The mainstream large models include:
首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行😌Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)
前四个(包括Bing)都是OpenAI系统。今天有两大主要的OpenAI AI:3.5和4。3.5模型在11月启动了当前的AI热潮,4.0模型在春季首次发布,功能更强大。一个新的变种使用插件连接到互联网和其他应用程序。有很多插件,其中大部分不是很有用,但你应该随需要自由探索它们。Code Interpreter是一个非常强大的ChatGPT版本,可以运行Python程序。如果您从未为OpenAI付费,那么您只能使用3.5。除了插件变种和一个暂时停用的带有浏览功能的GPT-4版本之外,这些模型都没有连接到互联网。微软的Bing使用4和3.5的混合,通常是GPT-4家族中首个推出新功能的模型。例如,它既可以创建也可以查看图像,而且它可以在网页浏览器中阅读文档。它连接到互联网。[Bing使用有点奇怪,但功能强大。](https://oneusefulthing.substack.com/p/power-and-weirdness-how-to-use-bing)谷歌一直在测试自己的人工智能供消费者使用,他们称之为Bard,但是由各种基础模型驱动,最近是一个名叫PaLM 2的模型。对于开发出LLM技术的公司来说,他们非常令人失望,尽管昨天宣布的改进表明他们仍在研究基础技术,所以有希望。它已经获得了运行有限代码和解释图像的能力,但我目前通常会避免它。最后一家公司Anthropic发布了Claude 2。Claude最值得注意的是有一个非常大的上下文窗口-本质上是LLM的记忆。Claude几乎可以保存一整本书或许多PDF。与其他大型语言模型相比,它不太可能恶意行事,这意味着,在实际上,它倾向于对你做一些事情进行责骂。现在,来看看一些用途:
一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。