Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

普通人如何学习利用ai,提高工作学习效率,怎么学习及学习顺序是怎样的

Answer

以下是为普通人提供的学习利用 AI 以提高工作学习效率的方法及学习顺序:

一、了解 AI 基本概念

首先,建议阅读相关资料,如「从这里启程」部分,熟悉 AI 的术语和基础概念,包括人工智能是什么、其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。

二、开始 AI 学习之旅

在「入门:AI 学习路径」中,能找到为初学者设计的一系列课程。特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并争取获得证书。

三、选择感兴趣的模块深入学习

AI 领域广泛,涵盖图像、音乐、视频等。可根据自身兴趣选择特定模块深入,比如一定要掌握提示词的技巧,其上手容易且实用。

四、实践和尝试

理论学习后,实践是巩固知识的关键。尝试使用各种产品做出自己的作品,在知识库中也有很多大家实践后的作品和文章分享,欢迎自己实践后也进行分享。

五、体验 AI 产品

与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。通过对话获得对 AI 在实际应用中表现的第一手体验,激发对 AI 潜力的认识。

此外,还可以参考《雪梅 May 的 AI 学习日记》中的学习模式,即输入→模仿→自发创造。同时注意,学习资源大多是免费开源的,可在 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。学习时间可根据自身情况灵活安排,不必有压力,能学多少算多少。

Content generated by AI large model, please carefully verify (powered by aily)

References

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

毫无疑问,AI将不可逆转地改变我们如何预防和治疗疾病。医生将把文档工作交给AI书记员;初级医疗服务提供者将依赖聊天机器人进行分诊;几乎无穷无尽的预测蛋白结构库将极大地加速药物开发。然而,为了真正改变这些领域,我们应该投资于创建一个模型生态系统——比如说,“专家”AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。这是一个几乎不可替代的过程:例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于AI来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。通过研究成千上万个标记过的数据点(“正确”和“错误”的例子)——当前的先进神经网络架构能够弄清楚什么使一个选择比另一个选择更好。我们应该通过使用彼此堆叠的模型来训练AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。例如,雌激素和睾酮只有细微的差别,但它们对人类健康的影响截然不同。

《雪梅 May 的 AI 学习日记》挑战 100 天和 AI 做朋友

说明:1.适合纯AI小白:如果你还在观望AI,不知道从何入手,可以参考我这个日记。你可以先看左边的目录,会发现我现在已经快到100天了,在这个时间跨度里,我从一开始的到处看看到现在觉得自己已经走在了一条学习AI的轨道上。2.学习模式是什么:我平时有记录笔记的习惯,所以积累了这份AI学习日记。我最近整理复盘了这将近100天记录的日记后,我发现我学习AI的模式是输入→模仿→自发创造。如果你没有自信一开始就用费曼学习法来接触AI,那你可以试试我这个实践出来的学习模式。3.学习内容:我日记里的学习内容你可以不用直接复用,因为AI的节奏太快了,很多学习的材料在半年后的现在可能已经不适用了。比如coze之前共学的那些课程,你会发现coze已经改版了,如果你按照老课程来模仿,产品功能不一样了,对你来说会有转换的门槛。你可以去waytoAGI社区发现你自己感兴趣的AI领域,去学习你自己想学的最新的内容。4.有时间学吗:在半年多的时间跨度中,其中有100天在学习AI,所以这里的DAY(天数)不是每天依次进行,而是有空的时候学习。目前我进行到了90天,希望自己能够坚持满100天,甚至更多时间。5.学习状态:我在2024年保持了比较好的学习状态,有意愿和动力也能头脑清醒的学进去东西。这种状态不仅体现在学AI,我在2024年还看了33本书,像《穷查理宝典》这样的大部头都能看进去。所以如果你看到这个100天日记觉得自己很难做到,那是学习状态没有到最好,不用有心里压力,能学多少算多少就行。6.有费用吗:本日记中学习资源的内容都是免费开源的,真的很感谢这些把信息开源的人,这样会AI的人才会越来越多。我也是秉持这个理念,把我的学习日记开源了

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

Others are asking
学习AI大模型
以下是关于学习 AI 大模型的相关知识: 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 概念与关系 AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似特征的组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-02-22
我是一名教师,是一个AI小白,现在想系统学习相关内容,请帮我规划好
以下是为您规划的系统学习 AI 的方案: 第一阶段:迈出第一步,打好基础 1. 学习指南 系统性学习:避免碎片化输入,系统地阅读相关书籍、听取优质课程,了解 AI 的底层原理和发展历程。 2. 初步探索 避免弯路:不要仅依赖刷短视频学习,对于 B 站等平台上的内容要有选择性,注重质量高的系统性内容。 3. 加入 AI 社区 例如“通往 AGI 之路”开源知识库,参考新手指引入门。 第二阶段:深入学习 1. 了解 AI 基本概念 阅读「」,熟悉术语和基础概念,包括主要分支及相互联系。 浏览入门文章,了解历史、应用和发展趋势。 2. 开始学习之旅 参考「」,学习生成式 AI 等基础知识,推荐李宏毅老师的课程。 利用在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,并争取获得证书。 第三阶段:选择感兴趣的模块深入 1. 领域选择 AI 领域广泛,如图像、音乐、视频等,根据兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 第四阶段:实践和尝试 1. 巩固知识 理论学习后通过实践巩固,尝试使用各种产品创作作品。 分享实践成果。 第五阶段:体验 AI 产品 1. 互动学习 尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解工作原理和交互方式,获取实际应用体验,激发对 AI 潜力的认识。
2025-02-22
我想利用ai做自媒体来销售产品从哪开始学习
如果您想利用 AI 做自媒体来销售产品,可以从以下几个方面开始学习: AI 绘画方面: 1. 个体成为自媒体博主。 2. 个体商户应用。 3. 实体印刷(如 T 恤、杯子实物等)。 4. AI 摄影。 5. 设计接单。 6. AI 定制萌娃头像。 7. 电商商品。 8. 自媒体素材。 9. AI 服装预售。 10. AI 视频接单。 11. 培训老师。 在阿里巴巴营销方面: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:利用 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述。 3. 产品页面设计:借助 AI 设计工具生成吸引人的产品页面布局。 4. 内容生成:使用 AI 文案工具撰写有说服力的产品描述和营销文案。 5. 图像识别和优化:依靠 AI 图像识别技术选择或生成高质量的产品图片。 6. 价格策略:通过 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:利用 AI 分析客户评价和反馈,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户购买历史和偏好提供个性化产品推荐。 9. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 客户服务。 10. 营销活动分析:依靠 AI 分析不同营销活动的效果。 11. 库存管理:利用 AI 预测需求,优化库存管理。 12. 支付和交易优化:通过 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,进行精准营销。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容。 AI 写作方面: 1. 项目启动:确定目标客户群体,选择合适的 AI 写作工具。 2. 准备阶段:学习并实践 AI 写作技术,构建团队。 3. 商业模式构建:确定服务内容,制定质量控制标准。 4. 运营与推广:在电商平台开设店铺,建立写作培训社群,通过社交媒体和线下活动进行品牌和社群建设,与其他团队合作。 5. 项目优化与发展:持续关注 AI 技术进展,根据市场需求拓展新服务和产品,收集客户反馈并改进服务。
2025-02-22
ai产品经理学习路径
以下是为您提供的 AI 产品经理学习路径: 1. 入门级: 可以通过 WaytoAGI 等开源网站或一些课程来了解 AI 的概念。 学会使用 AI 产品,并尝试动手实践应用搭建。对应的画像可能是喜欢听小宇宙 APP 的播客或浏览 AI 相关的文章。 2. 研究级: 有两个路径,一个是技术研究路径,一个是商业化研究路径。 这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用: 这一阶段的画像就是有一些成功落地应用的案例,如产生商业化价值。 对应传统互联网 PM 也有三个层级: 负责功能模块与执行细节。 负责整体系统与产品架构。 熟悉行业竞争格局与商业运营策略。 总结来说,对 AI 产品经理要求懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI 是工具和手段,产品经理要关注的还是场景、痛点、价值。
2025-02-22
我想成为ai产品经理该怎么学习
如果您想成为 AI 产品经理,可以从以下几个方面进行学习: 1. 了解相关技术概念: 思维链:谷歌在 2022 年的论文中提到,思维链能显著提升大语言模型在复杂推理方面的能力,即便不用小样本提示,也可在问题后加一句“请你分步骤思考”。 RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一起传给 AI,可搭建企业知识库和个人知识库。 PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助 Python 解释器等工具作为计算工具。 ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,比如用搜索引擎对关键字进行搜索,观察行动结果,可借助 LangChain 等框架简化构建流程。 2. 关注技术论文:很多大佬认为要关注或直接阅读技术论文,比如产品经理转型 AI 产品经理,需要懂技术脉络。但小白直接看技术论文有难度,虽然现在可让 AI 辅助阅读,仍要完成一定知识储备。林粒粒呀的相关视频是很好的科普入门。 3. 学习技术框架与未来想象:比如了解 Transformer 是仿生算法的阶段性实现,10 年、20 年后可能不再使用。
2025-02-22
转行做AI产品经理的自学指南,并帮我找到学习资源途径
以下是一份转行做 AI 产品经理的自学指南及学习资源途径: 自学指南: 1. 了解 AI 基础知识,包括常见的概念、技术和应用。 2. 学习产品管理的核心知识,如需求分析、用户体验设计等。 3. 关注技术原理,例如思维链、RAG、PAL、ReAct 等,可通过相关论文和科普视频进行学习。 4. 积累实践经验,尝试参与实际项目或模拟项目。 学习资源途径: 1. WaytoAGI(通往 AGI 之路):这是一个致力于人工智能学习的中文知识库和社区平台,提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面。 汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯。 提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织实践活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 2. 相关技术论文:虽然对于小白有难度,但可以借助 AI 辅助阅读,完成一定知识储备。 3. 科普视频:如林粒粒呀的相关科普视频。 4. 行业访谈:例如安克创新 CEO 阳萌的访谈,获取前沿观点和启发。 此外,您还可以参考北京分队中相关人员的经验,如 Sundy 从产品运营转行当 AIGC 产品经理的经历。
2025-02-21
如何权构建个人AI知识库,请提供详尽的方案,并提供相关工具应用案例。
以下是构建个人 AI 知识库的详尽方案及相关工具应用案例: 方案: 1. 知识收集:学习如何有效地收集、整理和检索信息,例如分新闻、观点、访谈、论文翻译来进行提炼。 2. 知识管理:通过实际操作,体验工具在知识管理方面的应用。 3. 数据处理:使用工具对数据进行转换、提取和呈现,如从图像和图形中提取数据。 4. 内容总结:总结视频内容、翻译和改换风格等。 工具应用案例: 1. 知识收集与整理: 通义听悟整理录音笔记:https://tingwu.aliyun.com 用 React 实现选中即解释 本机跑大语言模型工具:https://ollama.com 选词翻译、解读、拓展:https://snapbox.app 与各种 AI 机器人聊天:https://opencat.app 、https://chathub.gg/ 、https://www.elmo.chat/ 定义提示语,根据不同类型提取有用信息:https://memo.ac/zh/ 2. 数据获取与处理: 下载视频:Mac 用 Downie,Windows 推荐 IDM 淘宝数码荔枝店购买 开源免费屏幕录制工具 OBS:https://obsproject.com/ 用 losslessCut 快速切块 3. 构建知识库: 将文本转换成向量(如使用 embeddings API),先把大文本拆分成若干小文本块(chunk),将小文本块转换成 embeddings 向量并在向量储存库中保存,当用户提问时,通过比对向量提取关联度最高的文本块与问题组合成新的 prompt 发送给 GPT API。 例如对于一篇包含多个文本块的文章,如“文本块 1:本文作者:越山。xxxx。”“文本块 2:公众号越山集的介绍:传播效率方法,分享 AI 应用,陪伴彼此在成长路上,共同前行。”等,当提问“此文作者是谁?”时,可通过比较 embeddings 向量找出关联度最高的文本块。 4. 工具入门: 提示词:现成好用的 Prompt: AI Agent:Agent 工具 小白的 Coze 之旅: AI Pic:现在主流的 AI 绘图工具网站:
2025-02-22
AI在国企的应用
AI 在国企的应用场景广泛,以下为您列举一些常见的应用领域: 1. 医疗保健方面: 医学影像分析:辅助诊断疾病。 药物研发:加速研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:为患者提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务方面: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出更好的贷款决策。 投资分析:辅助投资者做出明智决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务方面: 产品推荐:根据客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业方面: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 此外,在国企中,AI 还可以应用于工作流程自动化、提高运营效率、优化资源配置等方面。随着技术的不断发展,未来有望看到更多创新的应用场景和解决方案。
2025-02-22
我是一个小学教师,我要写一个值周小结,推荐用哪款AI软件
以下是为您推荐的一些可能有助于写值周小结的 AI 软件: 1. 可画软件:提供多种排版模板和 AI 功能,方便图片处理和尺寸调整,如将海报尺寸调为 1080 乘 1440。 2. Request 软件:具有锐化清晰度等 PS 中有的功能,可自定义尺寸、选择风格模型、创建风格,支持中文输入但部分提示词用谷歌翻译更准确,还具有文字输入、样机等功能。每天登录有 50 点积分,生成一次图像需 1 点积分,可创建系列图像。 3. 吉梦智能画板:具有消除、图层、一键抠图等功能,抠图效果较好。 此外,还有一些辅助工具: 1. IAIFONT、自由等字体软件:可及时预览和切换字体,注意使用免费字体和避免版权问题。 2. 内容排版大师的 GPTs:只需在聊天框粘贴文字内容,然后点击发送即可。GPTs 链接:https://chat.openai.com/g/gt9dIHp4Ntneirongpaibandashi 。 3. 小作卡片 app:官网链接:https://kosaku.imxie.club/ 。操作步骤为:①打开软件点击「自制卡片」;②在「记录些什么...」中粘贴 AI 生成文本内容;③点击右下角的保存图标即可导出。
2025-02-22
软件工程师如何从ai上获得帮助
软件工程师可以从以下几个方面在 AI 上获得帮助: 1. 辅助编程的 AI 工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,提供实时代码建议。 CodeGeeX:智谱 AI 推出的开源免费工具,基于大模型可快速生成代码。 Cody:Sourcegraph 推出,借助强大的代码语义索引和分析能力为开发者服务。 CodeFuse:蚂蚁集团支付宝团队提供的免费 AI 代码助手。 Codeium:由 AI 驱动,提供代码建议、重构提示和代码解释等帮助。 更多工具可查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 生成性 AI 作为助手:模型在大量代码库上训练,在编码时给出建议,但要注意生成代码的正确性,在提高生产力的同时限制生成量以检查正确性。例如 GitHub Copilot 帮助提高了开发人员的生产力,估计增长在 2 倍或更少的范围内。 Sam Altman 的三点观察表明: 1. AI 模型的智能大致等于用于训练和运行它的资源的对数,预测这一规律的缩放定律在多个数量级上都准确。 2. 使用给定水平的人工智能的成本每 12 个月下降约 10 倍,较低价格导致使用量大幅增加。 3. 社会经济上线性提升智力的价值具有超指数性质,这一结果导致看不到指数式投资在不久将来会停止的理由。 未来可能会推出人工智能代理,如软件工程师代理人,虽然存在一些不足,但仍可能产生重大影响。生成性 AI 作为程序员助手是最早应用之一,成果出色,但相对于图像生成,生产力提升相对较小,且要注意代码正确性。
2025-02-22
工作10多年了,英语生疏了,如何利用AI学好英语应对国外出差、商务谈判
以下是利用 AI 学好英语以应对国外出差和商务谈判的一些建议: 1. 进行自然语言对话:让 AI 模拟真实的交流场景,与您进行英语对话,帮助您提高口语表达和听力理解能力。 2. 提供深入全面的解释:要求 AI 对您提出的问题和知识点提供深入的见解和全面的理解,可能的话还可以为您寻找并提供相关的网络图片来增强解释效果。 3. 构建复杂的句子:让 AI 巧妙地运用复杂的句子结构来模拟真实的人类对话,丰富语言的多样性和复杂性。 4. 创意和多样的语言运用:避免语言的重复,使用多样的短语和词汇,并适当加入幽默、讽刺等元素,展现个性化。 5. 基于事实和引用:让 AI 在回答中包含事实和著名的引语,增加回答的可信度。 6. 详细和个性化的回应:AI 的回答应包含具体而细致的内容,并根据您之前的交流历史进行个性化定制。 7. 模仿人类的不完美:偶尔让 AI 模仿人类的小拼写错误、语法错误和轻微的逻辑不一致。 8. 富有表现力和个性化的交流:让 AI 在交流中注入情感,使用随意的语言和各种语气词,展示其推理过程。 9. 多样的结构和语言格式:让 AI 采用多种句子结构和表达方式,使语言更丰富自然。 10. 分享个人故事和独特观点:让 AI 补充个人经历和独特的观点,使交流更丰富和个性化。
2025-02-22
普通人的AI之路
普通人在 AI 领域有很多创造奇迹的机会和途径: 1. 参与 AI 艺术节:例如第一届 AI 艺术节 AIAF 面向全球创作者和 AI 爱好者发起了以“爱恨情仇”为命题的共同创作行动,收到了大量投稿,其中有相当比例的优秀作品来自此前并非从事视觉创作的跨界人士。 2. 让 AI 走进工作和生活: 万能公式法:问 AI 【一个(xxx 职业)需要具备哪些知识?】,获取知识框架,再针对小点提问,辅助深度思考。 寻找优质信息源:像没有技术背景的普通人,可在「即刻」App 的“”等免费圈子获取前沿信息,也可在必要时溯源至 Twitter 和相关官网。同时,为应对信息爆炸,可尝试只掌握最好的产品、解决具体问题、关注核心能力、关注需求和逻辑、先提升认知等技巧。 3. 了解 AGI 相关内容:如阅读 AGI 万字长文,了解 AI 多模态大爆发、应用现状、发展方向、可能带来的影响等多方面内容。
2025-02-21
普通人怎么学习ai赚钱
以下是为普通人学习 AI 赚钱提供的一些指导: 对于零基础小白: 1. 网上有很多基础课程可供选择,例如科普类教程。 2. 阅读 OpenAI 的官方文档,理解每个参数的作用和设计原理,避免在面试中出现知识盲区。 3. 推荐使用一些练手的 Prompt 工具。 岗位技能要求: 1. 具备综合的个人能力,包括市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象并集成成为一个互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发。 案例分享: 1. 二师兄在房地产行业从业二十年,计算机零基础。他从二月开始学习 AI 绘画,三月啃完相关教程并开始炼丹,四月尝试 AI 变现项目,五月加入 Prompt battle 社群学习 Midjourney。 需要注意的是,公司招聘 AI 提示词工程师岗位时,通常不会多招其他懂 AI 的岗位,因此需要个人具备较为全面和敏捷的能力。同时,若想将 AI 用于赚钱,还需不断探索和实践,找到适合自己的变现途径。
2025-02-21
是否有《普通人如何抓住deepseek红利》清华大学链接
以下是关于《普通人如何抓住 DeepSeek 红利》的相关链接: 清华大学新闻与传播学院撰写的报告:https://waytoagi.feishu.cn/record/T2yDrJ4NjeJFmccnBgzc5A7InIq 相关 PPT 课件:https://bl7rsz9526.feishu.cn/wiki/Gec9wxIGhiqSsAkrqzPc3ObLnpb (由清华大学新闻与传播学院、新媒体研究中心、元宇宙文化实验室、@新媒沈阳团队的陶炜博士生团队制作)
2025-02-20
普通人怎么开展ai应用层的创业
对于普通人开展 AI 应用层的创业,以下是一些建议和分析: 1. 基础设施层:布局投入确定性强,但资金需求巨大,入行资源门槛高,未来更多由“国家队”负责。普通人若无强资源,应谨慎入局,可考虑“合作生态”的切入机会。 2. 技术层:处于技术爆炸期,迭代速度极快。若团队规模不大,需慎重考虑技术迭代风险。基础通用大模型研发烧钱且竞争激烈,非巨无霸公司不建议考虑。 3. 应用层:是一片广阔蓝海,当前从业者增加,虽有相关产品涌现,但成熟应用和“杀手级”应用较少,对于普通个体和小团队,强烈推荐重点思考和布局,拥有超级机会和巨大发展空间。 在应用层创业的具体方向上,比如智能体领域: 智能体可以简单理解为 AI 机器人小助手,类似移动互联网中的 APP 应用。 有很多公司已关注 AI 应用层的产品机会,如在 C 端,有社交方向的用户注册后先捏自己的 Agent 再聊天等有趣场景;在 B 端,有帮助商家搭建 Agent 的机会。 国内有众多智能体开发平台,如字节的扣子、腾讯的元器、Dify.AI 等。
2025-02-19
普通人和小企业在大企业垄断的ai时代该如何破局
在大企业垄断的 AI 时代,普通人和小企业可以考虑以下破局方式: 1. 对于普通人: 关注并参与关于在 AGI 降临的世界中个体如何生存、创造价值以及新的分配方式的思考、讨论和争取。 2. 对于小企业: 利用欧盟的相关政策,如监管沙盒等措施降低合规成本,促进科技创新。具体包括制约单方面强加给中小企业和初创企业的不公平合同条款,采取规制格式合同的方式使显著不公平的条款无效,促进监管沙盒广泛而平等的参与,并减免参加费用和提供部署前服务等增值服务,适当降低评估费用或其他合规要求,在处罚规定中考虑中小企业的利益和经济活力,相关准则的制定充分考虑中小企业需求以降低合规负担。 在 AI 产业链中,应用层存在超级机会和巨大发展空间,小企业可以重点思考和布局应用层。但基础设施层入行资源门槛较高,需谨慎入局,可考虑“合作生态”的切入机会;技术层迭代速度快,规模不大的团队须慎重考虑“技术迭代风险”,基础的通用大模型非巨无霸公司不建议考虑。
2025-02-19
清华大学:普通人如何抓住DeepSeek红利.pdf​
以下是关于“清华大学:普通人如何抓住 DeepSeek 红利.pdf”的相关内容: 本报告由清华大学陶炜博士生团队撰写,探讨了普通人如何利用 DeepSeek 抓住 AI 红利。报告详细介绍了 DeepSeek 的应用场景,包括智能对话、文本生成、语义理解、计算推理等,并通过工作、学习、生活和社交等多个实际场景展示了如何利用 DeepSeek 解决问题。文章还强调了提示语设计的重要性,指出通过精准的提示语可以引导 AI 生成高质量的内容,并提出了提示语设计的策略和技巧。 此外,还有《张梦飞:为什么 DeepSeekR1 是推理模型?那 GPT4 是什么模型?我的定义和思考》一文。在近年的大模型发展中,推理能力一直被视为衡量模型智能水平的关键因素。随着 DeepSeekR1 和 O1 等模型的出现,一个全新的概念浮现——推理模型(Reasoning Model)与非推理模型(NonReasoning Model)之间的根本区别。文章通过详细解析推理模型与非推理模型的训练路径、推理能力的形成机制、以及它们在思维链上的关键差别,帮助大家理解为何 DeepSeekR1 这样的模型被称为推理模型,以及它如何突破了传统 LLM 的局限性。 相关链接:
2025-02-16
新手入门AI顺序
新手入门 AI 的顺序如下: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于不会代码的新手,有一份 20 分钟上手 Python + AI 的简明入门,旨在让大家更快掌握 Python 和 AI 的相互调用,并在接下来的 20 分钟内,循序渐进完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 此外,还有情绪主题角色扮演小游戏,本文会根据以下内容顺序进行: 1. 需求分析。 2. 分步实现需求。 3. 提示词编写测试。 4. GPTs 使用链接。 5. 总结。
2024-12-03
如何给AI投喂某一专业的资料,让它成为专业领域的问答机器人,投喂顺序是什么
目前没有关于如何给 AI 投喂某一专业资料以及投喂顺序的相关内容。但一般来说,要让 AI 成为专业领域的问答机器人,首先需要对专业资料进行整理和分类,使其具有清晰的结构和逻辑。然后,可以逐步将资料输入给 AI ,并通过不断的训练和优化来提高其在该专业领域的回答能力。同时,要注意资料的质量和准确性,以及与 AI 模型的适配性。
2024-08-09
重新调整文本段落顺序的ai
以下是关于南瓜博士利用 AI 写小说并进行修改的相关内容: 在丰富细化阶段,为确保文章前后一致,先让 AI 写故事概要和角色背景介绍,并在此基础上按自己的审美略做修改。之后使用了重要技巧,让 AI 以表格形式输出细节描述,这样做有三个好处:一是打破 AI 原本的叙事习惯,避免出现陈词滥调;二是按编号做局部调整容易,指哪改哪,其他内容能稳定不变;三是确保内容都是具体细节,避免整段输出时因缩减而丢失细节只剩笼统介绍。 在成功的局部修改阶段,昨晚得知得奖后,先把原文喂给 code interpreter 写入 dataframe 并保存为 excel 文件备用,然后让 GPT 读取文件并给出反馈。AI 从情节合理与连贯性角度给出的意见中肯。修改细节时,发现 Arthur 的结构化 prompt 效果好,修改成品大多可直接采纳。每改一段 AI 就写入内存并读取新的一段,重复二十多遍“请继续”。也有改得不好的地方,简单纠正。一轮完成后打算再修订一轮,先合并段落,这一轮修改更强调字词和标点。全部改完后得到最终作品。接下来还有两个方向的探索。
2024-08-08