Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

RAG加速有什么好办法吗

Answer

以下是一些加速 RAG 的好办法:

  1. 确保 LLM 以正确的格式回应:函数调用已成为确保 LLM 严格输出特定格式的相对靠谱的新方法,推荐使用此方法提升性能。可参考结构化输出文档,其中高层次的 LangChain API 展示了不同 LLM 如何调用工具和函数。
  2. 使用参考样例:在实际操作中,将输入和对应输出的样例纳入其中通常大有裨益,这些样例有时比指示本身更能有效指导 LLM 处理特定情况。在提取用例文档中可找到更多细节,助您从 LLMs 中提取更好的性能。

此外,LangChain 携手 NVIDIA 为 RAG 加速带来了新的篇章:

  1. 将 NVIDIA NIM 与 LangChain 结合使用:新增了支持 NIM 的集成包,安装专门的集成包后可导入所需模型,并通过示例展示如何构建应用程序,包括安装额外的包、加载数据源、初始化嵌入模型等一系列操作。
  2. NVIDIA NIM 介绍:NVIDIA NIM 是一系列用户友好的微服务,旨在加速企业内部生成式 AI 的部署进程,支持广泛的 AI 模型,基于强大的推理引擎和技术构建,提供无缝的 AI 推理体验,是实现大规模、高性能生成式 AI 推理的最佳选择。其具有自托管特性,能保证数据安全;提供预构建的容器,方便选择和使用最新模型;具有可扩展性。开始使用 NIM 非常简单,在 NVIDIA API 目录中可轻松访问多种 AI 模型,NIM 是 NVIDIA AI Enterprise 的一部分,可通过相关博客获取详细指南。
Content generated by AI large model, please carefully verify (powered by aily)

References

RAG加速器:数据抽取服务

了解了组成部分后,接下来是如何让它们一起工作。我们此处要分享两个简单但强大的思路。第一个要点是确保LLM以正确的格式回应。如果只是在命令中指示LLM输出JSON格式,它可能并不总会遵守。因此,函数调用已经成为确保LLM严格输出特定格式的一个新方法,而且相对靠谱。我们推荐使用此方法来提升性能。你可以参考结构化输出文档,其中高层次的LangChain API展示了不同LLM如何调用工具和函数。另一个提升性能的方法是使用参考样例。尽管没有样例也能设置抽取问题,但我们发现实际操作中,将输入和对应输出的样例纳入其中通常大有裨益。有时候,这些样例比指示本身还更能有效指导LLM处理特定情况。在我们的提取用例文档中,你可以找到更多细节,助你从LLMs中提取更好的性能。

LangChain 携手 NVIDIA:RAG加速新篇章

最后,让我们来谈谈如何将NIM与LangChain结合使用。我们新增了一个支持NIM的集成包。要开始使用这个集成,您需要先安装我们专门为NIM设计的集成包:安装完成后,您就可以导入所需的模型了:[heading2]集成示例[content]接下来,我们将通过一个示例来展示如何构建应用程序。如果您更喜欢通过视频学习,您可以在这里观看视频教程。我们将利用LangSmith文档的一部分来构建一个RAG应用。为了增加趣味性,我们将采用一种高级检索方法:假设文档嵌入(HyDE)。HyDE的设计理念是,搜索查询可能与我们要检索的文档不在同一个嵌入空间中。为了解决这个问题,我们可以利用LLM生成一个假设文档,然后检索与该假设文档相似的文档。首先,我们需要安装一些额外的包:然后,我们将加载LangSmith文档作为我们RAG应用的数据源:在对文档进行索引之前,我们需要初始化嵌入模型:接下来,我们可以使用FAISS向量存储来执行索引操作:然后,我们可以初始化LLM:现在,我们将创建一个假设文档生成器。这个生成器由一个提示模板、LLM和一个简单的输出解析器组成:接着,我们将创建一个新的链,用于生成假设文档:然后,我们将创建一个链,用于根据检索到的文档和问题生成最终答案:最后,我们将创建一个最终的链,结合假设文档检索器和答案生成链,以产生最终的输出:请注意,我们通过生成令牌来实现最终链的流式输出。现在,让我们来测试一下这个链:通过这种方式,LangChain利用NVIDIA NIM为RAG应用带来了GPU加速的LLM推理能力,大大提升了处理敏感数据的安全性,同时简化了从原型到生产的转变过程。

LangChain 携手 NVIDIA:RAG加速新篇章

NVIDIA NIM是一系列用户友好的微服务,它们旨在加速企业内部生成式AI的部署进程。这种多功能的运行环境支持包括开源社区模型、NVIDIA AI基础模型以及自定义AI模型在内的广泛AI模型。开发者可以利用行业标准的API,仅需数行代码即可快速构建出企业级的AI应用。NIM基于NVIDIA Triton Inference Server、NVIDIA TensorRT、NVIDIA TensorRT-LLLLM等强大的推理引擎,以及PyTorch等技术构建,旨在提供无缝的AI推理体验,确保您可以自信地在任何环境中部署AI应用。无论是在本地服务器还是云端环境中,NIM都是实现大规模、高性能生成式AI推理的最佳选择。[heading2]为什么LangChain对NVIDIA NIM充满期待?[content]我们对NVIDIA NIM充满期待的原因有几个。首先,最引人注目的是它的自托管特性。这意味着您向基于NVIDIA的模型发送的任何数据都将保留在您的服务器上,不会外传。对于那些经常需要处理敏感信息的RAG应用来说,这一点尤其重要。其次,NIM提供了一系列预构建的容器,这让您可以轻松选择并使用最新的生成式AI模型,而无需进行复杂的配置。最后,NIM的可扩展性。在个人电脑上本地运行模型是一回事,但要将其作为服务部署,并且保持与专业服务提供商相同的稳定性和可用性,则是另一回事。幸运的是,NIM已经为您解决了这一挑战。[heading2]如何开始使用NVIDIA NIM?[content]开始使用NIM非常简单。在NVIDIA API目录中,开发者可以轻松访问多种AI模型,用于构建和部署生成式AI应用。NIM是NVIDIA AI Enterprise的一部分,这是一个全面的、基于云的软件平台,旨在简化生产级AI应用的开发和部署流程。您可以通过这篇博客获取如何开始使用的详细指南。

Others are asking
那个框架特别适用于RAG,比如LlamaIndex、LangChain等
LlamaIndex 是一个专为构建大型语言模型(LLM)应用而设计的开发框架,为开发人员提供了强大且灵活的工具,能更有效地理解和处理文本数据。对于熟悉 LangChain 的开发者而言,它并不陌生。 其核心优势在于对大型语言模型的深度支持,允许开发者利用如 GPT3.5 Turbo 等模型执行多种文本处理任务,如文档问答、文章生成和自动翻译等。特别地,它提供了构建文档问答系统的功能,能自动从大量文档中检索相关信息并生成答案,这在处理大量知识信息的领域极具价值。 LlamaIndex 还允许对嵌入模型进行微调以适应特定任务需求,提升文档问答系统的性能。它支持连接结构化、半结构化和非结构化等不同类型的数据源,为应用程序提供全面信息。 此外,其设计注重简化开发流程,即使复杂的 NLP 任务也能通过少量代码实现,无需深入了解底层复杂性。这种设计哲学不仅降低了开发大型语言模型应用的门槛,还极大提升了开发效率和应用性能。 LlamaIndex 的 GitHub 地址:https://github.com/runllama/llama_index/
2025-01-07
目前的 rag 框架都有哪些
目前常用的 RAG 框架有 LangChain。 LangChain 是一个为简化大模型应用开发而设计的开源框架。它具有以下特点: 1. 提供一套模块化的工具和库,便于开发者轻松集成和操作多种大模型。 2. 设计注重简化开发流程,能让开发者将更多精力投入到创造应用的核心价值上。 3. 支持广泛的模型,具备良好的可扩展性,以适应不断变化的业务需求。 4. 作为得到社区广泛支持的开源项目,拥有活跃的贡献者和持续的更新。 5. 提供了全面的文档和示例代码,有助于新用户快速掌握。 6. 在设计时充分考虑了应用的安全性和用户数据的隐私保护。 7. 是一个多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-01-07
RAG工作流对话调试
RAG(检索增强生成)工作流主要包括以下几个阶段: 1. 问题解析阶段:接收并预处理问题,通过嵌入模型(如 Word2Vec、GloVe、BERT)将问题文本转化为向量,以用于后续检索。 2. 知识库检索阶段:知识库中的文档同样向量化后,比较问题向量与文档向量,选择最相关的信息片段并抽取传递给下一步骤。 3. 信息整合阶段:接收检索到的信息,与上下文构建形成融合、全面的信息文本,整合信息准备进入生成阶段。 4. 大模型生成回答:整合后的信息被转化为向量并输入到 LLM(大语言模型),模型逐词构建回答,最终输出给用户。 RAG 的基本概念: RAG 是一种结合了检索和生成的技术,能让大模型在生成文本时利用额外的数据源,提高生成的质量和准确性。其基本流程为,首先给定用户输入(如问题或话题),RAG 从数据源中检索出相关文本片段(称为上下文),然后将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示指导模型生成期望输出(如答案或摘要),最后从大模型的输出中提取或格式化所需信息返回给用户。 在实际调试预览中,例如: 1. 知识库检索部分:把输入的问题通过 Embedding 做向量化,使用语言模型优化问题、添加接近的检索词,知识库向量检索时抽取条件包含相似度 0.85,通过检索抽取出多个内容块。 2. 大模型对话部分:将相关信息传递给 LLM 最终得到 AI 的回答。
2025-01-06
RAG工作流搭建
RAG(检索增强生成)工作流搭建主要包括以下步骤: 1. 文档加载:从多种不同来源加载文档,如非结构化的 PDF 数据、结构化的 SQL 数据、代码等,LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把文档切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储: 将切分好的文档块进行嵌入转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 RAG 是一种结合了检索和生成的技术,其基本流程为:首先,给定用户输入,如问题或话题,从数据源中检索出相关文本片段作为上下文。然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型,并包含提示指导模型生成期望输出。最后,从大模型输出中提取或格式化所需信息返回给用户。 此外,您还可以通过以下方式学习 RAG: 1. 观看视频演示,如: 2. 利用相关 Bot 进行学习,如: Query 改写效果对比 Bot:https://www.coze.cn/store/bot/7400553639514800182?panel=1&bid=6dkplh1r43g15 RAG 全流程学习 Bot:结合大模型,模拟 RAG 的离线存储和在线检索全流程。 您还可以参考如何使用 LangChain 开发一个简单的 RAG 问答应用。
2025-01-06
RAG与Agent如何结合应用
RAG 与 Agent 的结合应用可以通过以下步骤实现: 1. 数据加载:根据数据源类型选择合适的数据加载器,如网页可使用 WebBaseLoader 加载和解析,返回文档对象。 2. 文本分割:依据文本特点选择合适的文本分割器,将文档对象分割成较小的对象,如博客文章可用 RecursiveCharacterTextSplitter 分割。 3. 嵌入与存储:使用文本嵌入器和向量存储器将文档对象转换为嵌入并存储,根据质量和速度选择合适的,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 4. 创建检索器:通过向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数,创建用于根据用户输入检索相关文档对象的检索器。 5. 创建聊天模型:根据性能和成本选择合适的聊天模型,如使用 OpenAI 的 GPT3 模型,根据用户输入和检索到的文档对象生成输出消息。 以餐饮生活助手为例,基于结构化数据来 RAG 实战: 1. 定义餐饮数据源:将餐饮数据集转化为 Langchain 可识别和操作的数据源,如数据库、文件、API 等,并注册到 Langchain 中,提供统一接口和方法供 LLM 代理访问和查询。 2. 定义 LLM 的代理:通过 Langchain 的代理(Agent)实现,代理管理器可让开发者定义不同的 LLM 代理及其功能和逻辑,提供统一接口和方法供用户交互。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-01-06
RAG的经典应用场景
RAG(检索增强生成)的经典应用场景主要包括以下方面: 1. 构建智能问答客服:用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 2. 知识问答系统:用户提问后,RAG 从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到提示词中,提交给大模型,大模型的回答会充分考虑到“包含答案的内容”。
2025-01-06
语音转文字有哪些办法
以下是一些语音转文字的办法: 1. 利用 GVoice 提供的语音录制和识别能力,其中文识别率优秀。但需注意语音识别可能存在少量错误,不过 ChatGPT 通常能正常理解和纠错,衔接较为流畅。 2. 使用 Whisper API 时,默认仅支持小于 25MB 的文件。若音频文件更长,需将其分成小于 25MB 的块或使用压缩后格式,可使用 PyDub 开源 Python 软件包来拆分声频文件。 3. 对于 Whisper API,可以使用提示来提高生成的转录质量。例如,改善特定单词或缩略语的识别、保留分段文件的上下文、避免标点符号的省略、保留填充词汇、处理不同书写风格等。 希望这些信息能满足您的需求。
2025-01-04
结合欧盟《人工智能法案》和我国《生成式人工智能服务管理暂行办法》的对照,论述欧盟人工智能法案对我国在生成式人工智能方面立法的启示。
欧盟《人工智能法案》对我国在生成式人工智能方面立法的启示主要体现在以下几个方面: 1. 监管框架出发点:中国针对不同的涉及算法的互联网信息服务,以落实主体责任作为基本落脚点,将“服务提供者”作为相关义务的履行主体。而欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估,划分为不同风险层级,并匹配不同的责任措施和差异化监管。 2. 风险分类分级监管与算法安全评估:在我国,相关指导意见和法规已提出风险防控和算法分级分类安全管理的要求,以及对生成式人工智能服务的分类分级监管要求。欧美在这方面的路径和方法虽有争议,但总体上对我国仍具借鉴意义。
2024-12-31
结合欧盟《人工智能法案》和我国《生成式人工智能服务管理暂行办法》的对照,论述欧盟人工智能法案对我国相关立法的启示。可以举例
欧盟《人工智能法案》对我国相关立法的启示主要体现在以下方面: 1. 监管框架出发点:中国针对不同的涉及算法的互联网信息服务,以落实主体责任为基本落脚点,将“服务提供者”作为相关义务的履行主体,如《互联网信息服务算法推荐管理规定》《生成式人工智能服务管理办法》等。而欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估,划分为不同风险层级,并匹配不同责任措施和差异化监管。 2. 风险分级管理:我国与欧盟在立法理念上有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则,在我国相关法律法规中已有所体现。 3. 对拓展市场的影响:如果我国的AI项目有意拓展欧洲市场,由于针对不同市场重新训练特有模型的效率不高,将因“木桶原理”而不得不根据欧盟《人工智能法案》对产品进行调整。 总之,欧盟的《人工智能法案》对我国人工智能立法工作具有重要参考意义。
2024-12-31
我想要让AI来操作,我这个电脑,然后呢?去充当一个AI客服的角色去回答微信上的问题有什么办法吗?
目前在微信中,Coze 平台是一个 AI 智能体创作平台,可以根据需求构建 AI 机器人并发布到多种社交平台。微信的不同功能在与 AI 对接上有所差异: 1. 个人微信/微信群:Coze AI 平台之前不支持直接对接,但国内版正式发布 API 接口功能后,直接对接已成为可能。 2. 微信公众号:Coze AI 平台支持对接,能让 AI 机器人自动回复用户消息。 3. 微信服务号:同样支持对接,可帮助企业提升服务效率。 4. 微信客服:Coze AI 平台支持对接,使 AI 机器人能够自动回答用户咨询,提高客服响应速度。 在把 AI 大模型能力接入微信后,对于类似客服的应用场景,存在模型幻觉导致胡乱回答的问题。对于非技术从业者,落地场景存在困难。一个问答机器人的界面配置包括 AI 模型、提示词、知识库。
2024-12-20
怎么利用人工智能为一家一人公司赋能,具体实施办法,图片,视频等除外,讲一些实用的,新的想法
对于一家一人公司而言,利用人工智能赋能可以从以下几个实用且新颖的方面入手: 首先,在客户服务方面,可以运用智能聊天机器人来处理常见问题,提高响应速度和服务质量。通过自然语言处理技术,让机器人能够理解客户的需求并提供准确的回答。 其次,在市场营销中,利用人工智能进行数据分析,深入了解目标客户的行为和偏好,从而精准定位市场,制定更有效的营销策略。 再者,在业务流程优化上,借助人工智能的自动化能力,例如自动化文档处理、自动化邮件分类等,节省时间和精力,提高工作效率。 另外,在财务管理方面,使用人工智能工具进行风险预测和财务规划,帮助做出更明智的决策。 最后,在产品研发中,利用人工智能的创意生成能力,获取新的产品设计思路和创新点。
2024-12-18
有没有什么简便的办法,把一些公式的图片自动转换成公式编辑器的公式
目前,将公式的图片自动转换成公式编辑器的公式,还没有特别简便通用的方法。不过,一些专业的 OCR(光学字符识别)软件可能会有所帮助,但它们的准确性可能会受到图片质量、公式复杂程度等因素的影响。
2024-12-05