直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

普通人如何转行AI行业

回答

普通人转行 AI 行业有以下两个主要选择:

  1. AI 转型:
    • 目前创投圈有“十个 AI 应用里面,五个办公 Agent,三个 AIGC”的说法。产品之间的根本差距不大,关键在于对行业的理解和靠谱交付。
    • 对标移动互联网,现在做 Agent 的公司类似于之前专门做 APP 的公司,且存在比做 APP 更大的机会,即行业加 AI。
    • 行业中的喜茶和金蝶等企业,都制定了 AI 战略或成立了 AI 部门。喜茶拥有过亿的私域用户数据,AI 可用于新零售门店管理、营销销售、客户服务;金蝶作为传统 SaaS 软件拓展新的 AI 业务,属于新零售+AI 与 SaaS+AI。
  2. 在生活中应用 AI:
    • 可以在 WaytoAGI 学习 Agent 知识后,搭建一个 bot 来提高工作或学习效率。
    • 应用 AI 养成自驱自律的习惯,持续学习、自我进化与迭代。
    • 利用 AI 辅助下一代的教育。

此外,随着全球 AI 市场快速升温,新的 AI 应用不断涌现,AI Agent 是当下大模型最激动人心的发展主线。AI Agent 让“人机协同”成为新常态,在其加持下,越来越多的创新将会源自于超级个体和小型组织。在一些领域里,一个人加上足够的 AI 工具,就可以成为一家专业化公司。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

观点:热爱与行动是通往 AGI 之路

1、第一个选择——AI转型现在创投圈流传这样的说法,“十个AI应用里面,五个办公Agent,三个AIGC”,目前看产品拉不开根本差距,核心是对行业的理解和做好靠谱交付。上次说到对标移动互联网,目前做Agent的公司类似之前专门做APP的公司。和我专门做Agent的朋友聊了下,这里还存在比做APP更大的机会,就是行业加AI。行业玩家如喜茶和金蝶,都制定了AI战略或成立了AI部门。喜茶拥有过亿的私域用户数据,AI可以在新零售门店管理、营销销售、客户服务发挥应用;金蝶则是传统SaaS软件拓展新的AI业务,属于新零售+AI与SaaS+AI。2、第二个选择——在生活中应用AI比如在WaytoAGI学习Agent知识后,搭建一个bot帮我们的工作或学习提效。比如应用AI养成自驱自律的习惯,拥抱变化,持续学习,自我进化与迭代。比如培养下一代的可以用AI来辅助教育,毕竟孩子的未来是无限的。如郝景芳老师所说:

观点:热爱与行动是通往 AGI 之路

1、第一个选择——AI转型现在创投圈流传这样的说法,“十个AI应用里面,五个办公Agent,三个AIGC”,目前看产品拉不开根本差距,核心是对行业的理解和做好靠谱交付。上次说到对标移动互联网,目前做Agent的公司类似之前专门做APP的公司。和我专门做Agent的朋友聊了下,这里还存在比做APP更大的机会,就是行业加AI。行业玩家如喜茶和金蝶,都制定了AI战略或成立了AI部门。喜茶拥有过亿的私域用户数据,AI可以在新零售门店管理、营销销售、客户服务发挥应用;金蝶则是传统SaaS软件拓展新的AI业务,属于新零售+AI与SaaS+AI。2、第二个选择——在生活中应用AI比如在WaytoAGI学习Agent知识后,搭建一个bot帮我们的工作或学习提效。比如应用AI养成自驱自律的习惯,拥抱变化,持续学习,自我进化与迭代。比如培养下一代的可以用AI来辅助教育,毕竟孩子的未来是无限的。如郝景芳老师所说:

2024钉钉AI助理白皮书-人人都是创造者-钉钉&财商学院-38页.pdf

随着全球AI市场快速升温,新的AI应用不断涌现,2023年上半年,AI应用下载量突破3亿次,同比增长114%,超过2022年全年水平(数据来源:Sensor Tower)。AI Agent是当下大模型最激动人心的发展主线,被称为“大模型下一场战事”“最后的杀手产品”“开启新工业革命时代的Agent-centric”。在满足企业智能化需求的过程中,AI Agent作为一种理想的产品化落地形态,正在承接日益复杂的提质增效需求;通过强化内外部协同效能,它可以释放组织核心生产力,对抗组织熵增带来的挑战。AI Agent让“人机协同”成为新常态,越来越多的业务活动都将被委托给AI,而人类则只需要聚焦于企业愿景、战略和关键路径的决策上——B端企业和C端个人都将步入AI助理时代,在以AI Agent为代表的AI应用加持下,越来越多的创新将会源自于超级个体和小型组织。在一些领域里,一个人加上足够的AI工具,就可以成为一家专业化公司。

其他人在问
怎么监督AI被动的做出一系列违法的事情
监督 AI 被动做出违法事情可从以下方面考虑: 1. 对于高风险人工智能系统,在入市前的设计应保证能实施人为干预。增加人为监督的原因包括: AI 可能做出涉及道德和伦理问题的决策,如侵犯个人隐私、存在不公平偏见和歧视等,人类监督可预防相关道德风险。 若 AI 产生错误决策甚至违法行为,因 AI 无法承担法律责任,责任由人类承担,所以需要人类监督以确保其行为合法。 AI 不能完全理解人类社会,在人类监督下能正确处理复杂的人类社会问题。 高风险的人工智能系统往往需要更高程度的人为监督,以降低其对个人、环境和社会的损害,确保其运行符合人类社会的价值观和道德观。 AI 系统决策过程不透明,人类监督可要求其提供更多透明度和可解释性,便于理解和质疑决策。 人为监督能促进 AI 的普及与发展,帮助建立公众信任,提高社会接受度。 2. 像 OpenAI 这样的公司,无论如何重新设计产品以减少不当行为,未来的模型仍可能因足够聪明而难以被控制。若在确保模型安全性方面做得过度,可能削弱产品功能。 3. 对于监管,OpenAI 的 Altman 虽将自己定位为监管拥护者,但也面临一些指责,如被认为玩弄监管程序以阻碍小型初创企业发展并给自己带来优势。不过他原则上赞同由国际机构监督 AI 的想法,但对一些拟议规则持有不同意见。OpenAI 拒绝相关批评,认为通过分析用户反应才能使未来产品符合道德规范。
2024-11-13
AI会被当做政治工具吗
AI 有可能被当作政治工具。 在英国,其 AI 监管框架适用于整个国家,且会考虑到权力下放的影响,同时将依靠现有立法来实施框架,并持续与各方互动以确保各地受益。 在美国,拜登签署的行政命令指出,AI 能帮助政府更好地服务民众,但使用也可能带来风险,为此总统指示采取一系列行动,包括为机构使用 AI 发布指导、帮助机构更高效获取相关产品和服务、加速招聘 AI 专业人员以及为员工提供培训。 在欧盟,《人工智能法案》旨在促进以人为本和值得信赖的 AI 应用,保护健康、安全、基本权利和民主免受有害影响,如全面禁止某些用途的 AI 、要求生成式 AI 系统披露内容生成方式、将用于影响选举选民的 AI 系统视为高风险等。
2024-11-13
喂AI需不需要电脑?
喂 AI 通常需要电脑或类似的计算设备。例如,在一些 AI 应用中: 像“诗相机”这样的项目,选择了 Raspberry Pi Zero 2 W 这样的计算机作为硬件,它具有一定的处理能力和紧凑的尺寸,但可能存在对电源敏感、软件操作需注意等问题。 在游戏相关的 AI 场景中,也需要一定的计算设备来支持相关的开发和应用。 总之,电脑或具备计算能力的设备对于实现和运行许多 AI 任务是必要的。
2024-11-13
对于目前而言,AI的功能已经被完全确定了吗
目前而言,AI 的功能尚未被完全确定。 在独立游戏开发中,AI 作为开发辅助工具表现不错,能加速玩法验证和 Demo 制作,但还不足以完全替代开发者进行开发,对复杂项目也未达到“言出法随”的境界。 对于 SaaS 生态,最初认为 AI 的转型不会摧毁现有的云计算公司,但现在不再那么确定。认知架构带来巨大工程挑战,将模型基础能力转化为成熟可靠的端到端解决方案可能比想象更复杂。 目前最好的大型语言模型改进速度约为每 5 至 14 个月翻一番,但仍未完全发挥现有 AI 的能力。AI 在事实核查方面甚至可超越人类,在医疗等专业领域表现出色,但仍存在局限性。机器人代理人可能成为将 AI 与组织整合的关键。
2024-11-13
AI能根据阶段性成果推断出最终结果吗
在最简单的情形下,我们基本想用人工智能做归纳推理,输入一系列测量结果,让其预测尚未完成的测量结果。此时,我们把人工智能视作黑匣子,只关心其能否给出正确答案,可能认为能设置它“不做任何假设”而“遵循数据”,但人工智能不可避免存在一些底层结构,使其最终要假设某种数据模型。这是机器学习中常见的情况,比如训练神经网络来预测、分类等,若“向内看”很难明白其运作原理。应用图像识别神经网络会有最终结果,网络中约一半层产生的“中间想法”可能存在类似“猫性的最终标志”,但这不在当前科学词典中,无法用于构建解释图像的“科学叙述”。 综上,人工智能在一定程度上能根据阶段性成果进行推断,但存在诸多限制和不确定性。
2024-11-13
AI能回答目前解决不了的问题吗
人工智能不能解决目前所有的问题。例如在科学领域,我们还没有解决所有想要解决的问题,很多时候我们似乎没有选择研究内容的权利,比如大自然会迫使我们去研究某些方面。这就不可避免地让我们面对计算不可约性。 有许多问题都遵循类似的模式,如在游戏图中找到获胜的游戏序列、通过可能性图的移动寻找谜题的解决方案、在给定公理的情况下找到定理的证明、在给定基本反应的情况下寻找化学合成途径,以及解决大量的 NP 问题,这些问题中存在许多“非确定性”的计算路径。 在实际情况中,相关的图通常非常大,所以挑战在于不追踪整个可能性图的情况下找出要采取的步骤。常见的方法包括尝试为不同的可能状态或结果分配分数,并只追求分数最高的路径。在自动定理证明中,也常见从初始命题“向下”和从最终定理“向上”工作,试图找到路径在中间的交汇点。还有一个重要的想法是,如果确定了从 X 到 Y 存在路径,就可以将 X → Y 作为新规则添加到规则集合中。 另外,查看自动编码器内部可以提取出它提出的简化表示。当数据在神经网络中流动时,会努力保留重现原始输入所需的信息。如果某一层的元素较少,那么该层的元素就对应于原始输入的某种简化表示。以经过大量网络图像训练的标准现代图像自动编码器为例,给它输入一张猫的图片,它能成功复制出类似原图的东西,中间会有像素少得多的简化表示,虽然我们不知道模型中元素的含义,但它成功捕捉到了图片的本质。 总之,计算的不可约性将阻止我们完全依靠人工智能解决所有问题,总会有更多有待发现和需要更多计算才能达到的东西。
2024-11-13
如何快速转行入AI
以下是快速转行入 AI 的一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于不会代码的情况,20 分钟上手 Python + AI 的方法如下: 在深入学习 AI 时,许多朋友发现需要编程会感到困难,各类教程默认会打命令行也导致入门难。因此有了这份简明入门,旨在让大家更快掌握 Python 和 AI 的相互调用,并在接下来的 20 分钟内,循序渐进完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 一些背景: 1. 关于 Python: Python 就像哆拉 A 梦,拥有一个装满各种道具的百宝袋,即标准库,遇到问题可直接使用。 若百宝袋里的道具不够用,还可通过 pip 一类的工具从 GitHub 一类的分享代码平台订购新道具。 Python 被全世界广泛使用,尤其是在 AI 领域。 2. 关于 OpenAI API: OpenAI 通过两种方式提供服务,其一通过 ChatGPT 提供开箱即用的服务,直接对话即可;其二通过 OpenAI API 提供更加灵活的服务,通过代码调用完成更多自动化任务。 另外,关于如何防止 AI 取代人类思考一切,原文提到:认知萎缩会在我们因不活动而失去参与心理过程的能力时发生。在人工智能的世界中,我们需要意识到认知萎缩的危险,以便能够继续保持好奇心、创造力和深入学习。比如在过去,我们需要记住城市的布局和路线,而现在过度依赖 AI 可能导致认知能力的下降。
2024-11-11
我想转行做AI产品经理我该了解哪些AI方面的知识
如果您想转行做 AI 产品经理,以下是您需要了解的一些 AI 方面的知识: 1. 算法知识: 理解基本的机器学习算法原理,有助于更好地理解 AI 产品的核心技术,从而做出更合理的产品决策。 掌握一定的算法知识,可与开发团队进行更有效的沟通,减少信息不对称带来的误解。 在产品规划阶段,能够评估某些功能的技术可行性。 了解算法前沿,更好地把握产品的未来发展方向。 发现产品的独特优势,提出创新的产品特性,提升产品竞争力。 提升数据分析能力,因为很多 AI 算法都涉及到数据处理和分析。 2. 技术框架:对技术框架有认知,了解技术边界,最好能知道一些优化手段和新技术的发展。 3. 关注重点: 关注场景、痛点和价值。 例如在录播课编程作业的自动批改案例中,要关注班主任批改作业时间长的场景,作业批改无法统一标准的痛点,以及提高教学质量和效率的价值。 总之,AI 产品经理需要具备跨学科的知识背景,能够在技术和业务之间进行有效沟通和决策。
2024-09-14
如何求职转行到 AI 行业
以下是关于求职转行到 AI 行业的一些建议: 在 AI 时代,技术专业人士需发展 AI 难以替代的技能,如团队建设、跨文化交流、创新解决方案设计等,因为 AI 无法建立团队、跨越文化交流或激发团队创造力。对于从事可能被 AI 取代风险工作的技术工作者,要重新思考职业生涯规划,可能需学习新技能或转向更需人类特质的工作领域。 在 AI 就业市场: 1. 鱼龙混杂,求职者要做好信息甄别。即使面试通过拿到 offer,除了看 boss 直聘的招聘评价,还应提前在脉脉等平台收集公司的其他信息。 2. 部分公司未搞懂 AI 能带来的价值,只是跟风,求职者要有咨询和商业化思维,帮公司厘清业务增长机会。 3. 不同公司对 AI 产品经理定位不同,岗位职责和任职要求也不同,未来会统一标准,这是产品经理转型的机会。 4. 有行业沉淀和认知的产品经理转型更有机会,目前应用层机会在“AI+行业”,只懂 AI 或只懂行业不够,业务创新也很重要。 对于学生和应届毕业生: 1. 可以通过相关产品了解 AI 技术在不同职业中的应用,评估兴趣和技能,选择合适职业路径并制定规划。 2. 根据职业目标获得个性化学习建议和资源,提升 AI 领域技能为就业做准备。 对于职场新人和职业转换者: 1. 可根据自身职业目标和市场需求制定发展计划,明确短期和长期目标。 2. 对于希望从其他领域转型到 AI 相关领域的从业者,可获得详细的转型路径和必要的技能培训资源以顺利转型。 对于企业: 1. 可利用相关产品评估应聘者 AI 技能水平,选择合适候选人。 2. 为现有员工提供职业发展规划和技能提升建议,培养内部 AI 人才。 3. 为员工制定个性化职业发展计划,提供持续职业指导和培训,提升员工职业满意度和留任率。
2024-09-09
怎么转行aigc产品经理
转行成为 AIGC 产品经理需要具备以下条件和步骤: 对 AIGC 有浓厚兴趣和热情,了解其发展趋势和应用场景。 掌握相关技能,如熟练使用 StableDiffusion、SD Web UI 等工具,会写复杂的提示词,能上手简单的模型微调等。 具备产品经理的基本能力,如需求分析、产品设计、项目管理等。 关注行业动态,了解最新的 AIGC 技术和产品。 积累相关经验,可以通过参与项目、实习或自学等方式。 建立人脉关系,与同行交流,了解行业内的机会。 在招聘信息中,某数字银行正在招聘 AIGC 产品经理,要求对 AIGC 有坚定的信念,喜欢使用各种 AIGC 应用,能够上手相关技能。岗位职责包括构建大模型工程化产品,探索和设计支持 AI 原生应用构建的工程化产品。 此外,Midjourney 发布了自定义模型的能力,Mistral AI 在 B 轮融资中获得 600 百万欧元,Open AI 认命了新的 CFO 和 CPO。这些行业动态也反映了 AIGC 领域的发展和变化。
2024-07-08
用100字概括AI如何改变普通人的工作和生活
AI 正在改变普通人的工作和生活。在工作方面,如制造业可实现预测性维护、质量控制等;金融领域能进行风控和信用评估。在生活中,教育有了数字教师和个性化学习计划,医疗能辅助诊断和研发药物,电商提供个性化推荐,还能有个性化的 AI 助手等。
2024-11-13
用100字概括AI的好处,和普通人如何开始使用AI
AI 的好处众多,如辅助创作与学习、推荐与规划、监控与预警、优化与管理、销售与交易等。普通人开始使用 AI 可通过以下方式:英语学习可利用智能辅助工具如 Grammarly 纠错,用语音识别应用如 Call Annie 练习发音;数学学习可用自适应学习系统如 Khan Academy 定制学习路径等。结合 AI 与传统方法能提高学习效果。
2024-11-13
用100字概括普通人应该如何认识AI
普通人认识 AI 可将其视为黑箱,是似人而非人的存在。想让其实现愿望,要通过清晰语言压缩其自由度,明确目标、边界、路径和所需知识。同时,要接受其似人的不稳定性,通过多轮对话修正,因为不能期望一次输入就得到理想结果。
2024-11-13
普通人如何入局ai
普通人入局 AI 可以参考以下方法: 1. 万能公式法:问 AI“一个(xxx 职业)需要具备哪些知识?”,AI 会给出知识框架,然后针对每一个小点进一步询问,帮助深度思考。 2. 寻找优质信息源:像没有技术背景的普通人,可在「即刻」App 的“”等免费圈子获取前沿信息。同时,注意信息渠道、质量、密度三者皆优。若担心信息洪流太大,可尝试以下做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 3. 直观初接触:对 AI 最好的直观初接触有两个方面,一是了解最低成本能直接上手试的工具以及自己能否尝试,二是了解现在最普遍/最好的工具及其效果。虽然底层都是大模型,但 AI 工具各有侧重,不同公司也有各自优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已分好类目。为了更便捷展示 AI 能力,让普通人更直观马上上手,可选择聊天工具、绘画工具、视频工具、音乐工具等进行体验。
2024-11-11
普通人如何开始学习AGI?
对于普通人开始学习 AGI,以下是一些建议: 1. 万能公式法:问 AI“一个(xxx 职业)需要具备哪些知识?”,AI 会给出知识框架,然后针对每一个小点进一步询问,能帮助您深度思考。 2. 寻找优质信息源:像没有技术背景的普通人,可在「即刻」App 的“”等免费圈子获取前沿信息线索,很多 Twitter 上的开发者大牛也会在此分享。若担心信息洪流太大,可尝试以下 5 个做减法的技巧: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 3. 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 4. 初学者入门推荐:看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 5. 学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。
2024-11-06
普通人学习AI有哪些好处
以下是普通人学习 AI 的一些好处: 有助于在医疗保健领域带来改变,例如医生可将文档工作交给 AI 书记员,初级医疗服务提供者可依赖聊天机器人进行分诊,加速药物开发等。 能够为在特定领域成为顶尖人才打下基础,像医学领域,需要多年的密集信息输入和实践学习,AI 学习也类似。 可以培养处理复杂情况和细微差别的决策直觉,例如在分子层面的差别处理。 了解 AI 如何在没有直接从人类获取数据的情况下,通过观察来学习和模仿人类行为,这被视为向人工通用智能迈进的一步。 需要注意的是,以上内容是基于提供的资料进行的总结和整理。
2024-11-01
视频生成行业做的好的产品推荐
以下是一些在视频生成行业表现出色的产品推荐: 1. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作且支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,能在图片基础上直接生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但需收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 6. 可灵:国产应用,在视频生成质量、生成速度和国内用户的可访问性方面具有显著优势。 7. 从生成方式分类: 文生视频、图生视频:Runway、Pika labs、SD + Deforum、SD + Infinite zoom、SD + AnimateDiff、Warpfusion、Stability Animation。 视频生视频: 逐帧生成:SD + Mov2Mov。 关键帧+补帧:SD + Ebsynth、Rerender A Video。 动态捕捉:Deep motion、Move AI、Wonder Dynamics。 视频修复:Topaz Video AI。 AI Avatar+语音生成:Synthesia、HeyGen AI、DID。 长视频生短视频:Opus Clip。 脚本生成+视频匹配:Invideo AI。 剧情生成:Showrunner AI。
2024-11-12
AI 在教育行业的落地场景有哪些?
AI 在教育行业的落地场景主要包括以下方面: 1. 个性化学习:通过集成算法和大数据分析,如 Knewton 平台,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生的作文和开放性答案题,如 Pearson 的 Intelligent Essay Assessor,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学:例如 Google 的 AI 教育工具 AutoML 用于创建定制学习内容,通过有趣方式加深学生对学科概念的理解。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室进行实验操作并获得 AI 系统反馈,如 Labster 的虚拟实验室平台。 5. 协助评估学生学习情况,为职业规划提供建议。 6. 针对学生情况和兴趣定制学习内容。 7. 论文初稿搭建及论文审核。 8. 帮助低收入国家/家庭获得平等教育资源。
2024-11-12
汽车行业AI应用
以下是人工智能在汽车行业的一些应用: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司都在开发和测试自动驾驶汽车,实现自主导航和驾驶。 2. 车辆安全系统:AI 用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统,通过分析摄像头和传感器数据预防事故。 3. 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置,包括座椅位置、音乐选择和导航系统,提供更个性化和舒适的驾驶体验。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本,提高车辆可靠性和效率。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制,监测设备状态并优化生产流程,减少人为错误。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,以理解客户需求、制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,优化电池使用和充电时间,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等共享出行平台使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取措施。 此外,还有一些相关的 AI 应用案例,如汽车之家车商城利用 AI 分析用户购车需求和预算,为用户推荐合适的汽车品牌和车型,并提供购车优惠和金融服务。
2024-11-11
在语音数据的标注中你有什么针对你行业(车载语音助手)的特殊标注规则
在车载语音助手这一行业的语音数据标注中,特殊标注规则如下: 1. 音素覆盖:在录音开始前构建基础的文本前端,具备简单的文本转音素(G2P)系统。录音文本要保持多样性,音素或音素组合尽可能覆盖全,统计音素序列中的 NGram,避免某些音素或组合出现频次过高或过少。 2. 场景定制:收集车载播报的常用话术、专业术语(如油量、胎压等)、音乐名或歌手名、地名和新闻播报。对业务有一定理解,并在一开始就和需求方紧密沟通。 3. 文本正确性:确保录音文本拼写无误,内容正确,删除脏话、不符合宗教信仰或政治不正确的语句。
2024-11-11
如何打造智能家电行业大模型,需要几步,分别具体怎么实施?
打造智能家电行业大模型一般需要以下步骤及具体实施方法: 1. 准备计算资源:训练大模型需要大量的计算能力,特别是 GPU 等硬件,类似于找一所具备资本和资源的“贵族学校”。 2. 确定数据:大模型需要海量的数据,数据量通常以千亿序列(Token)为标配,这就像为学习确定丰富的“教材”。 3. 选择算法:选择合适的算法来处理和讲解数据,让大模型能更好地理解 Token 之间的关系,如同为学习找一位好“老师”。 4. 微调指导:为了让大模型更好地适应智能家电行业,需要进行微调指导,类似于就业指导。 5. 实际应用:完成上述步骤后,大模型就可以进行实际的任务,如翻译、问答等,这被称为推导。 在构建大模型的过程中,还包括以下具体环节: 1. 收集海量数据:如同教孩子成为博学多才的人需要让其阅读大量书籍、观看纪录片、与人交谈,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:就像为孩子整理学习资料,要对收集到的数据进行清理和组织,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:为大模型设计“大脑”结构,通常是复杂的神经网络,例如使用 Transformer 架构这种擅长处理序列数据的结构。 4. 训练模型:让大模型“阅读”提供的数据,通过反复预测句子中的下一个词等方式,逐渐学会理解和生成人类语言。 行业最佳实践方面,以 Baichuan 为例,针对用户复杂的问题,借鉴了 Meta 的 CoVe 技术,将复杂 Prompt 拆分为多个独立且可并行检索的搜索友好型查询,还利用自研的 TSF 技术挖掘用户输入背后更深层的问题。在检索步骤中,自研了 BaichuanTextEmbedding 向量模型,对大量数据进行预训练,并通过自研损失函数解决问题,同时引入混合检索方式提升目标文档的召回率。
2024-11-08
AI应用的行业
以下是 AI 的一些主要应用行业: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新治疗方法。 提供个性化医疗,分析患者数据制定个性化治疗方案。 控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 评估借款人信用风险,辅助贷款决策。 分析市场数据,帮助投资者做出投资决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 分析客户数据进行产品推荐。 改善搜索结果和提供个性化购物体验。 根据市场需求动态调整产品价格。 提供聊天机器人服务,解决客户问题。 4. 制造业: 预测机器故障,进行预测性维护,避免停机。 检测产品缺陷,把控质量。 优化供应链,提高效率和降低成本。 控制工业机器人,提高生产效率。 5. 交通运输: 开发自动驾驶汽车,提高交通安全性和效率。 优化交通信号灯和交通流量,缓解拥堵。 优化物流路线和配送计划,降低运输成本。 实现无人机送货,送达偏远地区。 6. 其他应用场景: 教育领域,提供个性化学习体验。 农业方面,分析农田数据提高农作物产量和质量。 娱乐行业,开发虚拟现实和增强现实体验。 能源领域,优化能源使用,提高能源效率。 需要注意的是,AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。以上内容由 AI 大模型生成,请仔细甄别。
2024-11-06