Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如果喂给模型的数据样本量太少怎么办?

Answer

当喂给模型的数据样本量太少时,可以考虑以下方法:

  1. 利用零样本提示:如今经过大量数据训练并调整指令的 LLM 能够执行零样本任务。指令调整已被证明可以改善零样本学习,如 Wei 等人(2022)所指出。此外,RLHF(来自人类反馈的强化学习)已被采用以扩展指令调整,推动了像 ChatGPT 这样的模型。当零样本不起作用时,建议在提示中提供演示或示例,这就引出了少样本提示。
  2. 采用少样本提示:在机器学习和人工智能领域中,少样本提示是指当只有很少数量的标记样本可用于训练模型时,通过巧妙设计任务描述、提供相关背景知识或利用预训练模型等方法,引导模型在有限样本条件下更好地理解和解决任务。少样本提示对格式有很好的限定和约束作用,但推理问题响应稳定性差。
    • 细节的格式限定:
      • 字数限制:限制 ChatGPT 输出的文本长度,以避免输出过长或不合适的回复。可以设置最大字符数或最大字数来控制输出长度。
      • 形式限定:限定输出内容的形式,比如回复领导邮件、工作周报等形式。
      • 细节限制:对文本的格式进行优化,如标题使用斜体、语料使用引用格式、供给读者使用的文字使用代码格式、数据对比使用表格展示、流程化步骤使用流程表格式等。

需要注意的是,这些方法虽然能在一定程度上缓解样本量少的问题,但对于推理、计算等问题,可能需要进一步使用其他方法。

Content generated by AI large model, please carefully verify (powered by aily)

References

零样本提示

如今,经过大量数据训练并调整指令的LLM能够执行零样本任务。我们在前一节中尝试了一些零样本示例。以下是我们使用的一个示例:提示:输出:请注意,在上面的提示中,我们没有向模型提供任何示例——这就是零样本能力的作用。指令调整已被证明可以改善零样本学习[Wei等人(2022)(opens in a new tab)](https://arxiv.org/pdf/2109.01652.pdf)。指令调整本质上是在通过指令描述的数据集上微调模型的概念。此外,[RLHF(opens in a new tab)](https://arxiv.org/abs/1706.03741)(来自人类反馈的强化学习)已被采用以扩展指令调整,其中模型被调整以更好地适应人类偏好。这一最新发展推动了像ChatGPT这样的模型。我们将在接下来的章节中讨论所有这些方法和方法。当零样本不起作用时,建议在提示中提供演示或示例,这就引出了少样本提示。在下一节中,我们将演示少样本提示。

目录:OpenAI 官方指南

提供适用于所有示例的一般性指示通常比通过示例演示任务的所有排列更有效,但在某些情况下,提供示例可能更容易。例如,如果你希望模型复制一种特定的响应用户查询的风格,这种风格难以明确描述。这被称为“少样本”提示。|系统|以一致的风格回答。||-|-||用户|教我关于耐心。||助手|开辟最深山谷的河流从温和的泉水流出;最伟大的交响乐源于一个音符;最复杂的挂毯始于一根单独的线。||用户|教我认识海洋。|[heading3]战术:指定输出的所需长度[content]你可以要求模型产生给定目标长度的输出。目标输出长度可以用词数、句子数、段落数、项目符号点数等来指定。然而请注意,指导模型生成特定数量的单词的效果并不精确。模型能更可靠地生成具有特定数量的段落或项目符号点的输出。|用户|用大约50个单词总结由三重引号分隔的文本。"""在此插入文本"""||-|-||用户|在2个段落中总结由三重引号分隔的文本。"""在此插入文本"""||用户|在3个要点中总结由三重引号分隔的文本。"""在此插入文本"""|

子瞻:Prompt框架

是指在机器学习和人工智能领域中,当我们只有很少数量的标记样本可用于训练模型时,通过巧妙设计任务描述、提供相关背景知识或利用预训练模型等方法,引导模型在有限样本条件下更好地理解和解决任务的技术和策略。虽然不是专门用于固定格式的,但是对格式有很好的限定和约束作用!在[提示工程指南](https://www.promptingguide.ai/zh/techniques/fewshot)中这篇文章中提到:但是也存在一定的缺陷,推理问题响应稳定性差!结论:由此可以看出,少样本提示对于格式限定非常有帮助,能够提高输出格式的稳定性!但是对于推理、计算等问题,需要进一步的使用其他方法。细节的格式限定:字数限制:限制ChatGPT输出的文本长度,以避免输出过长或不合适的回复。可以设置最大字符数或最大字数来控制输出长度。在各种文案、博客、文章等中常用到,比如:输出内容在XX字数内。形式限定:限定输出内容的形式,比如,请给我以回复领导邮件的形式输出,请给我工作周报的形式输出等等,这里一般会和任务的要求有一定的重叠,可以省略,也可以着重强调以增强格式输出的稳定性!细节限制:比如,我希望给出的文章的标题使用斜体;对于我投喂的语料的使用,使用引用格式;对于一些供给读者使用的文字,使用代码格式;对于一些数据对比,使用表格展示;对于一些流程化的步骤,使用流程表的格式(这里可以搭配GPT4的插件)。这样的格式优化可以使文本更加清晰易读,并且在视觉上更具结构性。

Others are asking
先喂给一些数据文本,然后进行分析的AI有哪些比较好
以下是一些可以先喂给数据文本然后进行分析的 AI 示例: DeepSeek R1:理论上适合大多数 AI,尤其是有推理模型。您可以找出最喜欢的文章投喂给它,并进行多次询问,如从写作角度、读者角度分析文章,指出文章的缺点和不足以及改善提升的空间,还可以对作者进行侧写,分析其成长背景、个人经历和知识结构对文章的影响。 此外,OpenAI 的 GPT 系列模型也是不错的选择。OpenAI 研究团队收集了海量的文本数据,涵盖各种内容,基于 Transformer 架构进行实验,在自然语言处理领域取得了显著成果。
2025-03-05
我们是做小红书笔记的,目前有没有哪个软件可以把我们上千篇以往人工写的笔记,投喂给它,训练出一个能按照以往风格来写笔记的呢?比如扣子或者钉钉,可以吗
目前市面上常见的软件中,豆包暂时未获取到扣子或钉钉有此功能的相关信息。不过,像一些专门的自然语言处理和机器学习平台,如 OpenAI 的 GPT 系列、百度的文心一言等,在一定的技术支持和合规操作下,有可能实现您的需求。但需要注意的是,将大量以往的笔记用于训练模型可能涉及到数据隐私和版权等问题,需要谨慎处理。
2025-02-07
我们是做小红书笔记的,目前有没有哪个软件可以把我们上千篇以往人工写的笔记,投喂给它,训练出一个能按照以往风格来写笔记的呢
目前市面上还没有专门针对小红书笔记且能完全满足您需求的成熟软件。一般来说,使用现有的自然语言处理模型进行这样的训练存在诸多限制和法律风险。小红书对于内容的原创性和合规性有严格要求,使用以往的笔记进行训练可能违反平台规定。但您可以通过学习和借鉴以往笔记的写作风格、结构和主题,人工创作出新的优质笔记。
2025-02-07
自己讲课的音视频如何投喂给AI
要将自己讲课的音视频投喂给 AI,以下是一些相关步骤和要点: 1. 对于音乐相关的音视频: 把 MIDI 导出到 MP3 虚拟演奏文件,可以直接导总谱,也可以分轨导出(适用于不同乐器组合)。由于制谱软件可能有很重的 MIDI 味,有时需要调整乐器音色。 320kbit 码率是各大音乐平台的门槛,若向 Suno 导出的是 192k 的,后期想输出到 QQ 音乐之类,需要转码(单纯转码对音质无直接提升)。导出后即可喂给 AI。 不是必须修改音色,有很多染色软件可用,比如 Neutron4,可从 Youtube 下载喜欢的乐器音色,用宿主软件打开插件导入音频实现渲染。 比较喜欢丢完整的小节给 AI,这样节奏识别性更好,当然也可在中间掐断,AI 的识别能力不错。 2. 对于 AI 音乐创作与制作: 可以让 AI 生成曲子的基础框架,然后在基础框架上修改完善以提高质量。 对 AI 生成的曲子进行二次处理,包括调整频段、动态等。 创建 AI 生成曲子时要注意风格和语言的选择,以符合需求。 投喂给 AI 的旋律应保持清晰,避免复杂的节奏构架和变化,以提高 AI 的辨识度和创作效果。 下节课将直接教大家制作音乐,包括使用疏漏提供的片段、段落、人声、采样或小旋律等,在编辑软件中进行融合和再次输出,以达到更好听、更完美的效果。 学习需要下载 flow 水果软件,可在淘宝上购买并请人帮忙安装。
2025-02-02
如果把紫微斗数喂给ai,能出一个算命程序吗
紫微斗数是一种古老的命理学说,将其喂给 AI 来创建一个算命程序在技术上是可行的,但从科学角度来看,紫微斗数缺乏科学依据和验证,其结果并不可靠。AI 虽然能够处理和分析大量的数据,但对于这种没有科学基础的命理内容,所生成的结果更多是基于输入数据的模式匹配和推测,而非具有真实的预测能力。因此,不建议依赖这样的程序来做出重要的决策。
2024-11-01
MoE模型训练为什么会比dense模型要更困难?
MoE 模型训练比 dense 模型更困难的原因主要包括以下几点: 1. 内存需求:MoE 模型需要将所有专家加载到内存中,这导致其需要大量的 VRAM。 2. 微调挑战:微调 MoE 模型存在困难,历史上在微调过程中较难泛化。 3. 训练设置:将密集模型转换为 MoE 模型时,虽然训练超参数和训练设置相同,但 MoE 模型的特殊结构仍带来了训练上的复杂性。 4. 计算效率与泛化平衡:MoE 模型在训练时更具计算效率,但在微调时难以实现良好的泛化效果。
2025-03-17
可以同时接多个大模型api的聊天应用
以下是一些可以同时接多个大模型 API 的聊天应用: 1. 熊猫大侠:基于 COW 框架的 ChatBot 实现步骤 能实现打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用等功能。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 可选择多模型,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型,包括文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 有多种部署方法,如本地运行、服务器运行、Docker 的方式。 风险与注意事项:微信端因非常规使用有封号危险,不建议主力微信号接入;操作需依法合规,对大模型生成的内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。 相关教程:张梦飞同学写的更适合小白的使用教程 2. DIN:全程白嫖拥有一个 AI 大模型的微信助手 搭建步骤: 搭建,用于汇聚整合多种大模型接口,并可白嫖大模型接口。 搭建,这是个知识库问答系统,可将知识文件放入,并接入大模型作为分析知识库的大脑来回答问题。若不想接入微信,其自身有问答界面。 搭建接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。 拓展功能:搭建完后想拓展 Cow 的功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画。 3. LLM 开源中文大语言模型及数据集集合中的外部挂件应用 wenda: 地址: 简介:一个 LLM 调用平台。为小模型外挂知识库查找和设计自动执行动作,实现不亚于大模型的生成能力。 JittorLLMs: 地址: 简介:计图大模型推理库:笔记本没有显卡也能跑大模型,具有成本低,支持广,可移植,速度快等优势。 WebCPM 地址: 简介:一个支持可交互网页搜索的中文大模型。 GPT Academic: 地址: 简介:为 GPT/GLM 提供图形交互界面,特别优化论文阅读润色体验,支持并行问询多种 LLM 模型,兼容复旦 MOSS, llama, rwkv, 盘古等。 ChatALL: 地址: 简介:ChatALL(中文名:齐叨)可以把一条指令同时发给多个 AI,可以帮助用户发现最好的回答。
2025-03-17
什么样的数据集适合测试大语言模型?
以下是一些适合测试大语言模型的数据集: Guanaco:地址为,是一个使用 SelfInstruct 的主要包含中日英德的多语言指令微调数据集。 chatgptcorpus:地址为,开源了由 ChatGPT3.5 生成的 300 万自问自答数据,包括多个领域,可用于训练大模型。 SmileConv:地址为,数据集通过 ChatGPT 改写真实的心理互助 QA 为多轮的心理健康支持多轮对话,含有 56k 个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更符合长程多轮对话的应用场景。 用于评估大语言模型的框架和基准有: GAOKAOBench:地址为,是以中国高考题目为数据集,测评大模型语言理解能力、逻辑推理能力的测评框架,收集了 2010 2022 年全国高考卷的题目,包括 1781 道客观题和 1030 道主观题。 AGIEval:地址为,是由微软发布的新型基准测试,选取 20 种面向普通人类考生的官方、公开、高标准往常和资格考试,包括普通大学入学考试(中国高考和美国 SAT 考试)、法学入学考试、数学竞赛、律师资格考试、国家公务员考试等。 Xiezhi:地址为,是由复旦大学发布的一个综合的、多学科的、能够自动更新的领域知识评估 Benchmark,包含 13 个学科门类,24 万道学科题目,516 个具体学科,249587 道题目。 此外,在多语言能力评测方面,还使用了以下数据集: MMMLU:来自 Okapi 的多语言常识理解数据集,在阿、德、西、法、意、荷、俄、乌、越、中这几个子集进行测试。 MGSM:包含德、英、西、法、日、俄、泰、中和孟在内的数学评测。针对人工评测,使用内部评估集比较了 Qwen272BInstruct 与 GPT3.5、GPT4 和 Claude3Opus,该评测集包括 10 种语言:ar(阿拉伯语)、es(西班牙语)、fr(法语)、ko(韩语)、th(泰语)、vi(越南语)、pt(葡萄牙语)、id(印度尼西亚语)、ja(日语)和 ru(俄语)。
2025-03-17
什么样的数据集适合训练大语言模型?
以下是一些适合训练大语言模型的数据集: 1. Guanaco:这是一个使用 SelfInstruct 的主要包含中日英德的多语言指令微调数据集,地址为:。 2. chatgptcorpus:开源了由 ChatGPT3.5 生成的 300 万自问自答数据,包括多个领域,可用于训练大模型,地址为:。 3. SmileConv:数据集通过 ChatGPT 改写真实的心理互助 QA 为多轮的心理健康支持多轮对话,含有 56k 个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更加符合在长程多轮对话的应用场景,地址为:。 虽然许多早期的大型语言模型主要使用英语语言数据进行训练,但该领域正在迅速发展。越来越多的新模型在多语言数据集上进行训练,并且越来越关注开发专门针对世界语言的模型。然而,在确保不同语言的公平代表性和性能方面仍然存在挑战,特别是那些可用数据和计算资源较少的语言。 大模型的预训练数据通常非常大,往往来自于互联网上,包括论文、代码以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用 TB 级别的数据进行预训练。
2025-03-17
本地部署大模型
以下是关于本地部署大模型的相关内容: SDXL 大模型的本地部署: 1. SDXL 的大模型分为两个部分: 第一部分,base+refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于细化生成的模型以获得更丰富的细节。 第二部分,还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 2. 下载模型:这三个模型可通过关注公众号【白马与少年】,回复【SDXL】获取云盘下载链接。 3. 版本升级:在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 4. 放置模型:将 base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。 5. 启动使用:启动 webUI 后即可在模型中看到 SDXL 的模型,正常使用时先在文生图中使用 base 模型,填写提示词和常规参数进行生成。 从 LLM 大语言模型、知识库到微信机器人的全本地部署教程: 1. 下载并安装 Ollama: 点击进入 https://ollama.com/download ,根据电脑系统下载。 双击打开,点击“Install”。 安装完成后,将下方地址复制进浏览器中验证安装:http://127.0.0.1:11434/ 。 2. 下载 qwen2:0.5b 模型(0.5b 方便测试,设备充足可下载更大模型): Windows 电脑:点击 win+R,输入 cmd 点击回车。 Mac 电脑:按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”选择“终端”应用程序。 复制命令行,粘贴回车,等待自动下载完成。 ComfyUI ollama 本地大模型部署: 1. 先下载 ollama 安装,安装完成后可在电脑桌面右下角或隐藏图标里找到。 2. 下载对应的模型,选择模型并复制对应的命令。 3. 打开命令行界面,输入对应的模型获取命令,等待下载完成。 下载的模型会保存到 D:\\ollama\\blobs 。 4. docker 安装:安装会下载一些文件,安装后更改目录,不要放在 C 盘。 5. Open webui 安装:输入相关命令,安装成功后回到 docker,点击会自动打开网页,第一次使用需注册账号,选择下载好的模型即可开始使用。 6. 错误解决:端口占用问题,运行下面两条命令可以解决。 7. 相关链接: comfyuiollama:https://github.com/stavsap/comfyuiollama?tab=readmeovfile Ollama:https://ollama.com/ docker:https://www.docker.com/ Open webui:https://openwebui.com/
2025-03-17
消除大模型幻觉的方法
以下是关于消除大模型幻觉的方法的相关内容: 大模型出现幻觉的原因及部分解决办法: 1. 原因: 样本存在错误(Imitative Falsehoods),即学习的“教材”中有错误。 2. 解决办法: 上采样(Up Sampling)。 大模型存在的问题: 1. 输出结果具有不可预测性。 2. 静态的训练数据导致知识存在截止日期,无法即时掌握最新信息。 知识的局限性:模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。 幻觉问题:基于数学概率的文字预测导致会在没有答案的情况下提供虚假信息等。 数据安全性:企业担心数据泄露,不愿将私域数据上传第三方平台训练。 Prompt 可以减少幻觉的原因: Prompt 相当于给大模型提供了一个模板,包括对模型的要求、输入和输出的限制,使大模型在限制下得到概率最大的答案,从而提升返回的准确性。 RAG 是解决大模型问题的有效方案: RAG 可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。RAG 可与微调结合使用,两者并不冲突。但 RAG 不适合教模型理解广泛领域或学习新语言、格式或样式。
2025-03-17