直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

agent案例

回答

以下是为您提供的关于 Agent 的相关案例和信息:

四种 Agent 设计范式

  • Reflection(反思):类似于 AI 的自我纠错和迭代。例如让用 Reflection 构建好的 AI 系统写代码,AI 会把代码加上检查正确性和修改的话术再返回给自己,然后反复进行,完成自我迭代。
  • Tool Use(工具使用):大语言模型调用插件,极大拓展了 LLM 的边界能力。

智能体的类型

  • 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态和考虑历史信息。例如温控器。
  • 基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并采取行动。例如自动驾驶汽车。
  • 目标导向型智能体(Goal-based Agents):具有明确目标,能根据目标评估行动方案并选择最优行动。例如机器人导航系统。
  • 效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。例如金融交易智能体。
  • 学习型智能体(Learning Agents):能够通过与环境交互不断改进性能,学习模型、行为策略和目标函数。例如强化学习智能体。

从产品角度思考 Agent 设计

  • Agent 可以是一个历史新闻探索向导,身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析。为使角色更生动,可设计简短背景故事。
  • 写好角色个性包括:编写背景故事明确起源、经历和动机;定义性格特点和说话方式风格;设计对话风格;明确核心功能和附加功能。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

四种 Agent 设计范式(通俗易懂版)-- 吴恩达最新演讲

[title]四种Agent设计范式(通俗易懂版)--吴恩达最新演讲我们的研究结果表明,如果你使用GPT3.5 + Zero-shot的正确率为48%,GPT4 + Zero-shot的正确率为67%,但是,如果你用GPT3.5 + Agentic Workflow,你会得到超越GPT4的效果!因此,Agent在构建AI应用时非常重要。(然后就到了主题)尽管很多学者、专家谈论了很多关于Agent的东西,但我今天想更具体的分享我在Agent中看到比较广泛的四种设计模式(尽管很多团队,开源项目等做了很多种多样的尝试,但我还是按我的理解划分成了四类)。Reflection和Tool Use属于比较经典且相对已经广泛使用的方式,Planning和Multi-agent属于比较新颖比较有前景的方式。第一个讲的就是Reflection(反思,类似于AI的自我纠错和迭代),举个栗子,我们让用Reflection构建好的一个AI系统写个xxx代码,然后AI会把这个代码,加上类似“检查此段代码的正确性,告诉我如何修改”的话术,再返回给AI,AI可能会给你提出其中的Bug,然后如此反复,AI自己完成了自我迭代,虽然修改后的代码质量不一定能保证,但基本上来说效果会更好。(每页PPT下方,吴恩达大佬都推荐了一些相关论文,可以去看看)如上表述的是案例是Single-agent(区别于Mutli-agent的单智能体),但其实你也可以用两个Agent,一个写代码,然后另一个来Debug👇这两个Agent可以用相同的LLM,也可以用不同的,这种Reflection的方式在很多场景都适用。接下来第二个是Tool Use(如果你经常玩GPT4或者国产的一些AI对话产品,那就不陌生了),大语言模型调用插件,极大的拓展了LLM的边界能力。

问:什么是智能体 Agent

智能体可以根据其复杂性和功能分为几种类型:1.简单反应型智能体(Reactive Agents):这种智能体根据当前的感知输入直接采取行动。不维护内部状态,也不考虑历史信息。示例:温控器,它根据温度传感器的输入直接打开或关闭加热器。2.基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模。能够推理未来的状态变化,并根据推理结果采取行动。示例:自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。3.目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标。能够根据目标评估不同的行动方案,并选择最优的行动。示例:机器人导航系统,它有明确的目的地,并计划路线以避免障碍。4.效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。评估行动的优劣,权衡利弊。示例:金融交易智能体,根据不同市场条件选择最优的交易策略。5.学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能。学习模型、行为策略以及目标函数。示例:强化学习智能体,通过与环境互动不断学习最优策略。

Roger:从产品角度思考 Agent 设计

[title]Roger:从产品角度思考Agent设计[heading2]分享内容:[heading3]二、从产品经理角度思考Agent[heading4]Who:Agent是谁?性格是什么?我们的Agent是一个历史新闻探索向导。身份:历史新闻探索向导性格:知识渊博、温暖亲切、富有同情心角色:主导新闻解析和历史背景分析为了使角色更加生动,我为Agent设计了一个简短的背景故事。比如,这个Agent曾是一位历史学家,对世界上的重大历史事件了如指掌,充满热情,愿意分享知识。怎么写好角色个性:角色背景和身份:编写背景故事,明确起源、经历和动机性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格角色互动方式:设计对话风格,从基本问答到深入讨论角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性正如《[Character.ai:每个人都可定制自己的个性化AI](https://waytoagi.feishu.cn/wiki/EoBkwirgjiqscKkAO6Wchyf1nPe)》所写:个性化定制的“虚拟伴侣”能得到用户的认可,这是因为精准地击中了许多年轻人无处可藏的孤独和焦虑,背后是年轻人渴望被理解、沟通和交流。美国心理学家Robert Jeffrey Sternberg提出了“爱情三角理论”,认为爱情包含“激情”、“亲密”和“承诺”三个要素。激情是生理上或情绪上的唤醒,例如对某人有强烈的性或浪漫的感觉;亲密是一种相互依恋的感觉,通过相互联结带来的喜爱和相互沟通分享自己的所见所闻、喜怒哀乐来体现;承诺是决定建立长期稳定关系,融入对方生活,形成互助互惠的关系,代表着一种长相厮守的责任。

其他人在问
如何搭自己的agent
搭建自己的 Agent 可以按照以下步骤进行: 1. 从案例入门: 三分钟捏 Bot: Step 1:(10 秒)登录控制台 登录扣子控制台(coze.cn)。 使用手机号或抖音注册/登录。 Step 2:(20 秒)在我的空间创建 Agent 在扣子主页左上角点击“创建 Bot”。 选择空间名称为“个人空间”、Bot 名称为“第一个 Bot”,并点击“确认”完成配置。如需使用其他空间,请先创建后再选择;Bot 名称可以自定义。 Step 3:(30 秒)编写 Prompt 填写 Prompt,即自己想要创建的 Bot 功能说明。第一次可以使用一个简短的词语作为 Prompt 提示词。 Step 4:(30 秒)优化 Prompt 点击“优化”,使用来帮忙优化。 Step 5:(30 秒)设置开场白 Step 6:(30 秒)其他环节 Step 7:(30 秒)发布到多平台&使用 2. 进阶之路: 15 分钟做什么:查看下其他 Bot,获取灵感。 1 小时做什么:找到和自己兴趣、工作方向等可以结合的 Bot,深入沟通。阅读以下文章:文章 1、文章 2、文章 3。 一周做什么:了解基础组件;寻找不错的扣子,借鉴&复制;加入 Agent 共学小组;尝试在群里问第一个问题。 一个月做什么:合理安排时间;参与 WaytoAGI Agent 共学计划;自己创建 Agent,并分享自己捏 Bot 的经历和心得。 在 WaytoAGI 有哪些支持:文档资源、交流群、活动。 一些好的 Agent 构建平台包括: 1. Coze:是一个新一代的一站式 AI Bot 开发平台,集成了丰富插件工具,适用于构建基于 AI 模型的各类问答 Bot。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据自身需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 Agent 搭建共学快闪 0507 的作业: |时间|作业|备注| |||| |5 月 7 号|创建 https://www.coze.com 账号<br>创建 https://www.coze.cn 账号<br>加入共学的 team(看第三列备注)<br>有精力的话:可以提前阅读:<br>尝试创建自己的第一个 Bot,用来免费使用 GPT4|海外版本<br>Click the link to join my team WaytoAGI on the Coze Bot Platform<br>👉🏻 https://www.coze.com/invite/8UrPdX0vuusXq5H6dF4P<br>国内版本<br>coze.cn<br>👉🏻 https://www.coze.cn/invite/EpD2Ud0bdPcvutscWStY| |5 月 10 日罗文|认领一个插件制作插件说明|| PS:上述两个作业在 5 月 8 号分享结束之后就可以上手进行了,5 月 9 号会针对工作流和多 Agent 模式进行进一步的讲解。大家制作的 Bot 都可以在飞书群中进行投稿,然后会有专门的同学记录到 Bot 收集板。
2024-11-22
如何训练Agent?
在人工智能领域中,训练 Agent 主要有以下方法和特点: 1. 基于迁移学习和元学习的 Agent 训练: 传统强化学习中,Agent 训练消耗大量样本和时间,泛化能力不足。为突破此瓶颈,引入迁移学习,促进不同任务间知识和经验迁移,减轻新任务学习负担,提升学习效率和性能,增强泛化能力。 元学习让 Agent 学会从少量样本中迅速掌握新任务最优策略,利用已有知识和策略调整学习路径,减少对大规模样本集依赖。 但迁移学习和元学习面临挑战,如迁移学习在源任务与目标任务差异大时可能无效甚至负面迁移,元学习需大量预训练和样本构建学习能力,使通用高效学习策略开发复杂艰巨。 时间:21 世纪初至今 特点:迁移学习将一个任务知识迁移到其他任务;元学习学习如何学习,快速适应新任务 技术:迁移学习如领域自适应;元学习如 MAML、MetaLearner LSTM 优点:提高学习效率,适应新任务 缺点:对源任务和目标任务相似性有要求 2. 基于强化学习的 Agent 训练: 强化学习关注如何让 Agent 通过与环境互动自我学习,在特定任务中累积最大长期奖励。起初主要依托策略搜索和价值函数优化等算法,如 Qlearning 和 SARSA。 随着深度学习兴起,深度神经网络与强化学习结合形成深度强化学习,赋予 Agent 从高维输入学习复杂策略的能力,有 AlphaGo 和 DQN 等成果。 深度强化学习允许 Agent 在未知环境自主探索学习,无需人工指导,在游戏、机器人控制等领域有应用潜力。 但面临诸多挑战,包括训练周期长、采样效率低、稳定性问题,在复杂真实环境应用困难。 时间:20 世纪 90 年代至今 特点:通过试错学习最优行为策略,以最大化累积奖励 技术:Qlearning、SARSA、深度强化学习(结合 DNN 和 RL) 优点:能够处理高维状态空间和连续动作空间 缺点:样本效率低,训练时间长
2024-11-21
agent的搭建
以下是一些常见的 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具,能拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 搭建工作流驱动的 Agent 通常可分为以下 3 个步骤: 1. 规划: 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 您可以根据自己的需求选择适合的平台进行进一步探索和应用。
2024-11-21
AGI 和RAG AGENT有什么区别
AGI(通用人工智能)、RAG(检索增强生成)和 Agent 存在以下区别: Agent: 本质是动态 Prompt 拼接,通过工程化手段将业务需求转述为新的 Prompt。 包含短期记忆(messages 里的历史 QA 对)和长期记忆(summary 之后的文本塞回 system prompt)。 可以通过工具触发检索和 Action,触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互。 如 Multi Agents ,主要是更换 system prompt 和 tools 。 为 LLM 增加工具、记忆、行动、规划等能力,目前行业主要使用 langchain 框架,在 prompt 层和工具层完成设计。 有效使用工具的前提是全面了解工具的应用场景和调用方法,学习使用工具的方法包括从 demonstration 中学习和从 reward 中学习。 在追求 AGI 的征途中,具身 Agent 强调将智能系统与物理世界紧密结合,能够主动感知和理解物理环境并互动,产生具身行动。 RAG: 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。 AGI:是一种更广泛和全面的智能概念,旨在实现类似人类的通用智能能力。 需要注意的是,这些概念的发展和应用仍在不断演进,想做深做好还有很多需要探索和解决的问题。
2024-11-19
有没有语音交互领域的AI Agent的好的思路
以下是关于语音交互领域的 AI Agent 的一些思路: 1. 构建像人一样的 Agent:实现所需的记忆模块、工作流模块和各种工具调用模块,这在工程上具有一定挑战。 2. 驱动躯壳的实现:定义灵魂部分的接口,躯壳部分通过 API 调用,如 HTTP、webSocket 等。要处理好包含情绪的语音表达以及躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 保证实时性:由于算法部分组成庞大,几乎不能单机部署,特别是大模型部分,会涉及网络耗时和模型推理耗时,低延时是亟需解决的问题。 4. 实现多元跨模态:不仅要有语音交互,还可根据实际需求加入其他感官,如通过添加摄像头数据获取视觉信息并进行图像解析。 5. 处理拟人化场景:正常与人交流时会有插话、转移话题等情况,需要通过工程手段丝滑处理。 此外,像 AutoGLM 这样的产品,通过模拟人类操作来实现跨应用的控制,展现出了一定的智能理解能力,如能根据用户意图选择合适的应用场景。但仍存在语音识别偏差、操作稳定性需提升、支持平台有限等问题,未来随着多模态理解能力和操作精准度的提高,发展空间较大。
2024-11-19
AI agent和智能体有什么区别
AI agent 和智能体在以下方面存在区别: 1. 概念侧重点:AI agent 更强调作为数字人的大脑,拥有记忆模块等,以实现更真实的交互;智能体则被视为智能的最小单元,是可以设定目标后主动完成任务的。 2. 能力构成:AI agent 主要通过接入大语言模型,并结合工具、记忆、行动、规划等能力来发挥作用;智能体不仅具备推理能力,还能执行全自动化业务,但目前许多相关产品仍需人类参与。 3. 实现方式:AI agent 目前行业里主要通过如 langchain 框架,在 prompt 层和工具层完成设计,将大模型与工具进行串接;智能体在实现上可能涉及更多复杂的技术和逻辑。
2024-11-12
ai诈骗案例
以下为您提供一些与 AI 相关的内容: 在法律领域,AI 可用于模拟不同辩护策略下的量刑结果,例如针对商业贿赂、网络诈骗等刑事案件,还能为商业合同纠纷等案件设计诉讼策略。 拜登签署的 AI 行政命令要求强大 AI 系统的开发者向美国政府分享安全测试结果等关键信息,制定确保 AI 系统安全可靠的标准、工具和测试,保护免受利用 AI 制造危险生物材料的风险,以及建立标准和最佳实践以防范 AI 导致的欺诈和欺骗。 在探讨 AI 幻觉方面,介绍了幻觉与错误的区别,包括性质、表现形式和原因等,并通过具体案例如翻译和推理问题进行说明。
2024-11-21
ai诈骗直接案例
以下为您提供一些与 AI 诈骗相关的案例: GPTCHA:这是一款由三位开发者共同搭建的由 GPT4 驱动的小工具,致力于解决电话诈骗问题。它能够拦截可疑电话,并用虚拟声音与呼叫方聊天,直到确认电话合法且安全。您可通过 http://gptcha.ai/ 了解更多。 此外,在周鸿祎免费课 AI 系列第一讲中提到,AIGC 可能被用于深度伪造,不仅涉及个人诈骗,还可能影响国家安全。比如利用 Stable Diffusion、Midjourney 等工具生成虚假图像进行诈骗。
2024-11-20
ai案例
以下是一些 AI 的应用案例: 在汽车行业: 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司在开发和测试自动驾驶汽车。 车辆安全系统:用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统。 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置。 预测性维护:通过分析车辆实时数据预测潜在故障和维护需求。 生产自动化:在汽车制造中用于自动化生产线,提高效率和质量控制。 销售和市场分析:分析市场趋势、消费者行为和销售数据。 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用。 共享出行服务:优化路线规划、调度车辆和定价策略。 语音助手和车载娱乐:如 Amazon Alexa Auto 和 Google Assistant 等语音助手。 车辆远程监控和诊断:远程监控车辆状态,提供实时诊断和支持。 在活动策划中: 活动主题及内容生成:根据活动目标、参与者背景等生成合适的主题和内容框架建议。 邀请函和宣传文案生成:基于活动信息生成吸引人的文案。 现场活动管理:利用计算机视觉、语音识别等辅助管理人流、秩序等。 虚拟助手:作为虚拟活动助手提供信息查询和问题咨询服务。 活动反馈分析:自动分析活动反馈,总结关键观点和改进建议。 活动营销优化:基于参与者行为数据优化营销策略。 在工作场景中: 企业运营:日常办公文档材料撰写整理,营销对话机器人,市场分析,销售策略咨询,法律文书起草、案例分析、法律条文梳理,人力资源简历筛选,预招聘,员工培训。 教育:协助评估学生学习情况,为职业规划提供建议,定制化学习内容,论文初稿搭建及审核,帮助低收入国家/家庭获得平等教育资源。 游戏/媒体:定制化游戏,动态生成 NPC 互动,自定义剧情,开放式结局,出海文案内容生成,语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 零售/电商:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 金融/保险:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。
2024-11-20
人工智能诈骗成功多个案例
以下是为您整合的相关内容: 拜登签署的 AI 行政命令要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全、公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。国家标准与技术研究所将制定严格的标准进行广泛的红队测试,国土安全部将把这些标准应用于关键基础设施部门并建立 AI 安全与保障委员会,能源部和国土安全部也将处理 AI 系统对关键基础设施以及化学、生物、放射性、核和网络安全风险的威胁。同时,商务部将制定内容认证和水印的指导,以明确标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知道从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。 关于 AI 带来的风险,包括:AI 生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任;AI 工具可能被用于自动化、加速和放大高度针对性的网络攻击,增加恶意行为者的威胁严重性。 大型语言模型等技术进步带来了变革性发展,在经济和社会领域有诸多应用,例如能自动化写代码、用于交通应用、支持基因医学等,但也存在隐私风险等问题。
2024-11-20
利用Ai诈骗的多个具体案例
以下是一些与利用 AI 诈骗相关的案例: 在网络诈骗案件中,犯罪分子可能利用 AI 模拟不同辩护策略下的量刑结果,包括认罪协商和无罪辩护的可能性,以此误导受害者。 有虚构的公司利用 AI 驱动的算法设置保险费价格,可能存在违反相关法律法规和最佳实践的风险,如数据保护、平等和一般消费者保护法等。 拜登签署的 AI 行政命令中提到要保护美国人免受利用 AI 进行的欺诈和欺骗,例如建立检测 AI 生成内容和验证官方内容的标准和最佳实践,商务部将为内容认证和水印制定指导方针,联邦机构将使用这些工具让美国人容易知道从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。
2024-11-20
利用Ai诈骗的具体案例
以下是一起利用 AI 诈骗的具体案例: 2019 年 3 月,某国际能源公司首席执行官接到一个未知来电,电话那头是其德国母公司的 CEO(通过“AI 换脸”技术伪装)。对方称公司出现运营危机,要求其向一个匈牙利银行账户紧急提供 220000 欧元或 243000 美元资金支援,并表示资金将在周转后报销。尽管指令不合规且涉及大额资金流转,但因声音与老板无异,被害人最终转账。资金从匈牙利流向墨西哥后分散,截至 2023 年 5 月仍未追回。
2024-11-20