Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI模型微调

Answer

以下是关于 AI 模型微调的全面介绍:

介绍: 微调可让您从 API 提供的模型中获得更多收益,包括比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省了 Token、更低的延迟请求。GPT-3 已在大量文本上预训练,微调通过训练更多示例改进小样本学习,在大量任务中取得更好结果。对模型进行微调后,不再需要在提示中提供示例,节省成本并实现更低延迟请求。

哪些模型可以微调: 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。这些是原始模型,在训练后没有任何说明(例如 text-davinci-003)。您还可以继续微调微调模型以添加其他数据,而无需从头开始。

安装: 建议使用 OpenAI 命令行界面(CLI)。要安装,运行(以下说明适用于 0.9.4 及更高版本。此外,OpenAI CLI 需要 python 3。),通过设置环境变量 OPENAI_API_KEY 来准备。

创建微调模型: 假设已准备好训练数据,使用 OpenAI CLI 开始微调工作。从 ada、babbage、curie 或 davinci 等基本模型开始,可使用后缀参数自定义微调模型的名称。运行命令会上传文件、创建微调作业、流式传输事件直到作业完成。每个微调工作默认从 curie 基本模型开始,模型选择影响性能和成本。开始微调作业后,可能需要几分钟到几小时完成,若事件流中断可恢复。除创建作业外,还可列出现有作业、检索作业状态或取消作业。

Content generated by AI large model, please carefully verify (powered by aily)

References

微调(Fine-tuning)

了解如何为您的应用程序定制模型。[heading2]介绍[content]通过提供以下内容,微调可让您从API提供的模型中获得更多收益:1.比即时设计更高质量的结果2.能够训练比提示中更多的例子3.由于更短的提示而节省了Token4.更低的延迟请求GPT-3已经在来自开放互联网的大量文本上进行了预训练。当给出仅包含几个示例的提示时,它通常可以凭直觉判断出您要执行的任务并生成合理的完成。这通常称为“小样本学习”。微调通过训练比提示中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示中提供示例。这样可以节省成本并实现更低延迟的请求。在高层次上,微调涉及以下步骤:1.准备和上传训练数据2.训练新的微调模型3.使用您的微调模型[heading2]哪些模型可以微调?[content]微调目前仅适用于以下基础模型:davinci、curie、babbage和ada。这些是原始模型,在训练后没有任何说明(例如text-davinci-003)。您还可以继续微调微调模型以添加其他数据,而无需从头开始。[heading2]安装[content]我们建议使用我们的OpenAI命令行界面(CLI)。要安装这个,运行(以下说明适用于0.9.4及更高版本。此外,OpenAI CLI需要python 3。)OPENAI_API_KEY通过将以下行添加到您的shell初始化脚本(例如.bashrc、zshrc等)或在微调命令之前的命令行中运行它来设置您的环境变量:

模型(Models)

OpenAI API由具有不同功能和价位的多种模型提供支持。您还可以通过[微调(fine-tuning)](https://ywh1bkansf.feishu.cn/wiki/ATYCwS5RRibGXNkvoC4ckddLnLf),针对您的特定用例对我们的原始基本模型进行有限的定制。|模型|描述||-|-||[GPT-4](https://platform.openai.com/docs/models/gpt-4)Beta|一组改进GPT-3.5的模型,可以理解和生成自然语言或代码||[GPT-3.5](https://platform.openai.com/docs/models/gpt-3-5)|一组改进GPT-3的模型,可以理解并生成自然语言或代码||[DALL·E](https://platform.openai.com/docs/models/dall-e)Beta|可以在给定自然语言提示的情况下生成和编辑图像的模型||[Whisper](https://platform.openai.com/docs/models/whisper)Beta|可以将音频转换为文本的模型||[Embeddings](https://platform.openai.com/docs/models/embeddings)|一组可以将文本转换为数字形式的模型||[Codex](https://platform.openai.com/docs/models/codex)Limited Beta|一组可以理解和生成代码的模型,包括将自然语言转换为代码||[Moderation](https://platform.openai.com/docs/models/moderation)|可以检测文本是否敏感或不安全的微调模型||[GPT-3](https://platform.openai.com/docs/models/gpt-3)|一组可以理解和生成自然语言的模型|

微调(Fine-tuning)

以下假设您已经按照上述说明准备了训练数据。使用OpenAI CLI开始微调工作:您从哪里BASE_MODEL开始的基本模型的名称(ada、babbage、curie或davinci)。您可以使用后缀参数自定义微调模型的名称。运行上面的命令会做几件事:1.使用文件API上传文件(或使用已经上传的文件)2.创建微调作业3.流式传输事件直到作业完成(这通常需要几分钟,但如果队列中有很多作业或您的数据集很大,则可能需要数小时)每个微调工作都从一个默认为curie的基本模型开始。模型的选择会影响模型的性能和运行微调模型的成本。您的模型可以是以下之一:ada、babbage、curie或davinci。请访问我们的定价页面,了解有关微调费率的详细信息。开始微调作业后,可能需要一些时间才能完成。在我们的系统中,您的工作可能排在其他工作之后,训练我们的模型可能需要几分钟或几小时,具体取决于模型和数据集的大小。如果事件流因任何原因中断,您可以通过运行以下命令恢复它:工作完成后,它应该显示微调模型的名称。除了创建微调作业外,您还可以列出现有作业、检索作业状态或取消作业。

Others are asking
什么ai可以帮我修改简历美化简历
以下是一些可以帮助您修改和美化简历的 AI 工具: 1. 超级简历优化助手:分析简历内容并提供优化建议,帮助用户优化简历提高求职成功率。 2. ResumeMatcher:AI 驱动的开源简历优化工具,提供智能关键词匹配、深入分析见解,提升简历通过 ATS 筛选的几率。 3. KickResume:提供 AI 简历重写服务,使用 OpenAI 的 GPT4 语言模型,能在几秒钟内修复简历错误、使其更专业,并使用行业术语和关键词优化简历,帮助用户通过 ATS 筛选,生成与求职职位匹配的求职信。
2025-03-18
AIGC 检测
以下是一些常见的 AIGC 检测相关的信息: AIGC 论文检测网站和工具: 1. Turnitin:是广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统自动分析并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 3. Grammarly:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统提供详细报告。 6. :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统提供分析结果。 7. GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统分析并提供报告,显示文本是否由 GPT3 生成。 8. Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统分析并提供结果。 判断一张图片是否 AI 生成: 可以使用一些网站,例如 ILLUMINARTY(https://app.illuminarty.ai/)。但在测试过程中可能存在误判,比如将结构严谨的真实摄影作品识别为 AI 作图,这是因为鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。
2025-03-18
目前有哪些免费可用的 AI视频生成软件
以下是一些免费可用的 AI 视频生成软件: 1. Haiper:有免费额度,网址为 https://haiper.ai/ 。支持文生视频、图生视频、素描生视频、扩展视频,能生成 HD 超高清的视频。文生视频支持选择风格、秒数(2s 和 4s)、种子值。图生视频只能写提示词、秒数(2s 和 4s)。还支持视频重绘,包括局部重绘。 2. DynamiCrafter:免费,网址为 https://huggingface.co/spaces/Doubiiu/DynamiCrafter 及 https://github.com/Doubiiu/DynamiCrafter?tab=readmeovfile ,可生成 2 秒图生视频,还能做短视频拼长视频。 3. Morph studio:处于内测阶段,网址为 https://app.morphstudio.com/ 。暂未对外开放,可在官网提交内测申请。在 discord 上可以免费体验,支持文生视频、图生视频,英文提示词,支持运镜、运动强度、尺寸、秒数设置,默认生成 3s 视频。 此外,清影也是一款不错的 AI 视频生成工具,在首发测试期间所有用户均可免费使用。它具有不限量使用、生成速度快、提供配乐小功能等特色。生成参数包括时长 6s、清晰度 1440x960(3:2)、帧率 16fps 等,在风景、动物、超现实、人文历史类需求以及皮克斯风格、卡通风格、摄影风格、动漫风格等方面表现突出。 截至 2023 年,我们已经发现了 21 个公开的人工智能视频生成工具,大多数起初以 Discord 机器人的形式存在,随着产品成熟,越来越多的工具开始建立自己的网站甚至开发移动应用。
2025-03-18
使用ai绘图能够将带货产品批量换背景,使用在小红书社区
以下是一些能够为带货产品批量换背景并应用于小红书社区的人员信息: 卡飞猫:15692004031,擅长摄影写真、banner 生成、替换产品。 韩君奇:13060035786,能够批量出图,做小红书种草。 阿鱼:18102592057,擅长各种类型的 AI 画图,以及 AI 视频提效。 吴燕波:15766104311,可进行日常出图,视频等。
2025-03-18
使用ai绘图实现小红书笔记图片批量生成
以下是关于使用 AI 绘图实现小红书笔记图片批量生成的相关知识: Liblibai 简易上手教程: 1. 迭代步数:AI 调整图片内容的次数。步骤越多,调整越精密,出图效果理论上更好,但生图耗时越长,且效果提升并非线性,过多可能导致效果增长曲线放平并开始震荡。 2. 尺寸:图片生成的尺寸大小。太小 AI 生成内容有限,太大则可能放飞自我。如需高清图,可设置中等尺寸并用高分辨率修复。 3. 生成批次:用本次设置重复生成的批次数。 4. 每批数量:每批次同时生成的图片数量。 5. 提示词引导系数:指图像与 prompt 的匹配程度。数字增大图像更接近提示,但过高会使图像质量下降。 6. 随机数种子:生成的每张图都有随机数种子,固定种子后可对图片进行“控制变量”操作,如修改提示词、修改 clip 跳过层等。首次生成图时无种子。 7. ADetailer:面部修复插件,可治愈脸部崩坏,为高阶技能。 8. ControlNet:控制图片中特定图像,用于控制人物姿态、生成特定文字、艺术化二维码等,也是高阶技能。 利用 AI 批量生成、模仿和复刻《小林漫画》: 1. 需求分析:主要需求是国内可直接使用且能批量生产,选用扣子搭建工作流,可能需牺牲一定质量的文案和图片效果。 2. 批量生成句子:一次性生成的句子都进行生成图片处理,建议一次不要生成太多,如设置一次生成五句。 3. 句子提取:把生成的句子逐个提取,针对每个句子绘图。 4. 图片生成:根据生成的句子结合特有画风等描述绘图。 5. 图片和句子结合:扣子工作流支持 Python 代码,但环境缺少画图、图片处理所需包,可替换成搞定设计的方式处理图片,会用 PS 脚本效果也不错。 此外,还有一些人员在不同领域涉及 AI 绘图相关工作,如韩君奇从事批量出图和小红书种草工作。
2025-03-18
使用ai换背景能够实现真实的画面效果
使用 AI 换背景能够实现较为真实的画面效果,以下为您介绍几种相关方法: 在 SD 中,若要实现更精确的蒙版,如人物的眼睛或身上配饰等,可以使用 Segment Anything 中的 GroundingDINO 模型。启用该模型后,AI 会自动下载,也可从云盘下载放到指定文件目录。在检测提示词中输入相关内容,如“eye”,AI 可自动检测并设置蒙版,还能通过预览箱体获取眼睛编号进行单一调整。选择要修改的蒙版上传到重绘蒙版中,添加提示词如“闭眼”并生成。之后可给人物换背景,加载生成的背景蒙版,选择大模型和正向提示词,如“简单背景、花、国画、工笔”,并选择蒙版模式。若效果不佳,可将图片放入图生图中用 tile 模型细化,还可在 PS 中用创成式填充修复头发。 在 PS 中,可利用“创成式填充”去掉主体以外的人物,如在水面画选区并输入提示词添加渔船,选择头部区域添加棒球帽,选择草地部分输入提示词更换,选择树输入提示词更改等。但 PS 的“创成式填充”并非无所不能,生成的图可能质量不高或不匹配,需要更多尝试和后期处理。 Google 的 Gemini 文生图 AI 在抠图、换背景、打光影方面表现出色。如能无中生有地换背景,进行商业级别的背景合成与打光,通常能在短时间内取得稳定且较好的预期结果。
2025-03-18
本地部署ollama+deep seek后怎么有效搭机械领域建知识库或微调为机械领域
以下是本地部署 ollama + deep seek 后有效搭建机械领域知识库或微调为机械领域的步骤: 1. 下载 Ollama 程序:官方网址为 https://ollama.com/ 。默认下载到 C 盘,若想修改安装目录到 D 盘,后续会有相关说明。下载完成后,右下角会出现 Ollama 的图标,打开命令行输入相应命令回车。根据自身独立显卡性能选择模型,如英伟达 2060Super 可选择 Deepseekr1:14b 的模型。若下载速度慢,可按 Ctrl+C 强制退出重新下载。下载完毕后,再下载一个嵌入模型,Ollama 的 bge 模型官方网址:https://ollama.com/library/bgem3 ,输入相应命令,下载好后直接退出终端。 2. 配置模型:返回 RAGFlow 中,打开右上角设置,进入模型提供商进行配置。选择 Ollama,并配置相关信息,基础 URL 按要求设置,设置完成后点击确定。 3. 导入嵌入模型:导入一个嵌入模型用于文本向量化。 4. 设置系统模型:完成相关设置。 5. 创建知识库:返回知识库,进入数据集,可导入文件或设置文件夹当作知识库,自行设置。导入完毕后,对文件进行解析,解析速度取决于本机 GPU 性能,越好的显卡解析越快。解析完成后,进行检索测试,测试没问题即可进入聊天界面,助理设置可自行设置。
2025-03-07
Deepseek微调
DeepSeek 微调相关信息如下: DeepSeek 有更聪明的 R1zero 实验版本,它采用完全从零开始的强化学习,无需人类监督训练,学会了用更多思考步骤解决推理任务和反思推理步骤,但存在输出内容可读性差、语言混合、风险不可控等问题,所以常见的是经过冷启动与微调的 R1 版本,以确保生成内容稳定、安全、道德、无害。 在模型蒸馏微调方面,会带着大家复现模型的蒸馏和微调,并讲解相关知识。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。 DeepSeek 在 2024 年 4 月推出的 DeepSeekMath 模型中首次采用了 GRPO(Group Relative Policy Optimization)算法,之后的 V3 和 R1 也应用了该算法提升模型的推理能力。
2025-03-06
我想完全本地化部署deepseek,然后,将我的文档,文本,图片等内容丢给它训练,微调。我要完全本地化,因为我的文档设计隐私。我要免费开源流程。如何实现,
要完全本地化部署 DeepSeek 并使用您的文档、文本、图片等内容进行训练和微调,以下是一些相关的信息和步骤: 1. 模型训练与平台服务: 模型复现与微调:1:1 复现通常没问题,但理解细节并自行制作需要基础知识。有手把手教程、数据集等可帮助 1:1 复现,微调在特定领域可降低幻觉,参数量不变但权重变化。 训练模型的学习方法:先会用再学会训,从训的过程中倒推学习参数调整,这是以用导学的学习方法。 模型回答效果对比:微调后的模型在回答排列组合等问题时,思考前几乎无反馈,答案多为英文且格式稳定,但仍可能答错。 2. 平台服务介绍: 阿里云提供多种解决方案。 百炼是提供多种模型服务的 Maas 平台。 派平台是提供云服务的 PaaS 平台,二者在定位、服务内容和核心差异上有所不同。 3. 关于模型训练与数据集相关问题: 数据资源情况:默认提供公共数据训练集,百派平台能匹配模型和数据,通义开源了不少数据集。 多模态训练:多模态有自身标注方式,如视频拉框标注。 参数量变化:通常训练模型参数量固定,若想改变需改模型层,但可能要从头调。 本地微调框架:可使用 llama factory 等框架,需搭建并部署。 开源数据下载:可在 GitHub、hugging face、Mo Model Scope 等平台获取。 数据集转化:将文档资料转成数据集可先手动形成 SOP,再逐步自动化,初期需大量人力。 4. 本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 5. 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 6. 平台服务差异:介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 7. 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。 R1 模型的强化学习:通过强化学习,在训练过程中给予模型反馈,如路线规划是否成功到达终点、输出格式是否符合期望等,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。 R1 模型的蒸馏与微调:用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 R1 与其他模型的差别:R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。 模型的相互帮助:Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。 请注意,在进行本地化部署和训练微调时,需要具备一定的技术知识和经验,并且要遵循相关的法律法规和道德规范。
2025-03-04
哪里可以找到了解AI模型微调和RAG知识库的外包开发团队?
以下是一些可能找到了解 AI 模型微调和 RAG 知识库的外包开发团队的途径: 1. 相关技术社区和论坛:例如一些专注于 AI 开发的社区,开发者可能会在其中分享经验和提供服务。 2. 专业的自由职业者平台:如 Upwork、Freelancer 等,您可以在这些平台上发布需求,寻找合适的团队或个人。 3. 参考行业报告和研究:部分报告中可能会提及相关的优秀开发团队或公司。 4. 联系 AI 领域的知名机构或公司:他们可能会推荐或提供相关的外包服务。 5. 社交媒体和专业群组:在如 LinkedIn 等社交媒体上的 AI 相关群组中发布需求,可能会得到相关团队的回应。 另外,从提供的资料中,以下信息可能对您有所帮助: 红杉的相关分析提到,迁移学习技术如 RLHF 和微调正变得更加可用,开发者可以从 Hugging Face 下载开源模型并微调以实现优质性能,检索增强生成(RAG)正在引入关于业务或用户的上下文,像 Pinecone 这样的公司的向量数据库已成为 RAG 的基础设施支柱。彬子的经历中,有出海垂直领域 Agent 平台的项目经理咨询 RAG 策略优化。2024 人工智能报告中提到对增强生成检索(RAG)的兴趣增长促使了嵌入模型质量的提高,传统 RAG 解决方案中的问题得到解决。
2025-03-04
如何微调deepseek
微调 DeepSeek 可以通过以下步骤和方法: 1. 应用 KL 散度约束更新策略来调整策略的概率分布。例如,已知 ABC 策略初始概率分布为,根据相对优势调整后的权重可以通过指数函数来转换,以确保权重为正数且总和为 1。计算未归一化的权重,如 A: e^1≈2.178,B:e^0=1,C: e^1≈0.368,然后归一化权重,总和=2.718+1+0.368=4.086,新权重分别为 A: 2.718/4.086≈0.665,B: 1/4.086≈0.245,C: 0.368/4.086≈0.09。通过这样的步骤,策略 A 的总体优势最高,其权重增加,策略 B 表现中等,权重基本保持不变,策略 C 表现较差,权重减少。在不同场景(不同组)的计算中,每个策略的权重会相应调整以获得更高的分数。在文本生成阶段,可以用来评估和调整不同生成策略(比如贪婪搜索,随机采样,束搜索)的有效性,从而提高生成文本(尤其是复杂文本)的连贯性和多样性。 2. 模型蒸馏微调方面,用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。同时,Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。 3. 在训练过程中给予模型反馈,如路线规划是否成功到达终点、输出格式是否符合期望等,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。 4. 关于部署方面,讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。同时介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 更加完善的训练说明,可直接阅读官方论文:DeepSeekAI《DeepSeekR1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》https://arxiv.org/html/2501.12948
2025-03-02
蒸馏和微调分别是什么意思,他们有关联吗
蒸馏和微调是在人工智能领域中常见的概念,它们有一定的区别和联系。 蒸馏是一种模型压缩技术,通过将复杂的大模型的知识和能力“提炼”到较小的模型中,以减少模型的参数和计算量,同时保持一定的性能。 微调则是在已有的预训练模型基础上,使用特定任务的数据对模型进行进一步的训练,以使其在特定任务上表现得更好。 它们的关联在于:都是为了优化模型在特定场景下的性能。不同之处在于,蒸馏侧重于模型压缩,而微调侧重于针对特定任务的适应性训练。 提示词和微调都是提高模型表现的方法,但方式不同。提示词是在使用模型时直接提供特定的指令或上下文,引导模型生成合适的回答,灵活方便,无需重新训练模型。微调则需要对模型进行额外训练,使用特定任务的数据调整模型参数,使其在该任务上表现更佳,但需要时间和计算资源。 微调具有一些优点,如能提高特定任务的性能和效率,适用于强调现有知识、自定义结构或语气、教授复杂指令等,但不适用于添加新知识和快速迭代。成功案例如 Canva 通过微调显著提高了性能。最佳实践包括从提示工程和小样本学习开始、建立基线、从小处着手并注重质量,还可以将微调和 RAG 相结合以获得最佳性能。
2025-02-26
如果喂给模型的数据样本量太少怎么办?
当喂给模型的数据样本量太少时,可以考虑以下方法: 1. 利用零样本提示:如今经过大量数据训练并调整指令的 LLM 能够执行零样本任务。指令调整已被证明可以改善零样本学习,如 Wei 等人(2022)所指出。此外,RLHF(来自人类反馈的强化学习)已被采用以扩展指令调整,推动了像 ChatGPT 这样的模型。当零样本不起作用时,建议在提示中提供演示或示例,这就引出了少样本提示。 2. 采用少样本提示:在机器学习和人工智能领域中,少样本提示是指当只有很少数量的标记样本可用于训练模型时,通过巧妙设计任务描述、提供相关背景知识或利用预训练模型等方法,引导模型在有限样本条件下更好地理解和解决任务。少样本提示对格式有很好的限定和约束作用,但推理问题响应稳定性差。 细节的格式限定: 字数限制:限制 ChatGPT 输出的文本长度,以避免输出过长或不合适的回复。可以设置最大字符数或最大字数来控制输出长度。 形式限定:限定输出内容的形式,比如回复领导邮件、工作周报等形式。 细节限制:对文本的格式进行优化,如标题使用斜体、语料使用引用格式、供给读者使用的文字使用代码格式、数据对比使用表格展示、流程化步骤使用流程表格式等。 需要注意的是,这些方法虽然能在一定程度上缓解样本量少的问题,但对于推理、计算等问题,可能需要进一步使用其他方法。
2025-03-18
MoE模型训练为什么会比dense模型要更困难?
MoE 模型训练比 dense 模型更困难的原因主要包括以下几点: 1. 内存需求:MoE 模型需要将所有专家加载到内存中,这导致其需要大量的 VRAM。 2. 微调挑战:微调 MoE 模型存在困难,历史上在微调过程中较难泛化。 3. 训练设置:将密集模型转换为 MoE 模型时,虽然训练超参数和训练设置相同,但 MoE 模型的特殊结构仍带来了训练上的复杂性。 4. 计算效率与泛化平衡:MoE 模型在训练时更具计算效率,但在微调时难以实现良好的泛化效果。
2025-03-17
可以同时接多个大模型api的聊天应用
以下是一些可以同时接多个大模型 API 的聊天应用: 1. 熊猫大侠:基于 COW 框架的 ChatBot 实现步骤 能实现打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用等功能。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 可选择多模型,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型,包括文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 有多种部署方法,如本地运行、服务器运行、Docker 的方式。 风险与注意事项:微信端因非常规使用有封号危险,不建议主力微信号接入;操作需依法合规,对大模型生成的内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。 相关教程:张梦飞同学写的更适合小白的使用教程 2. DIN:全程白嫖拥有一个 AI 大模型的微信助手 搭建步骤: 搭建,用于汇聚整合多种大模型接口,并可白嫖大模型接口。 搭建,这是个知识库问答系统,可将知识文件放入,并接入大模型作为分析知识库的大脑来回答问题。若不想接入微信,其自身有问答界面。 搭建接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。 拓展功能:搭建完后想拓展 Cow 的功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画。 3. LLM 开源中文大语言模型及数据集集合中的外部挂件应用 wenda: 地址: 简介:一个 LLM 调用平台。为小模型外挂知识库查找和设计自动执行动作,实现不亚于大模型的生成能力。 JittorLLMs: 地址: 简介:计图大模型推理库:笔记本没有显卡也能跑大模型,具有成本低,支持广,可移植,速度快等优势。 WebCPM 地址: 简介:一个支持可交互网页搜索的中文大模型。 GPT Academic: 地址: 简介:为 GPT/GLM 提供图形交互界面,特别优化论文阅读润色体验,支持并行问询多种 LLM 模型,兼容复旦 MOSS, llama, rwkv, 盘古等。 ChatALL: 地址: 简介:ChatALL(中文名:齐叨)可以把一条指令同时发给多个 AI,可以帮助用户发现最好的回答。
2025-03-17
什么样的数据集适合测试大语言模型?
以下是一些适合测试大语言模型的数据集: Guanaco:地址为,是一个使用 SelfInstruct 的主要包含中日英德的多语言指令微调数据集。 chatgptcorpus:地址为,开源了由 ChatGPT3.5 生成的 300 万自问自答数据,包括多个领域,可用于训练大模型。 SmileConv:地址为,数据集通过 ChatGPT 改写真实的心理互助 QA 为多轮的心理健康支持多轮对话,含有 56k 个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更符合长程多轮对话的应用场景。 用于评估大语言模型的框架和基准有: GAOKAOBench:地址为,是以中国高考题目为数据集,测评大模型语言理解能力、逻辑推理能力的测评框架,收集了 2010 2022 年全国高考卷的题目,包括 1781 道客观题和 1030 道主观题。 AGIEval:地址为,是由微软发布的新型基准测试,选取 20 种面向普通人类考生的官方、公开、高标准往常和资格考试,包括普通大学入学考试(中国高考和美国 SAT 考试)、法学入学考试、数学竞赛、律师资格考试、国家公务员考试等。 Xiezhi:地址为,是由复旦大学发布的一个综合的、多学科的、能够自动更新的领域知识评估 Benchmark,包含 13 个学科门类,24 万道学科题目,516 个具体学科,249587 道题目。 此外,在多语言能力评测方面,还使用了以下数据集: MMMLU:来自 Okapi 的多语言常识理解数据集,在阿、德、西、法、意、荷、俄、乌、越、中这几个子集进行测试。 MGSM:包含德、英、西、法、日、俄、泰、中和孟在内的数学评测。针对人工评测,使用内部评估集比较了 Qwen272BInstruct 与 GPT3.5、GPT4 和 Claude3Opus,该评测集包括 10 种语言:ar(阿拉伯语)、es(西班牙语)、fr(法语)、ko(韩语)、th(泰语)、vi(越南语)、pt(葡萄牙语)、id(印度尼西亚语)、ja(日语)和 ru(俄语)。
2025-03-17
什么样的数据集适合训练大语言模型?
以下是一些适合训练大语言模型的数据集: 1. Guanaco:这是一个使用 SelfInstruct 的主要包含中日英德的多语言指令微调数据集,地址为:。 2. chatgptcorpus:开源了由 ChatGPT3.5 生成的 300 万自问自答数据,包括多个领域,可用于训练大模型,地址为:。 3. SmileConv:数据集通过 ChatGPT 改写真实的心理互助 QA 为多轮的心理健康支持多轮对话,含有 56k 个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更加符合在长程多轮对话的应用场景,地址为:。 虽然许多早期的大型语言模型主要使用英语语言数据进行训练,但该领域正在迅速发展。越来越多的新模型在多语言数据集上进行训练,并且越来越关注开发专门针对世界语言的模型。然而,在确保不同语言的公平代表性和性能方面仍然存在挑战,特别是那些可用数据和计算资源较少的语言。 大模型的预训练数据通常非常大,往往来自于互联网上,包括论文、代码以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用 TB 级别的数据进行预训练。
2025-03-17
本地部署大模型
以下是关于本地部署大模型的相关内容: SDXL 大模型的本地部署: 1. SDXL 的大模型分为两个部分: 第一部分,base+refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于细化生成的模型以获得更丰富的细节。 第二部分,还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 2. 下载模型:这三个模型可通过关注公众号【白马与少年】,回复【SDXL】获取云盘下载链接。 3. 版本升级:在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 4. 放置模型:将 base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。 5. 启动使用:启动 webUI 后即可在模型中看到 SDXL 的模型,正常使用时先在文生图中使用 base 模型,填写提示词和常规参数进行生成。 从 LLM 大语言模型、知识库到微信机器人的全本地部署教程: 1. 下载并安装 Ollama: 点击进入 https://ollama.com/download ,根据电脑系统下载。 双击打开,点击“Install”。 安装完成后,将下方地址复制进浏览器中验证安装:http://127.0.0.1:11434/ 。 2. 下载 qwen2:0.5b 模型(0.5b 方便测试,设备充足可下载更大模型): Windows 电脑:点击 win+R,输入 cmd 点击回车。 Mac 电脑:按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”选择“终端”应用程序。 复制命令行,粘贴回车,等待自动下载完成。 ComfyUI ollama 本地大模型部署: 1. 先下载 ollama 安装,安装完成后可在电脑桌面右下角或隐藏图标里找到。 2. 下载对应的模型,选择模型并复制对应的命令。 3. 打开命令行界面,输入对应的模型获取命令,等待下载完成。 下载的模型会保存到 D:\\ollama\\blobs 。 4. docker 安装:安装会下载一些文件,安装后更改目录,不要放在 C 盘。 5. Open webui 安装:输入相关命令,安装成功后回到 docker,点击会自动打开网页,第一次使用需注册账号,选择下载好的模型即可开始使用。 6. 错误解决:端口占用问题,运行下面两条命令可以解决。 7. 相关链接: comfyuiollama:https://github.com/stavsap/comfyuiollama?tab=readmeovfile Ollama:https://ollama.com/ docker:https://www.docker.com/ Open webui:https://openwebui.com/
2025-03-17