 OpenAI 的 API,并使用 ChatGPT 的输出数据来训练自己的模型,此行为触犯了 OpenAI 使用协议中禁止的条款。 3. 在 LLM 应用程序中,OpenAI 已成为语言模型领域领导者,开发者通常使用 OpenAI API 启动新的 LLM 应用,如 gpt4 或 gpt432k 模型。项目投入生产并规模化时,有更多选择,如切换到 gpt3.5turbo,其比 GPT4 便宜约 50 倍且速度更快;与其他专有供应商如 Anthropic 的 Claude 模型进行实验;将一些请求分流到开源模型,这通常与微调开源基础模型结合更有意义。开源模型有多种推理选项,包括 Hugging Face 和 Replicate 的简单 API 接口、主要云提供商的原始计算资源等。
2025-01-06
开源模型与闭源模型调用
开源模型与闭源模型调用相关信息如下: 通义千问自 2023 年 8 月起密集推出 Qwen、Qwen1.5、Qwen2 三代开源模型,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。同时,Qwen272binstruct 模型已上线中国大语言模型评测竞技场 Compass Arena,所有人都可登录体验其性能或进行对比测评,测评地址为:https://opencompass.org.cn/arena 。Compass Arena 是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的 20 多款大模型。 部分声称性能卓越的中国大模型被揭露为“套壳”产品,如李开复创办的“零一万物”被国外开发者质疑为“套壳”产品,其团队承认在训练过程中沿用了开源架构。此外,字节跳动被曝出在其秘密研发的大模型项目中调用了 OpenAI 的 API,并使用 ChatGPT 的输出数据来训练自己的模型。 在 LLM 应用程序中,开发者通常使用 OpenAI API 启动新的 LLM 应用,如 gpt4 或 gpt432k 模型。当项目投入生产并规模化时,常见的选择包括切换到更便宜且速度更快的 gpt3.5turbo,与其他专有供应商(如 Anthropic 的 Claude 模型)进行实验,将一些请求分流到开源模型等。开源模型有多种推理选项,包括 Hugging Face 和 Replicate 的简单 API 接口、主要云提供商的原始计算资源等。
2025-01-06
开源模型与闭源模型调用
开源模型与闭源模型调用相关信息如下: 通义千问自 2023 年 8 月起密集推出 Qwen、Qwen1.5、Qwen2 三代开源模型,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。同时,Qwen272binstruct 模型已经上线中国大语言模型评测竞技场 Compass Arena,所有人都可以登录体验 Qwen2 的性能,或者选择 Qwen2 模型与其他大模型进行对比测评。测评地址:https://opencompass.org.cn/arena 。Compass Arena 是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的 20 多款大模型。 部分声称性能卓越的中国大模型被揭露为“套壳”产品,如李开复创办的“零一万物”被国外开发者质疑为“套壳”产品,其团队承认在训练过程中沿用了开源架构,但坚称发布的模型都是从零开始训练的,并进行了大量原创性的优化和突破。此外,字节跳动被曝出在其秘密研发的大模型项目中调用了 OpenAI 的 API,并使用 ChatGPT 的输出数据来训练自己的模型,这触犯了 OpenAI 使用协议中明确禁止的条款。 在 LLM 应用程序中,OpenAI 已成为语言模型领域的领导者,开发者通常使用 OpenAI API 启动新的 LLM 应用,如 gpt4 或 gpt432k 模型。当项目投入生产并开始规模化时,常见的选择包括切换到 gpt3.5turbo、与其他专有供应商(如 Anthropic 的 Claude 模型)进行实验、将一些请求分流到开源模型等。开源模型可以使用多种推理选项,包括 Hugging Face 和 Replicate 的简单 API 接口、来自主要云提供商的原始计算资源等。
2025-01-06
对于大语言模型使用的未来趋势,是闭源云端还是开源本地部署,作为普通用户是否有必要了解本地部署知识,并且是否有必要自己搭建agent以及rag?
大语言模型的未来趋势在闭源云端和开源本地部署方面存在多种可能性。 对于开源本地部署,以下是一些相关信息: Ollama 是一个方便用户在本地运行和管理大型语言模型的框架,具有以下特点: 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 提供模型库,用户可从中下载不同模型,以满足不同需求和硬件条件,模型库可通过 https://ollama.com/library 查找。 支持用户自定义模型,例如修改温度参数调整创造性和连贯性,或设置特定系统消息。 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 安装可访问 https://ollama.com/download/ 。 可以通过一些教程学习如何本地部署大模型以及搭建个人知识库,例如了解如何使用 Ollama 一键部署本地大模型、通过搭建本地聊天工具了解 ChatGPT 信息流转、RAG 的概念及核心技术、通过 AnythingLLM 搭建完全本地化的数据库等。 同时,采用开源或国内企业提供的 13B 级模型本地部署在内部系统中,虽需投入算力,但有其价值。智能客服的大量优质大客户可能会选择自己搭建智能客服平台,并结合大模型企业提供的技术服务,基于大模型搭建 LangChain、RAG 框架,实现 RPA 自动流程。 对于普通用户是否有必要了解本地部署知识以及是否有必要自己搭建 agent 以及 rag,这取决于个人需求和兴趣。如果您希望更深入了解大模型的工作原理和运行机制,或者有特定的个性化需求,那么了解和尝试本地部署可能是有意义的。但如果只是一般的使用需求,可能无需深入了解和自行搭建。
2024-09-03
做chatbi有什么开源项目可以参考
以下是一些可参考的做 chatbot 的开源项目: Inhai:Agentic Workflow:其中介绍了大模型利用「网页搜索」工具的典型例子,还包括 Agent 自行规划任务执行的工作流路径以及多 Agent 协作的内容。 ChatDev:吴恩达通过此开源项目举例,可让大语言模型扮演不同角色相互协作开发应用或复杂程序。 ChatMLX:多语言支持,兼容多种模型,具有高性能与隐私保障,适用于注重隐私的对话应用开发者。链接:https://github.com/maiqingqiang/ChatMLX
2025-02-17
开源文字转语音
以下是为您提供的开源文字转语音相关信息: WhisperSpeech:通过对 OpenAI Whisper 模型的反向工程实现,生成发音准确、自然的语音输出。 相关链接:https://github.com/collabora/WhisperSpeech 、https://x.com/xiaohuggg/status/1748572050271420663?s=20 StyleTTS 2:一个开源的媲美 Elevenlabs 的文本转语音工具,可结合文本角色内容和场景音快速生成有声小说。 主要特点:多样化的语音风格、更自然的语音、高效生成、精确的语音控制、接近真人的语音合成、适应不同说话者。 工作原理:利用风格扩散和与大型语音语言模型(SLM)的对抗性训练来实现接近人类水平的 TTS 合成,通过扩散模型将风格建模为一个潜在的随机变量,以生成最适合文本的风格,而不需要参考语音,实现了高效的潜在扩散,同时受益于扩散模型提供的多样化语音合成。 相关链接:暂无
2025-02-15
采用GPL许可证的AI开源模型有哪些
以下是一些采用 GPL 许可证的智谱·AI 开源模型: 其他模型: WebGLM10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统,旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。代码链接: WebGLM2B:代码链接无,模型下载: MathGLM2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%,其结果显著超越最强大语言模型 GPT4 在相同测试数据上 18.84%的准确率。代码链接: MathGLM500M:代码链接无,模型下载: MathGLM100M:代码链接无,模型下载: MathGLM10M:代码链接无,模型下载: MathGLMLarge:采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLMlarge 和 GLM10B。此外,还使用 ChatGLM6B 和 ChatGLM26B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。模型下载: 多模态模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型。CogAgent18B 拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。代码链接:、始智社区 CogVLM17B:强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM 可以在不牺牲任何 NLP 任务性能的情况下,实现视觉语言特征的深度融合。我们训练的 CogVLM17B 是目前多模态权威学术榜单上综合成绩第一的模型,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。代码链接无,模型下载: Visualglm6B:VisualGLM6B 是一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 Chat 模型: ChatGLM6Bint4:ChatGLM6B 的 Int4 版本。最低只需 6GB 显存即可部署,最低只需 7GB 显存即可启动微调(,模型权重下载链接:魔搭社区、始智社区、启智社区 ChatGLM6Bint8:ChatGLM6B 的 Int8 版本。上下文 token 数:2K,代码链接:,模型权重下载链接:魔搭社区、始智社区、启智社区 AgentLM7B:1. 提出了一种 AgentTuning 的方法;2. 开源了包含 1866 个高质量交互、6 个多样化的真实场景任务的 Agent 数据集 AgentInstruct;3. 基于上述方法和数据集,利用 Llama2 微调了具备超强 Agent 能力的 AgentLM7B、AgentLM13B、AgentLM70B。上下文 token 数:4K,代码链接: AgentLM13B:上下文 token 数:4K,代码链接无,模型权重下载链接: AgentLM70B:上下文 token 数:8K,代码链接无,模型权重下载链接:
2025-02-14
开源模型的MIT模式、Apache、GPL、BSD模式的模型案例有哪些?
目前开源模型的 MIT 模式、Apache、GPL、BSD 模式的具体案例众多且不断更新。MIT 模式的开源模型如 TensorFlow Lite;Apache 模式的有 MXNet;GPL 模式的像 Gnuplot;BSD 模式的例如 OpenCV 等。但请注意,这只是其中的一部分,实际情况可能会有所变化。
2025-02-14
开源模型的MIT模式、Apache、GPL、BSD模式的定义和区别
MIT 模式:这是一种相对宽松的开源许可模式。允许使用者对软件进行修改、再发布,并且几乎没有限制,只要求在再发布时保留原版权声明和许可声明。 Apache 模式:提供了较为宽松的使用条件,允许修改和再发布代码,但要求在修改后的文件中明确注明修改信息。同时,还包含一些专利相关的条款。 GPL 模式:具有较强的传染性和约束性。如果基于 GPL 许可的代码进行修改和再发布,修改后的代码也必须以 GPL 许可发布,以保证代码的开源性和可共享性。 BSD 模式:也是一种较为宽松的许可模式,允许使用者自由地修改和再发布代码,通常只要求保留原版权声明。 总的来说,这些开源许可模式在对使用者的限制和要求上有所不同,您在选择使用开源模型时,需要根据具体需求和项目情况来确定适合的许可模式。
2025-02-14
开源模型除了MIT模式外,还有哪些模式?
开源模型常见的许可模式除了 MIT 模式外,还有以下几种: 1. Apache 许可模式:允许在商业和非商业项目中自由使用、修改和分发代码,但需要保留版权声明和许可声明。 2. GPL(GNU General Public License)许可模式:具有较强的传染性,要求基于该代码的衍生作品也必须以 GPL 许可发布。 3. BSD(Berkeley Software Distribution)许可模式:允许自由使用和修改代码,并且对衍生作品的许可要求相对宽松。 需要注意的是,不同的开源许可模式在使用条件、义务和限制方面可能存在差异,在选择和使用开源模型时,应仔细阅读和理解相关的许可协议。
2025-02-14