Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我记得你有发布过google人工智能落地的案例

Answer

以下是为您整合的相关内容:

  • Google 最近发布了 185 个全球企业生成式 AI 应用案例,涵盖客户服务、员工管理、代码开发、数据分析、安全管理和创意领域。案例展示了 AI 如何优化客户体验、提升员工效率、加速代码处理、改善数据分析、增强安全性及简化创意生产。详情可参考:《Google 发布全球 185 个各大企业的生成式 AI 实际应用落地案例
  • Coze 汽车售后服务知识库 Bot 旨在提升服务顾问和维修技师的专业水平和维修效率。该 Bot 通过提供标准化解决方案,辅助车辆故障分析和检查,弥补专业知识不足和技术支持文档标准化问题。主要目标是提升服务质量,减少对技师经验的依赖,为汽车售后服务提供智能化支持。详情可参考:《Coze 汽车售后服务知识库 Bot 拆解
Content generated by AI large model, please carefully verify (powered by aily)

References

4.4 历史更新

《[甲木:AI大模型工具的「无限追问」如何实现的?](https://waytoagi.feishu.cn/wiki/PbumwTXJ9iHnjckv9Ybc2gRwnod)》《[甲木:如何让Claude帮你来做「古诗词卡片」?](https://waytoagi.feishu.cn/wiki/Wde1wkgqgiP8Tmk2wwgcE8b4nzc)》《[甲木:如何让Claude帮你来做「情绪价值营销」?](https://waytoagi.feishu.cn/wiki/RutIwjEwwidniJksIGacQXuinpd)》《[Coze汽车售后服务知识库Bot拆解](https://waytoagi.feishu.cn/wiki/N4wBwPY1oifcNJkZsyHc6McdnYg)》感谢陈宇明的投稿,Bot旨在提升服务顾问和维修技师的专业水平和维修效率。该Bot通过提供标准化解决方案,辅助车辆故障分析和检查,弥补专业知识不足和技术支持文档标准化问题。主要目标是提升服务质量,减少对技师经验的依赖,为汽车售后服务提供智能化支持。《[Google发布全球185个各大企业的生成式AI实际应用落地案例](https://mp.weixin.qq.com/s/ACsU9pPxHe8CnpKwyfdJjg)》作者小互,Google最近发布了185个全球企业生成式AI应用案例,涵盖客户服务、员工管理、代码开发、数据分析、安全管理和创意领域。案例展示了AI如何优化客户体验、提升员工效率、加速代码处理、改善数据分析、增强安全性及简化创意生产。

OpenAI 通用人工智能(AGI)的计划被揭露

显然,伊戈尔关于100万亿参数模型的说法是真实的,每一个细节都准确无误。另一个与伊戈尔的说法相符的信息源是一位可信的企业家,他在2022年10月25日表示,GPT-4的发布日期将在2023年1月至2月之间:尽管GPT-4是在2023年3月发布的,略晚于伊戈尔·拜科夫所声称的12月至2月的窗口(我认为这是OpenAI有意为之,以削弱伊戈尔泄露信息的可信度),但基于GPT-4的Bing ChatGPT实际上是在2023年2月宣布的,这清楚地表明伊戈尔所声称的窗口是有效的,并且可能是在最后一刻由慌乱的OpenAI改变的。关于机器人学的一点说明:AI研究员开始相信,视觉是实现最佳现实世界/物理性能所必需的全部。举一个例子,特斯拉完全放弃了所有传感器,全力投入到自动驾驶汽车的视觉技术上。重点是,在互联网上所有的图像和视频数据上训练一个与人类大脑大小相当的AI模型,显然将足以处理复杂的机器人学任务。常识推理被隐藏在视频数据中,就像它隐藏在文本数据中一样(而专注于文本的GPT-4在常识推理上表现得惊人的好)。Google最近的一个例子,展示了机器人学能力是如何从大型视觉/语言模型中学习的。(在语言和视觉训练的基础上,只需要最少的机器人学数据,视觉和文本任务的知识就可以转移到机器人学任务上。OpenAI正在“互联网上的所有数据”上训练他们的100万亿参数模型,这无疑将包括机器人学数据)。Palm-E是一个约5000亿参数的模型——当你在互联网上所有可用数据的基础上训练一个100万亿参数的模型时,机器人学性能会发生什么变化?(关于Google的Palm-E模型的更多信息将在下一页介绍)。

入门经典必读

作者:[Derrick Harris](https://a16z.com/author/derrick-harris/),[Matt Bornstein](https://a16z.com/author/matt-bornstein/)和[Guido Appenzeller](https://a16z.com/author/guido-appenzeller/)原文地址:https://a16z.com/2023/05/25/ai-canon/译者:通往AGI之路后半部分:[目录:a16z推荐进阶经典](https://ywh1bkansf.feishu.cn/wiki/EXX1w3QyFiBz8fknLFYce7gvnug)人工智能的研究正在以指数级别的速度增长。对于AI专家来说,跟上所有新发布的内容已经非常困难,对于初学者来说更是难上加难。因此,在这篇文章中,我们分享了一份我们信赖的、用于更深入了解现代AI的精选资源列表。我们称之为“AI典藏”,因为这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。我们首先对Transformer和Latent Diffusion(潜在扩散)模型进行了简单的介绍,这些模型正在推动当前的AI浪潮。接下来,我们深入研究了技术学习资源;构建大型语言模型(LLMs)的实用指南;以及AI市场的分析。最后,我们列出了一份里程碑式研究成果的参考列表,从2017年谷歌发布的“Attention is All You Need”开始——这篇论文向世界介绍了Transformer模型,并开启了生成AI的时代。

Others are asking
how to use Google ai studio
使用 Google AI Studio 的步骤如下: 1. 开始使用生成式 AI Studio: 在 Google Cloud Console 的导航菜单中,导航至人工智能>Vertex AI。 在 Vertex AI 菜单中的 Generative AI Studio 下,单击 Language。 单击 +CREATE PROMPT 按钮,创建提示,您可以将鼠标悬停或单击页面右侧的按钮以了解有关每个字段和参数的更多信息,例如温度和令牌限制。 2. 进行设置和要求: 单击启动实验室按钮,如果需要支付实验室费用,选择付款方式。左侧是 Lab Details 面板,包含打开 Google 控制台按钮、剩余时间、临时凭据等信息。 点击打开谷歌控制台,实验室启动资源,然后打开另一个显示“登录”页面的选项卡。 将选项卡并排排列在单独的窗口中。 注意:如果看到“选择帐户”对话框,请单击“使用其他帐户”。 如有必要,从实验室详细信息面板复制用户名并粘贴到登录对话框中,单击下一步。 从实验室详细信息面板复制密码并粘贴到欢迎对话框中,单击下一步。 必须使用左侧面板中的凭据,不要使用 Google Cloud Skills Boost 凭据。注意:在本实验中使用自己的 Google Cloud 帐户可能会产生额外费用。 单击后续页面:接受条款和条件,不要添加恢复选项或双因素身份验证,不要注册免费试用。片刻之后,Cloud Console 将在此选项卡中打开。 3. 启用 Vertex AI API: 在 Google Cloud Console 中,在顶部搜索栏中输入 Vertex AI API。 单击 Marketplace 下的 Vertex AI API 结果。 单击启用。
2025-02-08
Google Learn about有哪些功能?
Google 的实验性产品 Learn About 具有以下功能: 1. 专注于知识学习,能帮助用户全面深入学习任意领域的信息,如历史、艺术、自然、生物、物理、科学、经济、个人成长等。 2. 设计保证信息真实性,可自动扩展相关知识。 3. 呈现方式直观,具有丰富的交互内容和交互形式。 输入提示词(英文)后进入对话页面。 右侧是当前话题的信息流,左侧是拓展查询列表。 右侧页面有样式丰富的内容板块,左侧页面点击问题或输入追问可进一步下钻话题。 4. 拥有多种样式丰富的交互卡片,包括图文并茂、视频推荐、关键词释义、相关概念链接、话题要点总结、澄清常见误区、互动示例(多轮追问)、测验考题(多轮追问)。 5. 使用了 LearnLM 模型,这是 Google 今年 5 月份推出的 Gemini 系列模型之一,专门面向学习场景进行了微调。以教育研究为基础,核心目标是构建个性化的学习体验。目前,除了 Learn About 这款产品外,LearnLM 还被用于 Google Search AI Overview、Youtube 学术视频问答等产品中,也可以在 Google AI Studio 里直接与模型对话。 目前该产品处于测试阶段,仅限美国访问,可通过 VPN 体验。访问链接:
2024-12-05
google ai studio
生成式 AI Studio 是 Google Cloud 上的一个工具,允许应用程序开发人员或数据科学家快速制作原型和自定义生成式 AI 模型,无需代码或代码量少。 生成式人工智能是一种能够生成新的、未曾存在内容的人工智能技术,生成的内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。 其应用场景广泛,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 生成式人工智能的工作原理包括训练阶段和应用阶段。在训练阶段,通过从大量现有内容(文本、音频、视频等)中学习,得到一个“基础模型”。在应用阶段,基础模型可用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练以解决特定问题。 Google Cloud 提供了多种相关工具,如 Vertex AI(端到端机器学习开发平台,帮助构建、部署和管理机器学习模型)、Model Garden(平台,可发现 Google 的基础和第三方开源模型,并提供 MLOps 工具用于自动化机器学习管道)。
2024-10-31
Google搜索 多步推理
谷歌在 I/O 发布会上宣布了一系列搜索产品的更新,包括 AI Overviews、多步骤推理能力、视频提问、提前计划、AI 组织的搜索结果等功能。此外,谷歌还在 Workspace(Gmail)、谷歌文档、谷歌表格、Google Photos 和 Circle to Search 等应用中集成了生成式人工智能技术,以提高用户的使用体验。
2024-05-30
Google的人工智能多模态大模型叫什么
Google 的人工智能多模态大模型叫 Gemini。具体介绍如下: Gemini 是 Google DeepMind 团队开发的多模态模型,不仅支持文本、图片等提示,还支持视频、音频和代码提示。 Gemini 能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出。 Gemini 被称为 Google 迄今为止最强大、最全面的模型。 Gemini 被描述为一种"原生多模态大模型",从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。
2024-04-24
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,如今能战胜人类棋手的程序基于神经网络和强化学习。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断人的年龄无法明确编程,这正是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md
2025-02-17
人工智能时代对社会有什么冲击
人工智能时代对社会的冲击主要体现在以下几个方面: 1. 劳动力市场:预计在未来几年对劳动力市场产生重大影响,包括好的和坏的方面,但工作变化速度比多数人想象的慢,人们不必担心缺乏事情可做。 2. 能力放大:能使人类天生的创造和彼此有用的欲望得到前所未有的放大,社会将重新进入不断扩张的世界。 3. 深度学习:是一种有效的算法,计算能力和数据量越大,解决难题的能力越强,将随着规模而变得更好,对全球人民生活产生有意义的改善。 4. 个人助理:人工智能模型将很快作为自主的个人助理,代表用户执行特定任务。 5. 资源分配:获得充足的计算和能源对于实现人工智能民主化和防止不平等至关重要。 6. 风险控制:控制人工智能的风险对于最大限度地发挥其优势并确保积极的未来至关重要。 同时,在教育方面,孩子将拥有虚拟导师,能够提供个性化教学,类似概念还可应用于医疗保健改进、创建各种软件等领域,带来共享的繁荣。
2025-02-16
什么是人工智能
人工智能(Artificial Intelligence)是一门研究如何使计算机表现出智能行为的科学,例如做一些人类所擅长的事情。 最初,查尔斯·巴贝奇发明了计算机,用于按照明确的程序(即算法)进行数字运算。现代计算机虽更先进,但仍遵循受控计算理念。若知道实现目标的每一步骤及顺序,就能编写程序让计算机做事。 然而,像“根据照片判断一个人的年龄”这类任务,因无法明确大脑完成此任务的具体步骤,所以难以编写程序让计算机完成,这类任务正是人工智能感兴趣的。 人工智能分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等;AGI 能做任何人类可以做的事。 在人工智能术语方面: 机械学习是让电脑在不被编程的情况下自己学习的研究领域,是学习输入输出的映射,一般有输入 A 必然输出 B 的软件。 数据科学是分析数据集,从数据中获取结论与提示,输出结果往往是幻灯片、结论、PPT 等。 神经网络/深度学习有输入层、输出层和中间层(隐藏层)。
2025-02-16
关于音频生成的人工智能工具有哪些
以下是一些关于音频生成的人工智能工具: ElevenLabs:一家前沿人工智能公司,专注于文本转语音、语音变声器、配音、文本转音效和语音克隆,为创作者、企业和开发者提供超逼真和可定制的语音解决方案。前 5000 名注册用户可享受 2 个月的入门计划。 Hailuo Audio by Minimax:面向创作者和电影制作人的下一代音乐生成、文本转语音和语音克隆模型。 Cartesia:优质文本转语音服务,既以开发者为中心,又适合实时对话用例,专注于行业领先的延迟、逼真的声音和准确的发音。提供 1 个月的专业计划。 Sync:研究公司,致力于为动画师、开发者和视频编辑提供前沿的人工智能视频口型同步解决方案。2 个月的 Sync 创作者层级+额外生成积分。 Tunes by Freepik:使用 Freepik Tunes 让您的项目更具表现力。发现精选音乐、高质量音效和强大的音频工具,可在 Freepik Tunes 上无限制下载。 以下是一些人工智能音频初创公司: Lemonaide Music:与 DAW 集成的生成音乐工具,100%免版权费。 tuney.io:为创意媒体提供的伦理音乐 AI。 KORUS AI:AI 音乐创作平台和探索声音宇宙的个人音乐制作人。 TRINITI:通过音乐赋予新的创作和表达方式。 voice swap:使用 AI 改变歌唱声音。 mix audio:为创造力和生产力提供 AI 音乐。 Audiogen:使用 AI 生成声音、音效、音乐、样本、氛围等。 Wavtool:带有 AI 助手并支持本地 VST 插件的网页 DAW。 Wavacity:Audacity®音频编辑器的网页版。
2025-02-16
人工智能对现在时代有什么冲击
人工智能对现在时代的冲击主要体现在以下几个方面: 1. 劳动力市场:预计在未来几年对劳动力市场产生重大影响,包括好的和坏的方面,但工作变化速度比多数人想象的慢。 2. 社会发展:使社会重新进入不断扩张的世界,人们可以再次专注于正和游戏,天生的创造和彼此有用的欲望将得到前所未有的放大。 3. 技术进步:深度学习有效,随规模扩大预期改善,能帮助解决难题,模型将作为个人助理执行特定任务,促进各领域科学进展。 4. 资源与普及:降低计算成本以普及人工智能,否则可能导致其成为有限资源,引发战争并成为富人工具。 5. 社会变革:社会和经济将发生长期巨大变革,人们会发现新的做事、互助和竞争方式。 6. 不均衡影响:AGI 将产生不均衡影响,一些行业变化小,科学进步可能更快,许多商品价格大幅下跌,奢侈品和受限资源价格上涨。 7. 公共政策:关于如何将人工智能系统融入社会的公共政策和集体意见非常重要,要权衡安全性和个人授权。 8. 社会控制:存在专制政府利用人工智能进行大规模监控从而剥夺人民自主权的风险。
2025-02-16
如果让你来给小学生设计一门人工智能视频课,12集,你会怎么设计
对于为小学生设计一门 12 集的人工智能视频课,以下是我的设计思路: 第一集:《走进神奇的 AI 世界》 介绍什么是人工智能,通过有趣的例子展示 AI 在日常生活中的应用,激发学生的兴趣。 第二集:《AI 的历史之旅》 讲述人工智能的发展历程,从早期的概念到现代的突破。 第三集:《AI 如何理解我们》 讲解 AI 是如何处理和理解人类输入的信息,如语言、图像等。 第四集:《智能机器人小伙伴》 介绍机器人如何通过 AI 技术实现各种功能和动作。 第五集:《AI 在游戏中的魔法》 展示 AI 在游戏中的应用,如游戏角色的智能行为。 第六集:《AI 与医疗保健》 讲述 AI 在医疗领域的作用,如疾病诊断、医疗影像分析等。 第七集:《AI 与交通出行》 介绍 AI 如何改善交通状况,如智能交通系统。 第八集:《AI 与教育的碰撞》 探讨 AI 在教育中的应用,如个性化学习、智能辅导。 第九集:《AI 绘画的奇妙世界》 让学生了解 AI 绘画的原理和创作过程。 第十集:《AI 音乐的旋律》 介绍 AI 在音乐创作和演奏方面的应用。 第十一集:《AI 的未来展望》 一起畅想未来 AI 可能带来的更多变化和创新。 第十二集:《我和 AI 的故事》 鼓励学生分享自己对 AI 的理解和想象,总结课程内容。 在每一集的设计中,都会采用生动有趣的动画、简单易懂的案例和互动环节,让小学生能够轻松理解和参与。
2025-02-14
飞书接入deepseek 多维表格处理案例
以下是关于飞书接入 DeepSeek 多维表格处理的相关案例和信息: 自定义 AI(DeepSeek 版):https://bytedance.larkoffice.com/base/extension/replit_3f6c0f185eac23fb ,支持 DeepSeek R1、V3 模型,以及 DeepSeek 官方、火山方舟、硅基流动三个服务商。 有案例如“笨笨 v 泡泡”的 deepseekr1:7b 模型行测试题分析过程及结果,可参考:https://mp.weixin.qq.com/s/kjYiRS9RE25vywm0EsP6A?token=8615663&lang=zh_CN 。 相关文章和教程: 《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》:https://waytoagi.feishu.cn/wiki/RZE9wP94tiEO6bkU5cTcyecHnnb 。 《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》:https://waytoagi.feishu.cn/wiki/HzHSwEwtCiBmWrkRm6fc0J0Qneh 。 《喂饭级教程:飞书多维表格+DeepSeek=10 倍速用 AI》:https://mp.weixin.qq.com/s/aIi4tIy0CCINyQE_3AfF_Q ,介绍了如何结合实现批量处理信息、提升工作效率等。 飞书多维表格的接入方法在整理列上这两天直播教程中的所有模板中有提及。 2 月 10 日的社区动态中有 DeepSeek R1 赏析分享会等相关内容。 2 月 14 日的社区动态中有关于另外一款推理模型 zero 的推理过程等相关内容。
2025-02-17
目前针对H5,有哪些可以和ai结合的案例
目前在 H5 领域,与 AI 结合的案例相对较少。但一些可能的方向包括:利用 AI 进行个性化内容推荐,根据用户的浏览历史和偏好为其推送相关的 H5 页面内容;通过 AI 实现智能客服,在 H5 页面中为用户提供实时的问题解答和帮助;运用 AI 图像识别技术,让用户可以通过拍照或上传图片在 H5 页面中获取相关信息或进行互动。
2025-02-17
AI智能体在企业应用案例
以下是一些 AI 智能体在企业中的应用案例: 决策智能体: 以 Anterior 为例,它是一家健康计划自动化公司,开发了用于自动化理赔提交审核的临床决策引擎。将付款方规则转换为有向无环图,智能体遍历决策树,利用 LLM 评估相关临床文件是否符合规则,在复杂任务中选择最佳方法并更新状态,直至最终确定。 Norm AI 正在为监管合规打造 AI 智能体,Parcha 正在为 KYC 建立智能体。 检索增强生成(RAG): 以 Sana 的企业搜索用例为例,应用程序加载和转换无结构文件,将其分块并作为向量嵌入存储在数据库中。当用户提问时,系统检索相关上下文块,折叠到“元提示”中与检索信息一起喂给 LLM,合成答复返回给用户。 Eve 法律研究的共同驾驭员会将研究查询分解为独立提示链,运行每个提示链生成中间输出,并综合编写最终备忘录。 生成式 AI 应用: 具有搜索、合成和生成三个核心用例,Menlo Ventures 投资组合公司如 Sana(企业搜索)、Eve(法律研究副驾驶)和 Typeface(内容生成 AI)是早期突破性的代表。 领先的应用程序构建商如 Anterior、Sema4 和 Cognition 正在建立解决方案,处理之前只能由大量人力解决的工作流程。借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,拓展 AI 能力边界,实现端到端流程自动化。
2025-02-16
开源模型的MIT模式、Apache、GPL、BSD模式的模型案例有哪些?
目前开源模型的 MIT 模式、Apache、GPL、BSD 模式的具体案例众多且不断更新。MIT 模式的开源模型如 TensorFlow Lite;Apache 模式的有 MXNet;GPL 模式的像 Gnuplot;BSD 模式的例如 OpenCV 等。但请注意,这只是其中的一部分,实际情况可能会有所变化。
2025-02-14
闭源模型分类和典型案例
以下是一些常见的闭源模型分类和典型案例: 通用大模型:字节云雀大模型。 行业大模型:如蚂蚁金融大模型等。 在 2023 年,还有众多闭源模型的发布和升级,例如: 文心一言:经历了从 1.0 到 V3.5 的版本升级。 星火:科大讯飞发布的星火 1.0 及后续的升级版本。 此外,Qwen 系列模型也有出色表现,Qwen2 在性能上超越了目前所有开源模型和国内闭源模型,如文心 4.0 等。Qwen2 具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进的性能,提升了代码、数学、推理等多方面的能力,并在多个国际权威测评中获得冠军。
2025-02-14
AI视频,用海螺走T台的案例
以下是关于 AI 视频中用海螺走 T 台的相关内容: 全新 AI 整活计划第三期:巨大萌物 奖励方式:使用海螺 AI 进行视频制作,海螺 AI 会评选出预计 10 位创意奖,给大家颁发海螺会员+现金奖励。 制作教程: 第一步:点开 whisk 网站(https://labs.google/fx/zh/tools/whisk),找到两张图(如:皮卡丘和埃菲尔铁塔),然后传上去,样式风格空着,写一句 Prompt(如:巨大的皮卡丘抱着埃尔菲铁塔)合成出来一张图片。 第二步:点开海螺网站(https://hailuoai.com),例如 Prompt:巨大的可达鸭在斗兽场上熟睡并打呼,肚皮缓慢起伏,马路上的车在行驶,突然斗兽场塌了,冒出滚滚沙尘,可达鸭突然惊恐地睁大眼睛;巨大的卡比兽,把一碗雪倒扣在富士山上,富士山瞬间被雪覆盖。并提供了相关视频案例的链接。 视频模型:MiniMax 海螺 AI 中级实现精准的画面控制和高画面表现,精准美学控制,给出了现代都市街道上摩托车与警车追逐的 Prompt 示例及相关视频。 实际运用案例(电影、广告片、宣传片、短视频),包括场戏分镜头拆解梳理,如男人无奈起身开门、开门、开门走出、门外小女孩要糖、男人拒绝等情节的视频生成方式及相关视频链接。
2025-02-13
开一个AI数据标注公司的落地和具体实操应当如何
开设一家 AI 数据标注公司需要以下落地和具体实操步骤: 1. 市场调研 了解当前 AI 数据标注市场的需求和趋势。 分析竞争对手的优势和不足。 2. 团队组建 招聘具备数据标注技能和经验的人员,包括标注员、质检员等。 对团队进行培训,确保他们熟悉标注规范和流程。 3. 制定标注规范 明确不同类型数据的标注标准和要求。 建立质量控制流程和标准。 4. 技术和工具准备 选择适合的数据标注工具和软件。 搭建稳定的 IT 基础设施,保障数据安全和存储。 5. 寻找客户和项目 与 AI 企业、科研机构等建立联系,争取合作机会。 展示公司的标注能力和优势。 6. 项目管理 合理安排标注任务,确保按时交付。 及时处理项目中的问题和变更。 7. 质量监控 定期对标注结果进行抽检和评估。 依据质量反馈对标注流程和人员进行调整和优化。 8. 合规与法律事务 确保公司的运营符合相关法律法规。 处理好数据隐私和知识产权等问题。 9. 财务管理 制定合理的预算和成本控制策略。 确保公司的资金流稳定。 10. 持续改进 关注行业动态,不断改进标注技术和流程。 提升公司的竞争力和服务质量。
2025-02-17
AI 智能体在企业落地
以下是关于 AI 智能体在企业落地的相关内容: 决策智能体方面: 决策智能体使用智能体决策制定在复杂、多步骤的推理流程中导航并做出业务决策。 以 Anterior 为例,其将付款方规则转换为有向无环图(DAG),智能体遍历决策树,在每个节点利用 LLMs 评估相关临床文件是否符合特定规则,遇到复杂任务时选择最佳方法并更新自身状态。 其他领域如 Norm AI 为监管合规打造 AI 智能体,Parcha 为 KYC 建立智能体。 相关人物与业务方面: 韦恩是智能体创业者、WayToAGI 共建者、微软提示词工程师、多平台 Agent 开发者、企业级 AI Agent 定制专家,荣获多家 AI 开发平台比赛奖项,有 12 年程序开发背景,是多家企业的 AI 落地顾问,承接 1v1 辅导、智能体培训、智能体定制开发、企业 AI 项目落地等业务。 生成式 AI 应用方面: 生成式 AI 应用当前有搜索、合成和生成三个核心用例与强大的产品市场契合度。 领先的应用程序构建商如 Anterior、Sema4 和 Cognition 正在建立解决方案,处理之前只能由大量人力解决的工作流程。 借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,下一波智能体正在拓展 AI 能力的边界,实现端到端流程自动化。
2025-02-16
AI Agent 或者 工作流, 落地的场景
以下是 AI Agent 或工作流的一些落地场景: Long horizon task 长期任务执行:Agent 能像称职的项目经理,分解大任务为小步骤,保持目标导向并适时调整策略。 多模态理解:Agent 能同时理解文字、图像、声音等多种交流方式,全方位感知世界和任务上下文。 记忆与行动:通过先进的记忆机制,Agent 能积累经验,记住对话、操作步骤和效果,行动更精准高效。 自适应学习:从每次交互中吸取经验,不断完善策略,实现“智慧成长”。 在技术层面,有两条技术路线:以自主决策为核心的 LLM 控制流和以工作流(Workflow)编排为重点的工具集成系统。Anthropic 提出的 MCP(Model Context Protocol)提供了通用接口协议,将外部资源抽象为“上下文提供者”,便于模型与外部世界交互。 工作流驱动的 Agent 搭建,简单情况分为 3 个步骤:规划,包括制定任务关键方法、总结目标与执行形式、分解子任务等;实施,在 Coze 上搭建框架并分步构建和测试功能;完善,全面评估并优化效果。 典型例子如利用 Kimi Chat 进行网页搜索和总结分析。 包括 Agent 自行规划任务执行的工作流路径,适用于简单或线性流程。 多 Agent 协作,如吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色共同开发应用或复杂程序。 OpenAI 研究主管 Lilian Weng 提出 Agent 的基础架构为“Agent=LLM+规划+记忆+工具使用”,规划包括子目标分解、反思与改进。
2025-02-15
deepseek与大健康如何落地
DeepSeek 与大健康的落地可以从以下几个方面考虑: 1. 提示词应用: 可以通过搜索 www.deepseek.com 并点击“开始对话”来使用 DeepSeek。 将装有提示词的代码发给 DeepSeek,认真阅读开场白后正式开始对话。 提示词的设计思路包括将 Agent 封装成 Prompt 并存储在文件中,以实现同时使用联网和深度思考功能,优化输出质量等。 2. 联网版实现: 通过工作流 + DeepSeek R1 大模型,实现联网版的 R1 大模型。 拥有扣子专业版账号,开通 DeepSeek R1 大模型,包括访问特定地址、在火山方舟中进行开通管理等操作,添加在线推理模型。 创建智能体,点击创建完成智能体的创建。 3. 开源策略: DeepSeek 选择走全球开源社区路线,分享模型、研究方法和成果,吸引反馈并迭代优化。开源包括模型权重、数据集、预训练方法和高质量论文等。 需要注意的是,目前提供的内容中未直接提及 DeepSeek 与大健康落地的具体关联,您可以根据以上 DeepSeek 的相关特点和技术,结合大健康领域的需求和场景,进一步探索落地的可能性。
2025-02-06
企业落地AI的怎么开展,有哪些团队,场景一般是哪些
企业落地 AI 可以按照以下步骤开展: 1. 启动试点项目来获得动能:选择几个小项目,在 6 12 个月内展示成效,项目可以内部进行或外包。尽量选择能够成功而非最有价值的项目。 2. 建立公司内部的人工智能团队:搭建集中统一的 AI 团队,再从中挑选人员协助不同业务部门,便于统一管理。同时建立全公司范围内的平台,如软件平台、工具或数据基础设施。 3. 提供广泛的人工智能培训:高层了解 AI 能为企业做什么,进行策略制定和资源分配;部门领导了解如何设置项目方向、资源分配与监控进度;培养内部工程师,开展相关项目。 4. 制定人工智能策略:深度了解 AI 并结合自身业务制定策略,设置与 AI 良性循环相一致的公司策略,如网络搜索或农业公司的案例。同时考虑创建数据策略,如战略数据采集,建造统一的数据仓库。 企业落地 AI 常见的场景包括: 1. 智能扬声器:包括探测触发词或唤醒词、语音识别、意图识别、执行相关程序等环节。 2. 自动驾驶汽车:涉及汽车检测、行人检测、运动规划等方面,需要多种传感器和技术。 人工智能团队的角色通常有: 1. 软件工程师:负责软件编程工作,在团队中占比 50%以上。 2. 机器学习工程师:创建映射或算法,搜集和处理数据。 3. 机器学习研究员:开发机器学习前沿技术,可能需要发表论文或专注研究。 4. 应用机器学习科学家:从学术文献中寻找技术解决问题。 5. 数据科学家:检测和分析数据。 6. 数据工程师:整理数据,确保其安全、易保存和读取。 7. AI 产品经理:决定用 AI 做什么,判断其可行性和价值。
2025-01-27
财经AI怎么落地
财经 AI 的落地可以从以下几个方面考虑: 1. 成本效益的运营: 消费者信息分散在多个数据库,交叉销售和预测需求面临挑战。 金融服务是情感购买,决策树复杂且难以自动化,需大量客服团队。 金融服务高度受监管,人类员工必须参与流程以确保合规。生成式 AI 能大幅提高获取数据、理解情境和合规法律等劳动密集型功能的效率。 2. 实现五个目标: 个性化的消费者体验:根据客户需求提供定制服务。 成本效益高的运营:优化流程,降低成本。 更好的合规性:确保符合复杂的法律规定。 改进的风险管理:有效识别和应对风险。 动态的预测和报告:提供更准确和及时的信息。 3. 面临的挑战: 使用金融数据训练 LLM:新进入者可能先使用公开数据,再用自身数据;现有参与者虽有专有数据优势,但可能过于保守,新进入者可能更具竞争优势。 模型输出准确性:金融问题答案影响大,需尽可能准确,初期人类常作为最终验证环节。 总之,生成式 AI 为金融服务带来巨大变革,现有参与者和初创公司将在关键挑战上竞争,最终受益的将是金融服务的消费者。
2025-01-27