Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有哪些主流的大模型?用英文回答

Answer

The mainstream large models include:

  • OpenAI: GPT-3.5 and GPT-4. GPT-3.5 initiated the current AI boom in November, and GPT-4 was first released in spring with more powerful functions. A new variant uses plugins to connect to the internet and other applications. Microsoft's Bing uses a mixture of GPT-4 and GPT-3.5 and is often the first to introduce new features in the GPT-4 family.
  • Google: Bard, driven by various base models, recently a model named PaLM 2.
  • Anthropic: Claude 2, which is notable for having a very large context window.
Content generated by AI large model, please carefully verify (powered by aily)

References

走入AI的世界

首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行😌Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)

如何使用 AI 来做事:一份带有观点的指南

前四个(包括Bing)都是OpenAI系统。今天有两大主要的OpenAI AI:3.5和4。3.5模型在11月启动了当前的AI热潮,4.0模型在春季首次发布,功能更强大。一个新的变种使用插件连接到互联网和其他应用程序。有很多插件,其中大部分不是很有用,但你应该随需要自由探索它们。Code Interpreter是一个非常强大的ChatGPT版本,可以运行Python程序。如果您从未为OpenAI付费,那么您只能使用3.5。除了插件变种和一个暂时停用的带有浏览功能的GPT-4版本之外,这些模型都没有连接到互联网。微软的Bing使用4和3.5的混合,通常是GPT-4家族中首个推出新功能的模型。例如,它既可以创建也可以查看图像,而且它可以在网页浏览器中阅读文档。它连接到互联网。[Bing使用有点奇怪,但功能强大。](https://oneusefulthing.substack.com/p/power-and-weirdness-how-to-use-bing)谷歌一直在测试自己的人工智能供消费者使用,他们称之为Bard,但是由各种基础模型驱动,最近是一个名叫PaLM 2的模型。对于开发出LLM技术的公司来说,他们非常令人失望,尽管昨天宣布的改进表明他们仍在研究基础技术,所以有希望。它已经获得了运行有限代码和解释图像的能力,但我目前通常会避免它。最后一家公司Anthropic发布了Claude 2。Claude最值得注意的是有一个非常大的上下文窗口-本质上是LLM的记忆。Claude几乎可以保存一整本书或许多PDF。与其他大型语言模型相比,它不太可能恶意行事,这意味着,在实际上,它倾向于对你做一些事情进行责骂。现在,来看看一些用途:

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
怎样利用AI进行广州小学语文数学英文各科的学习辅导,请给出具体可操作方案,及安排一个学期的日程。
目前没有关于利用 AI 进行广州小学语文、数学、英语各科学习辅导的具体可操作方案及学期日程的相关内容。但一般来说,可以考虑以下步骤: 首先,确定学习目标和重点。针对每门学科,明确本学期需要掌握的知识点和技能。 然后,选择适合的 AI 学习工具。例如,有一些在线学习平台或教育类的 APP ,它们可能提供课程讲解、练习题、智能辅导等功能。 在日程安排方面,可以每周安排一定的时间使用 AI 工具进行学习。比如,周一至周五每天晚上安排 12 小时,分别用于语文、数学、英语的学习。周末可以进行复习和总结。 具体到每天,可以先通过 AI 工具进行知识点的学习,然后做相关的练习题进行巩固,最后利用工具的智能辅导功能解决疑难问题。 需要注意的是,AI 只是辅助工具,不能完全替代教师和家长的指导与监督。
2025-02-17
AGI的英文全称
AGI 的英文全称是 Artificial General Intelligence,通常指一种能够在许多领域内以人类水平应对日益复杂的问题的系统。部分人认为大语言模型具有 AGI 潜力,但也有人反对。在公众传播中,AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容;LLM 指 NLP 领域的大语言模型,如 ChatGPT;GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。公众传播一般会混用上述名词,但底层是 Transformer 结构。
2025-02-16
什么工具能生成动物对口型唱英文歌的视频
以下是一些能够生成动物对口型唱英文歌视频的工具及相关信息: 1. 可灵: 创作思路:文物唱歌,配上精确口型会有趣。可灵上线了对口型功能,基于可灵制作的视频对口型,比图片对口型更自由,可先让文物动起来,再对口型唱歌等。 用到的工具:可灵、剪映。 选择原因:可灵是目前在线 AI 视频工具里对口型功能简单效果又强。 简易步骤: 将原图转为 5 秒的视频,并延长一次达到 10s,只做镜头推进效果。 从想使用的歌里切出 10s 片段。 使用延长到 10s 的视频,点击对口型,通过「上传本地配音」上传切出的片段。 2. HeyGen: 创作思路:简单且支持的时间足够长。如果想带上更复杂的肢体动作,可以使用可灵。 步骤:在 HeyGen 里上传图片,作为 Photo Avatar,点击上传音频,上传自己想使用的歌曲/片段即可。 3. 即梦 AI: 功能介绍:「对口型」是即梦 AI「视频生成」中的二次编辑功能,现支持中文、英文配音。目前主要针对写实/偏真实风格化人物的口型及配音生成,为用户的创作提供更多视听信息传达的能力。可上传包含完整人物面容的图片,进行视频生成,待视频生成完成后,点击预览视频下的「对口型」按钮,输入台词并选择音色,或上传配音文件进行对口型效果生成。目前支持语言:中文(全部音色),英文(推荐「超拟真」内的音色)。 技巧:上传写实/近写实的人物单人图片,目前不支持多人物图片对口型;输入 prompt,选择参数,点击生成视频,尽量确保人物无形变等扭曲效果;确保人物生成的情绪与希望匹配的口型内容匹配;在生成的视频下方,点击【对口型】;输入或上传需要配音的内容,注意视频生成时长和配音试听时长尽量对齐,点击生成。先对口型,再超分补帧。
2025-02-15
有哪些主流的大模型?介绍一下每个大模型的具体信息,用英文回答
Some of the mainstream large models and their specific information are as follows: BERT: It is an encoderonly model commonly used in natural language understanding tasks such as classification and sentiment analysis. T5: An encoderdecoder model from Google, used for tasks like translation and summarization. GPT3: It has a large number of parameters and can complete tasks based on user input descriptions or examples. ChatGPT: Users can complete tasks by having conversations with it like with a human. The "large" in large models refers to the large amount of pretraining data, often from the Internet, including papers, code, and public web pages, usually at the terabyte level. Also, they have a large number of parameters. For example, GPT3 has 170 billion parameters.
2025-02-13
有没有让中文视频音频变成英文的
以下是将中文视频音频变成英文的方法: 1. 先将中文台词通过谷歌翻译成英文,然后找专业人士进行英文字幕校对与台词润色,形成配音稿。 2. 可以使用 11labs(官网:https://elevenlabs.io/)进行对白制作,其英文效果较好,但存在声音没有情绪和情感的问题。无法使用语速、情绪调节等控件,只能通过标点符号去改变语音效果,如使用逗号、句号、省略号、感叹号等,有时会叠加不同标点符号来试语音效果。同一句台词可能需要生成十几二十段音频,才能找到合适自然的声音。 3. 国内可以使用出门问问的魔音工坊,它可以使用情绪调节控件。 4. 进行剪辑,对于 13 分钟的短片,剪映比较方便;更长篇幅或追求更好效果,可能需要使用 PR/FCP/达芬奇等传统剪辑软件。
2025-02-11
有什么工具可以把英文音频转为中文音频?
以下工具可以将英文音频转为中文音频:Whisper。它和 llama 类似,采用 make 命令编译,之后去 ggerganov/whisper.cpp下载量化好的模型,然后转换音频即可。目前 Whisper 只接受 wav 格式,可以用 ffmpeg 进行转化。输出的 srt 文件如下所示: |Size|Parameters|Englishonly model|Multilingual model|Required VRAM|Relative speed| ||||||| |tiny|39 M|tiny.en|tiny|~1 GB|~32x| |base|74 M|base.en|base|~1 GB|~16x| |small|244 M|small.en|small|~2 GB|~6x| |medium|769 M|medium.en|medium|~5 GB|~2x| |large|1550 M|N/A|large|~10 GB|1x| 一般来说,对于英文音频,small 模型通常就足够了,但如果是中文音频,最好使用最大的模型。
2025-02-02
有哪些主流的大模型?
目前主流的大模型主要包括以下几类: 1. 大型语言模型:专注于处理和生成文本信息,例如 GPT3 等。通过分析大量的文本数据来理解和生成自然语言,拥有海量的参数和训练数据。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。 3. 基于 Transformer 架构的模型: Encoderonly 模型:通常适用于自然语言理解任务,例如分类和情感分析,最知名的代表模型是 BERT。 Encoderdecoder 模型:同时结合了 Transformer 架构的 encoder 和 decoder 来理解和生成内容,例如翻译和摘要,代表是 Google 的 T5。 Decoderonly 模型:更擅长自然语言生成任务,典型使用包括故事写作和博客生成,如 ChatGPT 等。 大模型的特点包括: 1. 预训练数据量大,往往来自于互联网上的论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 2. 参数众多,如 GPT3 拥有 1750 亿参数。
2025-02-13
开发agent有哪些主流的方案,并从功能性,开发难易程度,适用场景进行对比
以下是一些主流的 Agent 开发方案,并从功能性、开发难易程度、适用场景进行对比: 1. Coze: 功能性:集成丰富插件工具,拓展 Bot 能力边界。 开发难易程度:相对较易。 适用场景:适用于构建基于 AI 模型的各类问答 Bot。 2. Microsoft 的 Copilot Studio: 功能性:外挂数据、定义流程、调用 API 和操作,部署到各种渠道。 开发难易程度:适中。 适用场景:适用于多种场景。 3. 文心智能体: 功能性:基于文心大模型,支持开发者打造产品能力。 开发难易程度:适中。 适用场景:多种场景。 4. MindOS 的 Agent 平台: 功能性:允许用户定义 Agent 的个性、动机、知识,访问第三方数据和服务或执行工作流。 开发难易程度:适中。 适用场景:多种场景。 5. 斑头雁: 功能性:基于企业知识库构建专属 AI Agent,提供多种成熟模板,功能强大且开箱即用。 开发难易程度:相对较易。 适用场景:客服、营销、销售等。 6. 钉钉 AI 超级助理: 功能性:依托钉钉优势,提供环境感知和记忆功能,在高频工作场景表现出色。 开发难易程度:适中。 适用场景:销售、客服、行程安排等。 Copilot 和 Agent 的区别: 1. 核心功能: Copilot:辅助驾驶员,更多依赖人类指导和提示,功能局限于给定框架。 Agent:主驾驶,具有更高自主性和决策能力,能自主规划和调整处理流程。 2. 流程决策: Copilot:依赖人类确定的静态流程,参与局部环节。 Agent:自主确定动态流程,能自行规划和调整任务步骤。 3. 应用范围: Copilot:主要处理简单、特定任务,作为工具或助手。 Agent:能处理复杂、大型任务,在 LLM 薄弱阶段使用工具或 API 增强。 4. 开发重点: Copilot:依赖 LLM 性能,重点在于 Prompt Engineering。 Agent:依赖 LLM 性能,重点在于 Flow Engineering,把外围流程和框架系统化。 搭建工作流驱动的 Agent 简单情况分为 3 个步骤: 1. 规划: 制定任务关键方法。 总结任务目标与执行形式。 分解任务为子任务,确立逻辑顺序和依赖关系。 设计子任务执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定节点逻辑关系。 详细配置子任务节点,验证可用性。 3. 完善: 整体试运行 Agent,识别卡点。 反复测试和迭代,优化至达到预期水平。
2025-02-08
什么ai好用,目前主流ai有什么特点
目前主流的 AI 工具各有特点和用途: 邮件写作方面: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和语言,网站是 https://www.grammarly.com/ 。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁,重点突出,网站是 http://www.hemingwayapp.com/ 。 ProWritingAid:全面的语法和风格检查,提供详细的写作报告和建议,功能强大,支持多种平台和集成,网站是 https://prowritingaid.com/ 。 Writesonic:基于 AI 生成各种类型的文本,包括电子邮件、博客文章、广告文案等,生成速度快,网站是 https://writesonic.com/ 。 Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助提高邮件打开率和回复率。 大语言模型方面: OpenAI 系统:包括 3.5 和 4.0 版本,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型功能更强大。新的变种使用插件连接到互联网和其他应用程序,Code Interpreter 是一个强大的 ChatGPT 版本,可以运行 Python 程序。未为 OpenAI 付费只能使用 3.5 版本。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,连接到互联网。 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是 PaLM 2 模型。 Anthropic:发布了 Claude 2,其有一个非常大的上下文窗口,不太可能恶意行事。 对于刚入坑 AI 的学习路径: 第一步是带着好奇心去尝试,记住“生成”两个字。现在大部分人说的 AI 本质上是“生成式人工智能”Generative AI。可以随便找一个国产 AI 聊聊,比如小学奥数题、写演讲稿、对 996 的看法等,看看其擅长和不擅长的地方,有没有能帮助到自己的地方,哪些地方做得不够好。如果条件允许,也可以直接使用 ChatGPT 或者 Claude 处理复杂任务。
2025-01-24
目前在各个应用领域,主流的AI工具有哪些,请分别介绍.
以下是一些主流的 AI 工具及其应用领域的介绍: 1. AI 菜谱口味调整工具:如“下厨房口味调整功能”,使用自然语言处理和数据分析技术,市场规模达数亿美元。它能根据用户反馈调整菜谱口味,例如增加甜度、减少辣味等。 2. AI 语言学习纠错平台:像“英语流利说纠错功能”,运用自然语言处理和机器学习,市场规模达数十亿美元。可帮助语言学习者纠正发音、语法等错误,并提供纠正建议和练习。 3. AI 电影剧情分析系统:例如“豆瓣电影剧情分析工具”,借助数据分析和自然语言处理,市场规模达数亿美元。能够分析电影剧情,为用户提供深度解读。 4. AI 办公文件分类系统:比如“腾讯文档分类功能”,采用数据分析和机器学习,市场规模达数亿美元。可自动分类办公文件,方便管理。 5. AI 美容护肤方案定制平台:“美丽修行定制方案功能”,利用图像识别和数据分析,市场规模达数亿美元。能根据用户肤质定制护肤方案,包括产品推荐和使用顺序。 6. AI 游戏道具推荐系统:在一些游戏中的“游戏内商城推荐功能”,通过数据分析和机器学习,市场规模达数亿美元。可根据玩家需求推荐游戏道具,如武器、装备等。 7. AI 天气预报分时服务:“彩云天气分时预报”,运用数据分析和机器学习,市场规模达数亿美元。提供精准的分时天气预报,帮助用户更好地安排出行和活动。 8. AI 医疗病历分析平台:“医渡云病历分析系统”,借助数据分析和自然语言处理,市场规模达数十亿美元。可分析医疗病历,为医生提供辅助诊断建议。 9. AI 会议发言总结工具:“讯飞听见会议总结功能”,使用自然语言处理和机器学习,市场规模达数亿美元。能够自动总结会议发言内容,方便回顾和整理。 10. AI 书法作品临摹辅助工具:“书法临摹软件”,利用图像识别和数据分析,市场规模达数亿美元。帮助书法爱好者进行临摹,提供临摹指导和评价。 11. 超级简历优化助手:“AI 简历优化工具”,运用自然语言处理,市场规模达数亿美元。帮助用户优化简历,提高求职成功率。 12. 酷家乐等设计软件:“AI 室内设计方案生成”,借助图像生成和机器学习,市场规模达数十亿美元。能快速生成个性化室内设计方案。 13. Amper Music:“AI 音乐创作辅助工具”,采用机器学习和音频处理,市场规模达数亿美元。协助音乐创作者进行创作,可根据用户需求生成旋律和编曲。 14. 松果倾诉智能助手:“AI 情感咨询助手”,通过自然语言处理和情感分析,市场规模达数亿美元。为用户提供情感支持和建议,通过文字或语音交流。 15. 小佩宠物智能设备:“AI 宠物健康监测设备”,利用传感器数据处理和机器学习,市场规模达数十亿美元。可实时监测宠物健康状况,提供健康预警。 16. 马蜂窝智能行程规划:“AI 旅游行程规划器”,借助数据分析和自然语言处理,市场规模达数十亿美元。能根据用户需求生成个性化旅游行程。
2025-01-20
目前主流的AI大模型有哪些
目前主流的 AI 大模型主要有以下几种: 1. OpenAI 系列:包括 GPT3.5 和 GPT4 等。GPT3.5 在 11 月启动了当前的 AI 热潮,GPT4 功能更强大。ChatGPT 也属于 OpenAI 系列。 2. 微软 Bing:使用 GPT4 和 GPT3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,能创建和查看图像,还能在网页浏览器中阅读文档,并连接到互联网。 3. 谷歌 Bard:由各种基础模型驱动,最近是 PaLM 2 模型。 4. Anthropic Claude 2:其特点是有非常大的上下文窗口,不太可能恶意行事。 此外,大模型的架构也有所不同,如 encoderonly 模型(代表模型是 BERT)、encoderdecoder 模型(代表是 google 的 T5)、decoderonly 模型(适用于自然语言生成任务,如故事写作和博客生成,众多 AI 助手包括 ChatGPT 都属于此类)。大模型的“大”体现在预训练数据量大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级别的数据进行预训练)和参数多(如 OpenAI 在 2020 年发布的 GPT3 就已达到 170B 的参数)。
2025-01-07
语文教学如何使用大模型
在语文教学中使用大模型,可以参考以下方面: 1. 提示词设置: Temperature:参数值越小,模型返回结果越确定;调高参数值,可能带来更随机、多样化或具创造性的产出。对于质量保障等任务,可设置低参数值;对于诗歌生成等创造性任务,可适当调高。 Top_p:与 Temperature 类似,用于控制模型返回结果的真实性。需要准确答案时调低参数值,想要更多样化答案时调高。一般改变其中一个参数即可。 Max Length:通过调整控制大模型生成的 token 数,有助于防止生成冗长或不相关的响应并控制成本。 Stop Sequences:指定字符串来阻止模型生成 token,控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,减少响应中单词的重复。 2. 了解大模型: 大模型通俗来讲是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 训练和使用大模型可类比上学参加工作:找学校(需要大量 GPU 计算)、确定教材(大量数据)、找老师(算法)、就业指导(微调)、搬砖(推导)。 Token 是模型处理和生成的文本单位,在将输入进行分词时会形成词汇表。 需要注意的是,在实际应用中,可能需要根据具体的教学需求和场景进行调整和实验,以找到最适合的设置和方法。
2025-02-17
如何利用大模型写教案
利用大模型写教案可以参考以下要点: 1. 输入的重要性:要输出优质的教案,首先要有高质量的输入。例如,写商业分析相关的教案,如果没有读过相关权威书籍,输入的信息缺乏信息量和核心概念,大模型给出的结果可能就很平庸。所以,脑海中先要有相关的知识概念,这来自于广泛的阅读和学习。 2. 对大模型的理解:大模型通过输入大量语料获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可以类比为上学参加工作,包括找学校(需要大量计算资源)、确定教材(大量数据)、找老师(合适的算法)、就业指导(微调)、搬砖(推导)等步骤。 3. 与大模型的交互: 提示词工程并非必须学习,不断尝试与大模型交互是最佳方法。 交互时不需要遵循固定规则,重点是是否达成目的,未达成可锲而不舍地尝试或更换模型。 用 Markdown 格式清晰表达问题,它具有结构清晰、能格式化强调关键部分、适用性广等优点,有助于大模型更好地理解用户意图。
2025-02-17
大模型评测
以下是关于大模型评测的相关信息: FlagEval(天秤)大模型评测体系及开放平台: 地址: 简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval:构造中文大模型的知识评估基准: 地址: 简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb:SuperCLUE 琅琊榜 地址: 简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。 此外,还有小七姐对文心一言 4.0、智谱清言、KimiChat 的小样本测评,测评机制包括: 测评目标:测评三家国产大模型,以同组提示词下 ChatGPT 4.0 生成的内容做对标参照。 能力考量:复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次:第一轮是复杂提示词理解和执行,包括 Markdown+英文 title 提示词测试、Markdown+中文 title 提示词测试、中文 title+自然段落提示词测试;第二轮是推理能力(CoT 表现);第三轮是文本生成能力(写作要求执行);第四轮是提示词设计能力(让模型设计提示词);第五轮是长文本归纳总结能力(论文阅读)。 测试大模型质量好坏时,常用的问题包括检索和归纳、推理性、有日期相关历史事件等。以下是几个专业做模型测评的网站:
2025-02-17
ai大模型
AI 大模型是一个复杂但重要的概念。以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因层数多而称深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。
2025-02-17
我是一个ai小白,请给我推荐一个语言大模型的提示词优化工具
以下为您推荐两个语言大模型的提示词优化工具: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言和单个词组输入,中英文均可。 启用提示词优化后可扩展提示词,更生动描述画面内容。 小白用户可点击提示词上方官方预设词组进行生图。 写好提示词需内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 可调整负面提示词,利用“加权重”功能让 AI 明白重点内容,还有翻译、删除所有提示词、会员加速等辅助功能。 2. Prompt Perfect: 能够根据输入的 Prompt 进行优化,并给出优化前后的结果对比。 适合写论文、文章的小伙伴,但使用该能力需要消耗积分(可通过签到、购买获得)。 访问地址:
2025-02-17
开源模型和闭源模型
开源模型和闭源模型的情况如下: 专有模型(闭源模型):如 OpenAI、Google 等公司的模型,需访问其官方网站或平台(如 ChatGPT、Gemini AI Studio)使用。 开源模型: 可使用推理服务提供商(如 Together AI)在线体验和调用。 可使用本地应用程序(如 LM Studio)在个人电脑上运行和部署较小的开源模型。 例如 DeepSeek、Llama 等开源模型。 Qwen 2 开源,具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进性能,超越目前所有开源模型和国内闭源模型,在代码和数学性能等方面显著提高。 金融量化领域的大模型正趋向闭源,几个巨头的核心模型如 OpenAI 最新一代的 GPT4、Google 的 Bard 以及未来的 Gemini 短时间内不会公开。Meta 的 LLaMA 目前开源,但未来可能改变。OpenAI 未来可能开源上一代模型。
2025-02-17
你会使用DeepSeek来回答问题吗
DeepSeek 是一款具有独特特点和优势的深度推理模型。其核心是推理型大模型,与指令型大模型不同,不需要用户提供详细步骤指令,而是通过理解用户真实需求和场景来提供答案。它能够理解用户用“人话”表达的需求,无需用户学习特定提示词模板。在回答问题时能够进行深度思考,并非简单罗列信息。还可以模仿不同作家的文风进行写作,适用于多种文体和场景。 DeepSeek R1 不同于先前的普通模型,如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等,它与 OpenAI 现在最先进的模型 o1、o3 同属基于强化学习 RL 的推理模型。在回答用户问题前,R1 会先进行“自问自答”式的推理思考,以提升最终回答的质量。这种“自问自答”并非简单自言自语,而是模拟人类的深度思考。从用户初始问题出发,唤醒所需推理逻辑与知识,进行多步推导,为最终回答提供更完备的思考准备。DeepSeek R1 的“聪明”源于其独特的“教育方式”,在其他 AI 模型还在接受“填鸭式教育”时,它已率先进入“自学成才”新阶段。 更多提示词技巧请查看 。
2025-02-17
你是用什么模型来回答问题的?
我使用多种模型和相关知识来回答您的问题,包括但不限于以下内容: 2023 年度中文大模型基准测评报告中提到的 GPT4Turbo 和 gpt3.5turbo 等模型,并对其在准确性、相关性等方面的表现进行了评估。 智谱·AI 开源模型列表中的 WebGLM10B、WebGLM2B、MathGLM2B、MathGLM500M、MathGLM100M、MathGLM10M、MathGLMLarge 等模型,介绍了它们的特点和相关链接。 OpenAI 官方指南中提到的一些战术,如指示模型使用参考文本回答,包括提供参考文本和使用参考文本中的引文来回答等策略。 但具体回答您的问题所依据的模型和知识来源会根据问题的性质和需求而定。
2025-02-17
你能回答关于AI以外的事情吗?有关于AI的方面你又知道多少。
以下是关于 AI 的相关知识: 1. 基础方面: 背景知识:包括人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 2. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 3. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 4. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 关于 WaytoAGI 网站,它提供以下功能: 1. 和 AI 知识库对话:您可以在这里问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,可以复制到 AI 对话网站来使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 请注意,我只能为您提供与 AI 相关的知识和指导,对于其他非 AI 领域的内容,我的知识库中没有相关信息。
2025-02-16
如何让纳米ai的Deepseek接口回答的更加精确
要让纳米 AI 的 DeepSeek 接口回答更加精确,可以从以下几个方面入手: 1. 强化学习策略:在“冷启动”阶段,通过少量人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式。随后主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。其中准确率奖励用于评估 AI 提供的最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间,以便人类观察模型的推理过程。 2. 注重细节和语气:DeepSeek 在回答时能够还原特定的语气,如帝王的语气,且对历史细节熟悉,兼顾可读性。同时,输出充满具体而惊人的细节,行文的隐喻拿捏到位,高级且能准确传达含义。 3. 结合深度探索和联网搜索:这可能有助于获取更全面准确的信息,从而提高回答的精确度。
2025-02-12
我几乎是一个AI小白,只能日常跟AI对话,让AI回答我的问题,我希望能系统的了解AI,认识AI,学会正确使用AI,让AI帮助我提高效率,希望你能给出学习建议
以下是为您提供的系统学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 与大语言模型交流的技巧: 对话尽量具体、丰富、少歧义,多说有用的。 假想特定场景,明确希望获得的内容。 把大模型当作大学生,指明方向,拆解任务,教其一步一步操作。 7. AI 教育方面: 以 Khanmigo AI 为例,AI 教师应具有友善和支持的性格,语言简明,不直接给答案,而是通过适当提问帮助学生独立思考,根据学生知识水平调整问题,检查学生是否理解,警惕学生滥用帮助等。
2025-02-10