Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

《生成式 AI 导论 2024》李宏毅课程在哪里可以学习

Answer

您可以在以下网址学习李宏毅的《生成式 AI 导论 2024》课程:https://www.youtube.com/watch?v=AVIKFXLCPY8 课程目录如下: 第 0 講:課程說明(17:15 有芙莉蓮雷)(2024 年 2 月 24 日) 第 1 講:生成式 AI 是什麼?(2024 年 2 月 24 日) 第 2 講:今日的生成式人工智慧厲害在哪裡?從「工具」變為「工具人」(2024 年 3 月 3 日) 第 3 講:訓練不了人工智慧?你可以訓練你自己(上)—神奇咒語與提供更多資訊(2024 年 3 月 3 日) 第 4 講:訓練不了人工智慧?你可以訓練你自己(中)—拆解問題與使用工具(2024 年 3 月 10 日) 待更新……

该课程的附录内容包括: 一、课程介绍 这是台湾大学李宏毅教授的生成式 AI 课程,主要介绍了生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容。课程共分为 12 讲,每讲约 2 小时。 二、学习目标 通过学习本课程,掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 三、学习内容

  1. 什么是生成式 AI
    • 生成式 AI 的定义和分类
    • 生成式 AI 与判别式 AI 的区别
    • 生成式 AI 的应用领域
  2. 生成式模型
    • 生成式模型的基本结构和训练方法
    • 生成式模型的评估指标
    • 常见的生成式模型及其优缺点
  3. 生成式对话
    • 生成式对话的基本概念和应用场景
    • 生成式对话系统的架构和关键技术
    • 基于生成式模型的对话生成方法
  4. 预训练语言模型
    • 预训练语言模型的发展历程和关键技术
    • 预训练语言模型的优缺点
    • 预训练语言模型在生成式 AI 中的应用
  5. 生成式 AI 的挑战与展望
    • 生成式 AI 面临的挑战和解决方法
    • 生成式 AI 的未来发展趋势和研究方向 四、学习资源 教材:《生成式 AI 导论 2024》,李宏毅
Content generated by AI large model, please carefully verify (powered by aily)

References

学习笔记:《生成式AI导论2024》 李宏毅

真的很易懂很好听,学起来就赢了90%的人了课程地址:https://www.youtube.com/watch?v=AVIKFXLCPY8课程目录:第0講:課程說明(17:15有芙莉蓮雷)(2024年2月24日)第1講:生成式AI是什麼?(2024年2月24日)第2講:今日的生成式人工智慧厲害在哪裡?從「工具」變為「工具人」(2024年3月3日)第3講:訓練不了人工智慧?你可以訓練你自己(上)—神奇咒語與提供更多資訊(2024年3月3日)第4講:訓練不了人工智慧?你可以訓練你自己(中)—拆解問題與使用工具(2024年3月10日)待更新……

学习笔记:《生成式AI导论2024》 李宏毅

真的很易懂很好听,学起来就赢了90%的人了课程地址:https://www.youtube.com/watch?v=AVIKFXLCPY8课程目录:第0講:課程說明(17:15有芙莉蓮雷)(2024年2月24日)第1講:生成式AI是什麼?(2024年2月24日)第2講:今日的生成式人工智慧厲害在哪裡?從「工具」變為「工具人」(2024年3月3日)第3講:訓練不了人工智慧?你可以訓練你自己(上)—神奇咒語與提供更多資訊(2024年3月3日)第4講:訓練不了人工智慧?你可以訓練你自己(中)—拆解問題與使用工具(2024年3月10日)待更新……

学习笔记:《生成式AI导论2024》 李宏毅

当我写下这个标题之后,还没开始上课,小西就帮我写了一份学习笔记,有点无聊哈哈,但是方便一览全局一、课程介绍这是台湾大学李宏毅教授的生成式AI课程,主要介绍了生成式AI的基本概念、发展历程、技术架构和应用场景等内容。课程共分为12讲,每讲约2小时。二、学习目标通过学习本课程,掌握生成式AI的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式AI的发展现状和未来趋势。三、学习内容什么是生成式AI生成式AI的定义和分类生成式AI与判别式AI的区别生成式AI的应用领域生成式模型生成式模型的基本结构和训练方法生成式模型的评估指标常见的生成式模型及其优缺点生成式对话生成式对话的基本概念和应用场景生成式对话系统的架构和关键技术基于生成式模型的对话生成方法预训练语言模型预训练语言模型的发展历程和关键技术预训练语言模型的优缺点预训练语言模型在生成式AI中的应用生成式AI的挑战与展望生成式AI面临的挑战和解决方法生成式AI的未来发展趋势和研究方向四、学习资源教材:《生成式AI导论2024》,李宏毅

Others are asking
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
生成式AI教育场景应用 项目式学习 中小学案例
以下是一些中小学在生成式 AI 教育场景应用中采用项目式学习的案例: 北京市新英才学校: 开设“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导和帮助下,主导设计一款实用的桌游。 学生们提出解决学校面积大导致新生和访客迷路的问题,决定制作一款学校地图桌游。 课程中,学生有时听老师讲解人工智能知识和工具使用方法,有时自己写 prompt 与大语言模型对话,还使用文生图 AI 工具生成桌游卡牌背后的图案,手绘第一版学校地图,选择游戏机制并梳理游戏流程。 在教育领域,生成式 AI 带来了诸多改变: 解决了教育科技长期以来在有效性和规模之间的权衡问题,可大规模部署个性化学习计划,为每个用户提供“口袋里的老师”,如实时交流并给予发音或措辞反馈的语言老师。 出现了众多辅助学习的产品,如教授新概念、帮助学习者解决各学科问题、指导数学作业、提升写作水平、协助创建演示文稿等。
2025-02-18
生成式AI教育场景应用 中小学案例
以下是北京市新英才学校在中小学教育场景中生成式 AI 的应用案例: 特色课程方面:学校开设了“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导下,用 AIGC 工具设计一款实用的桌游。学生主导从收集需求、定义问题到设计背景、机制、内容、视觉,再到测试、迭代的全过程。例如,为解决学校面积大导致新生和访客迷路的问题,学生决定做一款学校地图桌游。课程中,学生学习人工智能知识、使用工具写 prompt 与大语言模型对话,还使用 OpenInnoLab平台生成桌游卡牌图案、手绘地图、选择游戏机制、梳理游戏流程。此外,还邀请中国传媒大学的吴卓浩教授合作,采用“大学生,小学生同上一节课”的方式,大学生为小学生讲解 AI 工具、试玩桌游。本学期,学生们测试并迭代桌游,使用 3D 打印机打印配件,用 ChatGPT 和 Midjourney 增强视觉设计,用 Kimi 辅助编写说明书,还计划让学生尝试用文生音乐工具 Suno 制作歌曲加入桌游 2.0 版本。 英语主课方面:初中部的英语课也融入了 AIGC 工具。魏一然协助初中部的英文老师杨佳欣和刘奕玚进行探索。在课程初期,更多是老师带着学生使用 AIGC 工具,prompt 由学生提出,老师引导。例如,在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话,了解处理方法,让 ChatGPT 为学生生成生词解释和例句,形成生词库,并灵活加工生词生成题目、游戏或文章帮助学生复习单词。在关于社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。
2025-02-18
中小学AI教育场景 生成式 全息
以下是关于中小学 AI 教育场景生成式的相关内容: 北京市新英才学校在中小学 AI 教育方面进行了积极探索。跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 帮助下备课和授课,生物和信息科技老师合作带着学生训练 AI 模型以识别植物。数字与科学中心 EdTech 跨学科小组组长魏一然深入参与其中。 在英语课上,对于初中以上学生,一开始更多是老师带着使用 AIGC 工具,由学生提出 prompt,老师引导。例如在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话获取信息,还让 ChatGPT 生成单词解释和例句,加工生词生成题目、游戏或文章帮助学生复习单词。在社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。 教育科技长期以来在有效性和规模之间权衡,而有了 AI 这种状况不再存在。现在可以大规模部署个性化学习计划,为每个用户提供“口袋里的老师”。像 Speak、Quazel、Lingostar 已在做实时交流并给予反馈的语言教学。Photomath、Mathly 指导学生解决数学问题,PeopleAI、Historical Figures 通过模拟与杰出人物聊天教授历史。学生在作业中也利用 Grammarly、Orchard、Lex 等工具提升写作水平,处理其他形式内容的产品如 Tome、Beautiful.ai 协助创建演示文稿。
2025-02-17
影视行业的生成式AI工具有哪些?帮我分一下类
以下是影视行业常见的生成式 AI 工具分类: 视频和图像类:Civitai、Kling AI、Viggle、Hailuo、Hedra、RunPod、Higgsfield、ThinkDiffusion、neural frames、Genmo、fal、LTX Video、CogVideoX、Morph Studio、Domo、Haiper、Pony Diffusion、Leonardo AI、Rubbrband 音频类:ElevenLabs、Hailuo、Cartesia、Sync、Tunes by Freepik 3D 类:Playhouse、Playbook、Tripo AI 故事板类:SAGA 在视频大类的分类下,按场景分,主要有以下几类: 1. 纯 AI 视频生成(RunwayML 等为代表) 2. 数字人(Heygen 等) 3. 营销类视频生成及编辑(生成内容以模板化,商业化内容为主) 4. 视频编辑(全面编辑,长剪短等) 此外,全球最大的生成式 AI 视频竞赛之一 Project Odyssey 第二季已开始,相关信息如下: 赛事官网:https://www.projectodyssey.ai/ 注册地址:https://projectodyssey.myflodesk.com/season2 赛事 Discord:https://discord.com/invite/projectodysseyai 提交地址:https://www.projectodyssey.ai/submission 时间线: 12 月 2 日:Project Odyssey 第二季开放报名 12 月 9 日:比赛规则公布 12 月 16 日:报名用户可解锁免费试用、完整规则正式发布、作品提交正式开启 1 月 16 日:提交截止,进入评审阶段 2 月 14 日:直播颁奖 参赛类别: 叙事类:通过鲜明的角色和深刻的故事情节,讲述能够打动人心的故事。 音乐视频:将视觉效果与原创音乐完美结合,打造震撼体验。 品牌创意:构思创意广告或活动视频,为虚拟品牌注入灵魂。(短于 60 秒) 创意预告片:制作极具吸引力的预告片或片头,为电影或剧集呈现特别概念。(短于 2 分 30 秒)
2025-02-16
吴恩达有《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》下载资源
以下是吴恩达《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》的相关资源: B 站: 学习笔记: 飞书: 下的相关课程
2025-02-07
室内设计ai
以下是关于室内设计 AI 的相关信息: AI 在室外设计的最佳实践: 1. 充分利用 AI 的创意生成能力,使用图像生成工具输入关键词生成多种创意方案,获取新颖独特的灵感。 2. 结合 AI 的模拟和可视化功能,利用 AR/VR 等技术在实际环境中模拟和可视化设计方案,便于评估和验证。 3. 运用 AI 的分析和优化能力,对采光、动线、材料等方面进行优化,确保符合使用者需求和体验。 4. 借助 AI 的自动化设计功能,自动生成符合设计规范的平面图、立面图等,提高设计效率。 5. 融合 AI 与人工设计的协作模式,发挥各自优势,在各环节充分利用 AI 能力。 MewXAI 平台的室内设计功能: 上传空间图,通过分析图片的线条结构和几何形状,即可一键完成多种不同风格的室内/建筑设计,为空间设计师提供灵感,节约时间。 利用 GPT 开发的相机 APP 中的室内设计相关: AI 利用室内设计规则和现实布局特点,重新渲染更协调的室内设计方案。优点包括自动选定室内设计主要风格和色系,找出风格不协调家具并指导调整;缺点是 Stable Diffusion 出图成功率不高,约 10%,且细节存在崩坏情况,不能指导整个装修工程。
2025-02-20
有没有将长视频快速剪辑为完整短视频故事的AI工具
以下是一些能够将长视频快速剪辑为完整短视频故事的 AI 工具: 1. Gemini 1.5 Pro:具有视频分析和拆解能力,可用于影视二创长剪短,一键生成小帅、小美、大壮、丧彪的故事等。准确度较高,能准确识别如“如来神掌”等元素。 2. MMVid:这是一个集成的视频理解系统,能处理和理解长视频内容并进行问答。可应用于快速的视频剪辑、图生视频、快速诊断等场景。 3. Pika、Pixverse、Runway、SVD:在视频制作的不同方面,如粗剪、定剪、音效、特效、包装等环节发挥作用。 您可以根据自己的需求选择适合的工具。
2025-02-20
生成App的logo的AI工具哪个好
以下是一些生成 App logo 的较好的 AI 工具: 1. Looka:在线 Logo 设计平台,利用 AI 理解用户品牌信息和偏好,生成多种设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化 Logo,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,可利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,能根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。使用这些工具时,通常可根据品牌理念和视觉偏好,通过简单交互获得设计方案,并进一步定制优化至满意。
2025-02-20
ai概念第一次是被谁提出来的,什么时候?
AI 概念首次被提出是在 1956 年的达特茅斯会议上。这次会议由时任达特茅斯学院的数学助理教授约翰·麦卡锡发起,邀请了包括马文·明斯基、克劳德·香农、艾伦·纽厄尔、赫伯特·西蒙等多位杰出科学家参与。约 47 位参与者就自动计算机、编程语言、神经网络、计算理论等多个前沿话题进行了深入讨论,并首次提出了“人工智能”(Artificial Intelligence)这一术语,为这个新兴领域正式命名。在此之前,艾伦·图灵和约翰·冯·诺依曼等人通过理论和实践为 AI 奠定了初步的理论基础。1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。此后近 70 年,AI 的发展起起落落。
2025-02-20
ai之后会取代人类么?
AI 是否会取代人类是一个复杂且备受争议的问题。 一方面,有人认为人类会被取代。比如丁一认为,AI 认识事物比人类更清晰、准确和全面,人类的所有工作,包括具有创造性的工作,都可能被 AI 取代。未来地球将是硅基生物(集成了 AI)的天下,因为当函数的参数超过兆亿级时,AI 便能理解人类的所有行为及背后的意义,实现对人类的全面超越。按照目前 AI 的发展速度,5 年时间行业就会有巨大变化,十几年内人类的所有事情乃至人类种族可能被完全替代。 另一方面,也有人认为人类不会被完全取代。在音乐行业,版权公司不需要焦虑,虽然 AI 辅助下音乐版权大量涌入,但这与过去独立音乐人版权涌入类似,是不同的生态。版权公司仍可通过独到的内容把控能力挑选优质作品。而且即使部分工作被 AI 替代,人类也会有新的岗位。但也存在担心,比如人类可能把想象和思考的权力交给 AI,逐渐退化思考和自主决策的能力,导致决策权出让给 AI。
2025-02-20
deepseek相比其他AI工具有什么优势
DeepSeek 相比其他 AI 工具的优势主要体现在以下方面: 1. 在写文方面全面领先。 2. 训练成本虽高,但定价低于实际成本。 然而,DeepSeek 也存在一些不足: 1. 对于协助编程,最大的上下文长度只有 64k,导致无法处理更长的上下文和更复杂的代码项目。 2. 在写文时,长文会太发散,文风用力过猛,可能导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。
2025-02-20
2024 年中国人工智能+产业规模
目前关于 2024 年中国人工智能+产业规模的相关信息如下: 国家统计局数据显示,2022 年全国研究与试验发展(R&D)经费投入总量首次超过 3 万亿元,达到 30782.9 亿元,比上年增加 2826.6 亿元,增长 10.1%,表明国家对科技创新和算力设施的重视和持续投入。我国算力设施产业链规模巨大,已达到万亿元级别。2022 年我国算力核心产业规模达到 1.8 万亿元,预计到 2023 年,中国算力产业规模将超过 3 万亿元。 在企业数量方面,截至 2024 年 3 月,全国算力存量企业共有 75,343 家。其中,广东省、北京市和江苏省的企业数量位居前三,分别有 10,315 家、7,167 家和 6,728 家。此外,人工智能企业数量也超过 4400 家。 德勤的报告指出,中国 AI 产业快速发展,得益于政策支持、经济增长和技术创新。成长型 AI 企业作为产业创新的重要力量,数量占比高达九成,活跃于各行业领域。预计到 2025 年,中国人工智能核心产业规模将突破 5000 亿元。 在影视行业,若假设 2027 年 AI 影视市场可以获得国内总市场份额的 10%,则国内 AI 影视总市场规模预计将达约 380 亿元以上;若假设 2030 年可以获得 25%以上市场份额,则国内 AI 影视总市场规模将达千亿级别。 营销行业或成生成式 AI 最早实现商业化落地的行业之一,未来,AI 技术还将持续推动营销行业的深刻变革。
2025-02-20
明略科技:2024年中国AI Agent行业研究
以下是关于 2024 年中国 AI Agent 行业的相关研究报告: 2024 年 9 月: 《》 《》 2024 年 8 月: 《》深入分析了 AI Agent 的市场定义、发展阶段、核心组件及其在企业用户场景中的应用。 《》指出企业实施 AI Agent 的主要目标是降低运营成本,尤其是在知识库管理、数据分析、营销与客户服务等领域。 2024 年 5 月: 《》提到 AI Agent 市场处于早期阶段,其商业价值在于提升工作均值、实现行业知识库构建、改变工作流程及生产关系。未来,AI Agent 将作为数字生产力,通过与工作流的结合,成为企业知识资产积累与复用的关键角色,推动技术革命。
2025-02-10
告诉我最新的国际ai资讯(比如从2024年有什么ai被发明了,国际上一共有什么大的ai公司,中国的ai发展的怎么样了(deepseek怎么样))
以下是为您整理的最新国际 AI 资讯: 2024 年 2 月 5 日:百度智能云成功点亮昆仑芯三代万卡集群,这是国内首个正式点亮的自研万卡集群。 在 Lex Fridman 的播客中,Dylan Patel 和 Nathan Lambert 深入探讨了中国的 DeepSeek AI 模型,特别是 DeepSeekV3 和 DeepSeekR1。Nathan 强调 DeepSeek 是最开放的模型之一,采用 MIT 许可,鼓励商业用途,推动行业走向开源。 2025 年 AI 语音助手研究显示,语音技术是 AI 应用的关键,企业和用户都将受益。2024 年将是语音助手快速发展的时期,技术不断升级,市场竞争加剧,涌现出多种创业公司。未来,AI 语音将成为服务的“万能钥匙”,应用场景广泛,从医疗到教育,推动行业变革与创新。 2024 年 1 月 17 日:随着预训练技术遭遇瓶颈,GPT5 迟迟未能问世,从业者开始从不同角度寻找突破。以 o1 为标志,大模型正式迈入“PostTraining”时代;开源发展迅猛,Llama 3.1 首次击败闭源模型;中国本土大模型 DeepSeek V3,在 GPT4o 发布仅 7 个月后,用 1/10 算力实现了几乎同等水平。同时,大模型的日渐成熟也让产业重心从基础模型转向应用落地。AI 在编程领域爆发,“数字员工”崛起。 李飞飞在访谈中探讨了 AI Agent 的发展及其未来。她强调 AI Agent 应作为工具和赋能者,而非主导者,确保人们的自主性。李飞飞回顾了 ImageNet 的创立背景,并提到正在推动的“空间智能”概念,旨在理解和融合物理与数字三维世界。她认为,未来这两者的界限将逐渐模糊,从而带来更大变革。
2025-02-08
2024 AI工具排行榜
以下是 2024 年部分 AI 工具的相关信息: 开发者工具: 23 年 12 月至 24 年 3 月的访问量排行榜中,非大厂的 Top1 公司是 Langchain,其 3 月 PV 为 356 万,单 PV 价值为 56.18 美元。 赛道方面,天花板潜力 TAM 为 120 亿美元,总体趋势平稳增长,月平均增速为 82 万 PV/月,原生产品占比高。 竞争方面,Top1 占 19%,Top3 占 54%,马太效应弱,网络效应强,大厂已入局,技术门槛中。 教育工具: 23 年 12 月至 24 年 3 月的访问量排行榜中,非大厂的 Top1 公司是 Quizlet,其 3 月 PV 为 1.3 亿。 赛道方面,天花板潜力 TAM 约为 30 亿,总体趋势快速增长,月平均增速为 1793 万 PV/月,原生产品占比低。 竞争方面,Top1 占 45%,Top3 占 76%,马太效应弱,网络效应弱,大厂未入局,技术门槛中。 此外,在展望 2025 时,AI 行业的创新机会方面,2024 年 9 月 OpenAI 发布了新一代语言模型 o1,业界推测其采用了全新的训练与推理方案,结合强化学习技术,显著增强了推理能力,可能借鉴了下围棋的 AlphaGo Zero 的技术思路。
2025-01-26
2024年视频换脸技术
2024 年视频换脸技术面临一些挑战和发展趋势: 挑战方面: 可控性和一致性存在挑战,如人脸转动中保持观感不变形、多个生成片段保持人物一致性、遵循生成指令等,目前视频生成的体感仍需改进,需要底层模型的进步。 成本较高,生成一段 5 秒视频的成本最低约为 1 元人民币,限制了 C 端玩法和大规模应用。 发展趋势: 原生多模态成为 AI 架构的主流选择,从 OpenAI 的 GPT4V 到 Anthropic 的 Claude3V 和 xAI 的 Grok1.5V 等,行业正从简单的模态叠加向真正的多模态融合迈进。原生多模态模型采用统一的编码器解码器架构,在预训练阶段完成多模态信息的深度融合,提升了模型的理解能力,实现了模态间的无缝转换和互补增强,能够处理更复杂的任务。 自 2023 年末开始,Runway、Pika、Meta、Google 等不断推出视频生成/编辑工具,2024 年是 AI 视频技术逐渐成熟并开始商用的一年,下半年或 2025 年可能会看到 AI3D 技术的突破。抖音的成功证明音频、视频加入泛社交/娱乐产品会带来质的飞跃,AI 陪聊赛道中视频、音频技术的加入也将带来内容生产和社交方式的质变。
2025-01-24
2024大模型典型应用案例集
以下是 2024 大模型的一些典型应用案例及相关信息: 《2024 大模型典型示范应用案例集》汇集了 97 个优秀案例,展示了大模型技术在教育、医疗、金融、政务等多个行业和领域的应用。案例由阿里云、百度、华为等领先企业实施,上海成为应用落地的热点地区,大中型企业是主要试验场。AI 智能体和知识库成为提升大模型落地实效的关键手段。 在智能终端行业,中国超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 整体来看,在主流大模型厂商中,百度表现突出,拿下最关键的中标项目数量、中标金额两项第一。截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%,其增长主要由互联网、教育、金融等行业对模型训练和推理的高需求带动。 企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。 相关报告: 《信达证券:AI 行业设计领域专题报告:Adobe AI 功能覆盖全面,Canva、美图等力争上游》 《中国信通院:大模型基准测试体系研究报告(2024 年)》 《埃森哲:人工智能行业:2024 在生成式人工智能时代重塑工作、劳动力和员工》 此外,还有一些相关活动,如: 2024 年是国内大模型技术加速落地的关键年份,各大厂商如百度、阿里、字节等在 AI 大模型领域展开激烈竞争。百度凭借 40 个中标项目和 2.74 亿元中标金额在行业中处于领先地位。尤其在金融、智能终端等行业,百度文心大模型的应用广泛,表现亮眼。 🏮「非遗贺春」魔多蛇年春节 AI 模型创作大赛,大赛时间 2024 年 12 月 24 日2025 年 1 月 15 日。大赛奖池【¥12000】现金奖励+官方高含金量荣誉证书+会员与算力激励+流量激励。双赛道同时开启,赛道一【春节】+赛道二【爱非遗 AI 传承】。本次活动由浙江省非遗保护中心(浙江省非遗馆)指导×浙江省非遗保护基金会主办×魔多 AI 联合承办,由提供社区传播支持。
2025-01-16
李宏毅《生成式人工智能导论》课件
以下是关于李宏毅《生成式人工智能导论》的相关信息: 课程目录: 1. 第 0 讲:课程说明(2024 年 2 月 24 日) 2. 第 1 讲:生成式 AI 是什么?(2024 年 2 月 24 日) 3. 第 2 讲:今日的生成式人工智慧厉害在哪里?从「工具」变为「工具人」(2024 年 3 月 3 日) 4. 第 3 讲:训练不了人工智慧?你可以训练你自己—神奇咒语与提供更多资讯(2024 年 3 月 3 日) 5. 第 4 讲:训练不了人工智慧?你可以训练你自己—拆解问题与使用工具(2024 年 3 月 10 日) 6. 待更新…… 第 0 讲课程说明的要点: 1. 知道:有能力自己开发、何时需要自己开发、何时可以用现成的人工智能。 2. 目标:了解生成式 AI 背后的原理和更多可能性,作为你魔术师的开始。包括体验用生成式 AI 打造应用、体验训练自己的生成式 AI 模型。同时提到负面体验,如大模型训练花时间(以周为单位)、结果不可控。 3. 影响模型能力的指标很多,常规会看参数的量级来评估,量级指数级增长,FOMO,如 2019 年 GPT2.0 15b 参数,2024 年 GPT3.5 70b 参数。 附录: 1. 课程介绍:这是台湾大学李宏毅教授的生成式 AI 课程,主要介绍生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。 2. 学习目标:掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 3. 学习内容:包括什么是生成式 AI、生成式模型、生成式对话、预训练语言模型、生成式 AI 的挑战与展望等方面。 4. 学习资源:教材《生成式 AI 导论 2024》,参考书籍《深度学习》,在线课程李宏毅的生成式 AI 课程,开源项目 OpenAI GPT3、字节跳动的云雀等。 5. 学习方法。 课程地址:https://www.youtube.com/watch?v=AVIKFXLCPY8
2025-01-16
人共智能导论思维导图
以下是为您整理的关于人工智能相关的内容: 1. 头脑风暴常用的 20 个 prompt:包括 Brainwriting Prompt、Reverse Brainstorming Prompt、Mind Mapping 等。 2. 构建外脑/智变时代的个人知识管理:从哲学角度思考知识被 AI 重塑后人的意义,认为超级智能将是人类的外脑,人类独特的个性等将与智能个体融合成为化身,共同汇聚成智能时代的新知识网络。 3. 生成式人工智能在教学中的应用:涉及多媒体、虚拟现实、移动设备等方面,涵盖全面发展个性化学习、协作学习、创新能力等内容,还包括数字校园、智慧课堂、在线社区等场景,以及培养元认知能力、创新思维等能力,以及人机协同、因材施教等理念。
2024-10-20
人工智能导论思维导图
以下是为您提供的人工智能导论思维导图相关内容: 与思维导图相关的 AI 工具有: 1. GitMind:免费的跨平台 AI 思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内思维导图与 AIGC 结合的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路、生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求后由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 总的来说,这些工具都能通过 AI 技术自动生成思维导图,提高制作效率,为知识工作者带来便利。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-10-18
生成关于“人工智能导论”的思维导图
以下是为您生成的关于“人工智能导论”的思维导图相关内容: 与思维导图相关的 AI 工具: 1. GitMind:免费跨平台,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内思维导图+AIGC 工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线,无需注册登录,支持自动生成节点。 4. Xmind Copilot:基于 GPT 的助手,可一键拓展思路、生成文章大纲。 5. TreeMind:“AI 人工智能”工具,输入需求可自动生成思维导图。 6. EdrawMind:提供 AI 工具,包括头脑风暴功能,提升生产力。 总的来说,这些工具都能通过 AI 技术提高思维导图制作效率,为知识工作者带来便利。
2024-10-18
人工智能导论
以下是关于人工智能导论的相关内容: 微软提供了 AI 初学者入门课程,其中包括人工智能导论。在这门课程中,您将学到: 实现人工智能的不同方法,如使用知识表示和推理的符号人工智能,它属于“有效的老式人工智能”(GOFAI)。 神经网络和深度学习,会使用 TensorFlow 和 PyTorch 两个流行框架中的代码来说明重要概念。 处理图像和文本的神经架构,但在前沿信息上可能有所欠缺。 不太流行的人工智能方法,如遗传算法和多智能体系统。 课程还包含了人工智能简介和历史的课前测试,指出人工智能研究如何使计算机表现出智能行为,例如做人类擅长的事。最初计算机遵循明确的程序运算,而像“根据照片判断一个人的年龄”这类任务无法明确编程,因为我们不清楚大脑完成此任务的具体步骤,这类任务正是人工智能感兴趣的。 课程列表中编号为 I 的课程即为人工智能导论,其相关讲义可通过获取。
2024-09-29
生成式AI导论
以下是关于《生成式 AI 导论 2024》李宏毅课程的相关内容: 课程介绍: 这是台湾大学李宏毅教授的生成式 AI 课程,主要涵盖生成式 AI 的基本概念、发展历程、技术架构和应用场景等。课程共 12 讲,每讲约 2 小时。 学习目标: 通过本课程,掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解其发展现状和未来趋势。 学习内容: 1. 什么是生成式 AI:包括定义和分类,与判别式 AI 的区别,应用领域。 2. 生成式模型:基本结构和训练方法,评估指标,常见模型及其优缺点。 3. 生成式对话:基本概念和应用场景,系统架构和关键技术,基于生成式模型的对话生成方法。 4. 预训练语言模型:发展历程和关键技术,优缺点,在生成式 AI 中的应用。 5. 生成式 AI 的挑战与展望:面临的挑战和解决方法,未来发展趋势和研究方向。 第 1 讲:生成式 AI 是什么 1. 定义:机器产生复杂有结构的物件。 2. AI 和 AGI 的关系:涉及机器学习、深度学习、类神经网络等。 3. 以 ChatGPT 等为例讲解,如 ChatGPT 是文字接龙,语言模型将复杂问题变成分类问题,生成策略采用回归等。 学习资源: 教材为《生成式 AI 导论 2024》,李宏毅。
2024-09-03