直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

RAG加速有什么好办法吗

回答

以下是一些加速 RAG 的好办法:

  1. 确保 LLM 以正确的格式回应:函数调用已成为确保 LLM 严格输出特定格式的相对靠谱的新方法,推荐使用此方法提升性能。可参考结构化输出文档,其中高层次的 LangChain API 展示了不同 LLM 如何调用工具和函数。
  2. 使用参考样例:在实际操作中,将输入和对应输出的样例纳入其中通常大有裨益,这些样例有时比指示本身更能有效指导 LLM 处理特定情况。在提取用例文档中可找到更多细节,助您从 LLMs 中提取更好的性能。

此外,LangChain 携手 NVIDIA 为 RAG 加速带来了新的篇章:

  1. 将 NVIDIA NIM 与 LangChain 结合使用:新增了支持 NIM 的集成包,安装专门的集成包后可导入所需模型,并通过示例展示如何构建应用程序,包括安装额外的包、加载数据源、初始化嵌入模型等一系列操作。
  2. NVIDIA NIM 介绍:NVIDIA NIM 是一系列用户友好的微服务,旨在加速企业内部生成式 AI 的部署进程,支持广泛的 AI 模型,基于强大的推理引擎和技术构建,提供无缝的 AI 推理体验,是实现大规模、高性能生成式 AI 推理的最佳选择。其具有自托管特性,能保证数据安全;提供预构建的容器,方便选择和使用最新模型;具有可扩展性。开始使用 NIM 非常简单,在 NVIDIA API 目录中可轻松访问多种 AI 模型,NIM 是 NVIDIA AI Enterprise 的一部分,可通过相关博客获取详细指南。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

RAG加速器:数据抽取服务

了解了组成部分后,接下来是如何让它们一起工作。我们此处要分享两个简单但强大的思路。第一个要点是确保LLM以正确的格式回应。如果只是在命令中指示LLM输出JSON格式,它可能并不总会遵守。因此,函数调用已经成为确保LLM严格输出特定格式的一个新方法,而且相对靠谱。我们推荐使用此方法来提升性能。你可以参考结构化输出文档,其中高层次的LangChain API展示了不同LLM如何调用工具和函数。另一个提升性能的方法是使用参考样例。尽管没有样例也能设置抽取问题,但我们发现实际操作中,将输入和对应输出的样例纳入其中通常大有裨益。有时候,这些样例比指示本身还更能有效指导LLM处理特定情况。在我们的提取用例文档中,你可以找到更多细节,助你从LLMs中提取更好的性能。

LangChain 携手 NVIDIA:RAG加速新篇章

最后,让我们来谈谈如何将NIM与LangChain结合使用。我们新增了一个支持NIM的集成包。要开始使用这个集成,您需要先安装我们专门为NIM设计的集成包:安装完成后,您就可以导入所需的模型了:[heading2]集成示例[content]接下来,我们将通过一个示例来展示如何构建应用程序。如果您更喜欢通过视频学习,您可以在这里观看视频教程。我们将利用LangSmith文档的一部分来构建一个RAG应用。为了增加趣味性,我们将采用一种高级检索方法:假设文档嵌入(HyDE)。HyDE的设计理念是,搜索查询可能与我们要检索的文档不在同一个嵌入空间中。为了解决这个问题,我们可以利用LLM生成一个假设文档,然后检索与该假设文档相似的文档。首先,我们需要安装一些额外的包:然后,我们将加载LangSmith文档作为我们RAG应用的数据源:在对文档进行索引之前,我们需要初始化嵌入模型:接下来,我们可以使用FAISS向量存储来执行索引操作:然后,我们可以初始化LLM:现在,我们将创建一个假设文档生成器。这个生成器由一个提示模板、LLM和一个简单的输出解析器组成:接着,我们将创建一个新的链,用于生成假设文档:然后,我们将创建一个链,用于根据检索到的文档和问题生成最终答案:最后,我们将创建一个最终的链,结合假设文档检索器和答案生成链,以产生最终的输出:请注意,我们通过生成令牌来实现最终链的流式输出。现在,让我们来测试一下这个链:通过这种方式,LangChain利用NVIDIA NIM为RAG应用带来了GPU加速的LLM推理能力,大大提升了处理敏感数据的安全性,同时简化了从原型到生产的转变过程。

LangChain 携手 NVIDIA:RAG加速新篇章

NVIDIA NIM是一系列用户友好的微服务,它们旨在加速企业内部生成式AI的部署进程。这种多功能的运行环境支持包括开源社区模型、NVIDIA AI基础模型以及自定义AI模型在内的广泛AI模型。开发者可以利用行业标准的API,仅需数行代码即可快速构建出企业级的AI应用。NIM基于NVIDIA Triton Inference Server、NVIDIA TensorRT、NVIDIA TensorRT-LLLLM等强大的推理引擎,以及PyTorch等技术构建,旨在提供无缝的AI推理体验,确保您可以自信地在任何环境中部署AI应用。无论是在本地服务器还是云端环境中,NIM都是实现大规模、高性能生成式AI推理的最佳选择。[heading2]为什么LangChain对NVIDIA NIM充满期待?[content]我们对NVIDIA NIM充满期待的原因有几个。首先,最引人注目的是它的自托管特性。这意味着您向基于NVIDIA的模型发送的任何数据都将保留在您的服务器上,不会外传。对于那些经常需要处理敏感信息的RAG应用来说,这一点尤其重要。其次,NIM提供了一系列预构建的容器,这让您可以轻松选择并使用最新的生成式AI模型,而无需进行复杂的配置。最后,NIM的可扩展性。在个人电脑上本地运行模型是一回事,但要将其作为服务部署,并且保持与专业服务提供商相同的稳定性和可用性,则是另一回事。幸运的是,NIM已经为您解决了这一挑战。[heading2]如何开始使用NVIDIA NIM?[content]开始使用NIM非常简单。在NVIDIA API目录中,开发者可以轻松访问多种AI模型,用于构建和部署生成式AI应用。NIM是NVIDIA AI Enterprise的一部分,这是一个全面的、基于云的软件平台,旨在简化生产级AI应用的开发和部署流程。您可以通过这篇博客获取如何开始使用的详细指南。

其他人在问
我希望做一个回答用户问题的聊天机器人,如何用rag来做
要使用 RAG(RetrievalAugmented Generation,检索增强生成)来做一个回答用户问题的聊天机器人,可以按照以下步骤进行: 1. 加载所需的库和模块:包括用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前需确保 ollama 服务已开启并下载好模型)。 2. 从订阅源获取内容:通过特定函数从指定的 RSS 订阅 URL 提取内容,如需接收多个 URL 可稍作改动。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接,最终将这些文档合并成一个列表用于后续处理。 3. 为文档内容生成向量:使用文本向量模型 bgem3(可从 https://huggingface.co/BAAI/bgem3 下载,假设放置在某个路径 /path/to/bgem3 ),通过 FAISS 创建一个高效的向量存储。 4. 基于用户的问题,从向量数据库中检索相关段落,并根据设定的阈值进行过滤,最后让模型参考上下文信息回答用户的问题,从而实现 RAG。 5. 创建网页 UI:通过 gradio 创建网页 UI 并进行评测。 6. 技术栈选择:经过调研,可先采取 Langchain + Ollama 的技术栈作为 demo 实现,后续也可考虑使用 dify、fastgpt 等更直观易用的 AI 开发平台。 Langchain 简介:是当前大模型应用开发的主流框架之一,提供一系列工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 Ollama 简介:是一个开箱即用的用于在本地运行大模型的框架。 总结: 1. 本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署一个资讯问答机器人,同时结合 RSSHub 来处理和提供资讯。 2. 上下文数据质量和大模型的性能决定了 RAG 系统性能的上限。 3. RAG 通过结合检索技术和生成模型来提升答案的质量和相关性,可以缓解大模型幻觉、信息滞后的问题,但并不意味着可以消除。
2024-11-20
RAG研究报告有哪些
以下是一些关于 RAG 的研究报告: 1. 《RAG 系统开发中的 12 大痛点及解决方案》:研究了开发检索增强生成(RAG)系统时遇到的 12 个主要难题,并提出了相应的解决策略。通过将挑战和解决方法并列在一张表中,更直观地展示了设计和实施 RAG 系统面临的复杂挑战。 2. 《小七姐:精读翻译《提示词设计和工程:入门与高级方法》》:提到在解决预训练大型语言模型(LLM)的限制方面,RAG 成为关键创新,通过动态整合外部知识扩展了 LLM。还介绍了 RAG 感知提示词技术,如 FLARE 以创新方法增强 LLM 性能。 3. 《通过增强 PDF 结构识别,革新检索增强生成技术》:包含对 PDF 识别对 RAG 影响的实验研究,通过列举 ChatDOC 在查询特斯拉用户手册中的具体案例,突出了 ChatDOC 解析方法在处理表格和呈现方式上的有效性。
2024-11-20
如何利用飞书构建RAG系统
以下是关于如何利用飞书构建 RAG 系统的相关内容: RAG 的常见误区: 随意输入任何文档就能得到准确回答:这是常见误区,RAG 流程包含离线环节(文档解析、切割及向量化写入向量数据库)和在线检索环节(用户问题理解、初步检索、重排序及大模型生成),任何环节都会影响最终质量,有效实现 RAG 系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等,需要专业知识和持续优化。 RAG 完全消除了 AI 的幻觉:虽然 RAG 可以显著减少幻觉,但并不能完全消除,只要有大模型参与,就有可能产生幻觉。 RAG 不消耗大模型的 Token 了:从大模型生成结果环节可以看出,最终还是将知识库中检索的结果给到 LLM,然后由 LLM 进行重新整理输出,所以 RAG 仍然消耗大模型的 Token。 本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG: 加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 从订阅源获取内容,通过函数从指定的 RSS 订阅 url 提取内容,将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,使用文本向量模型 bgem3,从 hf 下载好模型后,通过函数利用 FAISS 创建高效的向量存储。 RAG 性能提升策略和评估方法(产品视角): 前言:RAG 是检索增强生成的缩写,是结合检索模型和生成模型的技术,核心目的是把知识告诉给 AI 大模型,让其“懂”我们,核心流程是根据用户提问从私有知识中检索相关内容,与用户提问一起放入 prompt 中提交给大模型,常见应用场景如知识问答系统。
2024-11-20
AGI 和RAG AGENT有什么区别
AGI(通用人工智能)、RAG(检索增强生成)和 Agent 存在以下区别: Agent: 本质是动态 Prompt 拼接,通过工程化手段将业务需求转述为新的 Prompt。 包含短期记忆(messages 里的历史 QA 对)和长期记忆(summary 之后的文本塞回 system prompt)。 可以通过工具触发检索和 Action,触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互。 如 Multi Agents ,主要是更换 system prompt 和 tools 。 为 LLM 增加工具、记忆、行动、规划等能力,目前行业主要使用 langchain 框架,在 prompt 层和工具层完成设计。 有效使用工具的前提是全面了解工具的应用场景和调用方法,学习使用工具的方法包括从 demonstration 中学习和从 reward 中学习。 在追求 AGI 的征途中,具身 Agent 强调将智能系统与物理世界紧密结合,能够主动感知和理解物理环境并互动,产生具身行动。 RAG: 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。 AGI:是一种更广泛和全面的智能概念,旨在实现类似人类的通用智能能力。 需要注意的是,这些概念的发展和应用仍在不断演进,想做深做好还有很多需要探索和解决的问题。
2024-11-19
如何对rag进行评估
对 RAG 进行评估可以从以下几个方面入手: 1. 使用 RAG 三角形的评估方法: 在 LangChain 中创建 RAG 对象,使用 RAGPromptTemplate 作为提示模板,指定检索系统和知识库的参数。 在 TruLens 中创建 TruChain 对象,包装 RAG 对象,指定反馈函数和应用 ID。反馈函数可使用 TruLens 提供的 f_context_relevance、f_groundness、f_answer_relevance,也可自定义。 使用 with 语句运行 RAG 对象,记录反馈数据,包括输入问题、得到的回答以及检索出的文档。 查看和分析反馈数据,根据 RAG 三角形的评估指标评价 RAG 的表现。 2. 建立评估框架将检索性能与整个 LLM 应用程序隔离开来,从以下角度评估: 模型角度(generation): 回答真实性:模型结果的真实性高低(减少模型幻觉)。 回答相关度:结果和问题的相关程度,避免南辕北辙。 检索角度(retrieval): 召回率(recall):相关信息在返回的检索内容中的包含程度,越全越好。 准确率(precision):返回的检索内容中有用信息的占比,越多越好。 3. 考虑以下评估方法和指标: 生成质量评估:常用自动评估指标(如 BLEU、ROUGE 等)、人工评估和事实验证,衡量生成文本的流畅性、准确性和相关性。 检索效果评估:包括检索的准确性、召回率和效率,其好坏直接影响生成文本的质量。 用户满意度评估:通过用户调查、用户反馈和用户交互数据了解用户对 RAG 系统的满意度和体验。 多模态评估:对于生成多模态内容的 RAG 系统,评估不同模态之间的一致性和相关性,可通过多模态评估指标实现。 实时性评估:对于需要实时更新的 RAG 任务,考虑信息更新的及时性和效率。 基准测试集:使用基准测试集进行实验和比较不同的 RAG 系统,涵盖多样化的任务和查询,以适应不同的应用场景。 评估方法和指标的选择取决于具体的任务和应用场景,综合使用多种评估方法可更全面地了解 RAG 系统的性能和效果,评估结果能指导系统的改进和优化,满足用户需求。此外,RAGAS 是一个用于 RAG 评估的知名开源库,可参考使用: 。需要注意的是,RAG 适合打造专才,不适合打造通才,且存在一定局限性,如在提供通用领域知识方面表现不佳,可能影响模型的风格或结构输出、增加 token 消耗等,部分问题需使用微调技术解决。
2024-11-13
搜索DragGAN
DragGAN 于 2023 年 6 月 25 日开源。喜欢 AI 绘画的对它应该不陌生,期待它带来更大的惊艳。此外,相关论文中增加了微软研究院新发布的多模态 AI 助手;学习路径中增加了适合初学者的深度学习课程 fast.ai ;AI 名词增加到 80 多个,补充了很多技术名词。您可以通过以下链接获取更多详细信息:
2024-11-11
我做了一个视频,背景是实拍的城市照片,角色是一个卡通角色,通过即梦让照片上的卡通角色动起来后,发现卡通角色的脸跟手臂动作都糊了。 我现在有什么办法优化,对卡通角色五官重绘更清晰的情况下,还保留现实的照片背景。(用sd重绘的话是不是就丢失了)
以下是一些可能有助于您优化视频的建议: 1. 对于您提到的卡通角色动作模糊的问题,可以尝试使用 Dreamina 工具,并将运动速度设为慢速,同时在 Prompt 里写轻微的动作描述,可能会有不错的效果。 2. 由于 Dreamina 工具存在只有 8 帧和 720P 的限制,您可以使用 Topaz Video AI 将其增强到 24 帧和 4K。在 B 站搜索“Topaz Video AI 4.2.1”关键词能找到相关教程。增强完成后,再放到剪映里裁成 21:9 的比例。 3. 对于卡通角色五官不清晰的情况,如果 AI 工具无法处理,可能需要使用传统的 AE 软件自己制作,比如普通的下沉位移动画。 需要注意的是,在某些情况下,如人物在水中下沉时,AI 视频可能会出现脸糊的情况,这种情况可能需要传统手段来解决。
2024-08-25
我想搞一个ChatGPT4o的账号,有什么办法吗?
以下是注册 ChatGPT 4o 账号的办法: 1. 访问官方网站:打开浏览器,输入。如有账号直接登录,没有的话点击“注册”。 2. 使用建议: 苹果用户:需要 ChatGPT 账号、美区 AppleID、谷歌账号。 安卓用户:需要 ChatGPT 账号、下载 GooglePlay、谷歌账号。 国外很多软件支持谷歌账号一键登录,ChatGPT 也可以用谷歌账号登录,非常方便。目前注册谷歌账号支持国内手机号码和国内邮箱验证,过程也非常简单。 注:使用以上软件需要会科学上网,不会的可以私信。以下是详细注册流程。
2024-08-12
我是一名小学一年级的学生,人工智能可以用什么办法帮助我学习古诗?
人工智能可以通过多种方式帮助一年级的小学生学习古诗,以下是一些例子: 1. 通过自然语言处理技术:人工智能可以通过自然语言处理技术,理解和解释古诗的含义和背景。这可以帮助一年级的小学生更好地理解古诗的内容和意义。 2. 通过机器学习技术:人工智能可以通过机器学习技术,对大量的古诗进行分析和学习,从而提高自己的古诗理解和解释能力。这可以帮助一年级的小学生更好地学习和理解古诗。 3. 通过语音识别技术:人工智能可以通过语音识别技术,将古诗朗诵出来,帮助一年级的小学生更好地记忆和理解古诗。 4. 通过图像识别技术:人工智能可以通过图像识别技术,将古诗中的场景和人物呈现出来,帮助一年级的小学生更好地理解古诗的内容和意义。 5. 通过智能辅导系统:人工智能可以通过智能辅导系统,为一年级的小学生提供个性化的辅导和指导,帮助他们更好地学习和理解古诗。 总之,人工智能可以通过多种方式帮助一年级的小学生学习古诗,提高他们的学习兴趣和能力。
2024-05-30
大模型对于数学计算的一些解决办法
大型语言模型在处理数学计算时,尤其是复杂的数学问题时,可能会遇到一些困难。以下是一些解决办法,以帮助大型语言模型更好地处理数学计算: 1. 引入编程插件: 一种解决方案是将数学问题转化为编程问题,并引入编程插件来处理。通过编写代码来执行数学计算,然后将结果返回给语言模型,以获取正确答案。 2. 教会模型数学法则: 类似于小学生学习加法法则的方式,可以教导语言模型数学计算的规则。通过定义数学计算的规则和步骤,让语言模型学习如何正确执行数学运算。 3. 标准化自然数加法计算 prompt 模板: 创建一个标准的自然数加法计算 prompt 模板,使语言模型能够按照预定义的规则和步骤来执行加法计算。这种方法可以帮助模型更好地理解和解决数学问题。 4. 结合图像模型: 对于涉及空间概念的数学问题,可以结合图像模型来辅助处理。图像模型可以帮助模型更好地理解几何问题,并提供更准确的答案。 5. 提供充足的语料和样本: 为语言模型提供充足的数学计算样本和语料,让模型能够从中学习并改进数学计算能力。通过更多的训练和数据,模型可以提高对数学问题的理解和处理能力。 通过以上方法,大型语言模型可以更好地处理数学计算,并提供更准确的答案。这些方法可以帮助克服语言模型在数学问题上的一些局限性,提高其数学计算能力。
2024-04-19
图生视频有什么办法生成高质量视频
有以下几种方法可以生成高质量的图生视频: 1. 使用阿里妈妈推出的 AtomoVideo 框架 AtomoVideo 可以将静态图片自动转换为高质量视频动效 采用了多项新技术,如优质数据集构建、多粒度图像注入、渐进性动作强度增加等 可与现有的文生图(T2I)模型进行兼容,生成视频保真度高 2. 使用 Runway ML Gen2 视频生成器 Runway ML Gen2 是一个多模式人工智能系统,可以从文本、图像或视频剪辑生成新颖的视频 允许用户通过文本到视频生成来创建各种风格的视频 提供高级设置来微调生成效果,如调整分辨率、插值等 3. 使用 Kaiber AI 视频生成器 Kaiber AI 可以从图像、音频或视频开始,生成高品质的视频 提供精选样式和提示模板,帮助用户获得更多灵感 易于使用,适合初学者 4. 使用 SD 社区的 I2VAdapter 插件 I2VAdapter 可以与 Stable Diffusion 等图生模型进行兼容 通过时空建模等技术,生成高质量的视频内容 为图生视频领域的创意应用开辟了新的可能性 总的来说,这些基于 AI 的图生视频技术都可以帮助用户快速生成高质量的视频内容,大大提高创作效率。
2024-04-18
有没有快速翻译英文pdf的办法
有 8 种翻译英文 PDF 的方法,具体如下: 1. DeepL(网站)点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可; 2. 沉浸式翻译(浏览器插件)安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML / TXT 文件」、「翻译本地字幕文件」; 3. calibre(电子书管理应用)下载并安装 calibre,并安装翻译插件「Ebook Translator」; 4. 谷歌翻译(网页)使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档; 5. 百度翻译(网页)点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了); 6. 彩云小译(App)下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费); 7. 微信读书(App)下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮; 8. 浏览器自带的翻译功能如果一些 PDF 太大,翻译工具不支持,除了将 PDF 压缩或者切分外,还可以转成 HTML 格式,然后使用浏览器自带的网页翻译功能。
2024-03-20