Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

哪里可以找到了解AI模型微调和RAG知识库的外包开发团队?

Answer

以下是一些可能找到了解 AI 模型微调和 RAG 知识库的外包开发团队的途径:

  1. 相关技术社区和论坛:例如一些专注于 AI 开发的社区,开发者可能会在其中分享经验和提供服务。
  2. 专业的自由职业者平台:如 Upwork、Freelancer 等,您可以在这些平台上发布需求,寻找合适的团队或个人。
  3. 参考行业报告和研究:部分报告中可能会提及相关的优秀开发团队或公司。
  4. 联系 AI 领域的知名机构或公司:他们可能会推荐或提供相关的外包服务。
  5. 社交媒体和专业群组:在如 LinkedIn 等社交媒体上的 AI 相关群组中发布需求,可能会得到相关团队的回应。

另外,从提供的资料中,以下信息可能对您有所帮助: 红杉的相关分析提到,迁移学习技术如 RLHF 和微调正变得更加可用,开发者可以从 Hugging Face 下载开源模型并微调以实现优质性能,检索增强生成(RAG)正在引入关于业务或用户的上下文,像 Pinecone 这样的公司的向量数据库已成为 RAG 的基础设施支柱。彬子的经历中,有出海垂直领域 Agent 平台的项目经理咨询 RAG 策略优化。2024 人工智能报告中提到对增强生成检索(RAG)的兴趣增长促使了嵌入模型质量的提高,传统 RAG 解决方案中的问题得到解决。

Content generated by AI large model, please carefully verify (powered by aily)

References

红杉:生成式AI的第二阶段

创始人正在进行prompt工程、微调和数据集策划的艰苦工作,以使他们的AI产品优秀起来。他们正在逐步地建设,将引人注目的Demo演示变成完整的产品体验。与此同时,基础模型底层继续充满研究和创新。随着公司找到持久价值的路径,正在发展一个共享的剧本。我们现在有了共享的技术来使模型变得有用,以及将塑造生成式AI第二幕的新兴UI范式。模型开发栈新兴的推理技术,如连锁思考、树状思考和反射,正在提高模型执行更丰富、更复杂的推理任务的能力,从而缩小了客户期望与模型能力之间的差距。开发者使用像Langchain这样的框架来调用和调试更复杂的多链序列。迁移学习技术,如RLHF和微调,正变得更加可用,特别是随着GPT-3.5和Llama-2的微调的最近可用性,这意味着公司可以将基础模型适应其特定领域,并从用户反馈中改进。开发者从Hugging Face下载开源模型,并微调它们以实现优质的性能。检索增强生成(RAG)正在引入关于业务或用户的上下文,减少幻觉并增加真实性和实用性。像Pinecone这样的公司的向量数据库已成为RAG的基础设施支柱。新的开发者工具和应用框架为公司提供了可重用的构建块,以创建更先进的AI应用,并帮助开发者评估、改进和监控生产中的AI模型的性能,包括像Langsmith和Weights&Biases这样的LLMOps工具。像Coreweave、Lambda Labs、Foundry、Replicate和Modal这样的AI-first基础设施公司正在解除公共云的捆绑,并提供AI公司最需要的东西:大量的GPU以合理的成本、按需可用和高度可扩展,以及一个不错的PaaS开发者体验。这些技术应该能够在基础模型同时改进的情况下,缩小期望与现实之间的差距。但使模型变得出色只是成功了一半,生成式AI优先的用户体验也在进化:

彬子:2024 AI 年度小记

小红书主页:[AGI悟道](https://www.xiaohongshu.com/user/profile/64cdc8b0000000000b006bff?xsec_token=YBl-Rn5w-43J5tyvXHskRYEo3zDU4boV3ZQTdkpixCxuk=&xsec_source=app_share&xhsshare=CopyLink&appuid=64cdc8b0000000000b006bff&apptime=1735648591&share_id=2a78bff0cab74589873a77e6a281d7e4)发小红书除了记录也希望找到更多探索这块的朋友。也会有一些带着企业AI命题的人找过来或咨询或求助。印象比较深的是一个做出海垂直领域Agent平台的项目经理过来咨询一些RAG策略优化,说已经将我小红书推给他们开发团队,要求开发同学都必须复刻我视频里每个demo来评估能否借鉴到他们自己的方案里。但那时个人面向企业基本挣不到钱,大点的企业对AI这件事的决策链很长,没有资深的背书接不住。小的企业自己信息化都没有做,很多知识是口口相传的“传帮带”经验,文档的沉淀就卡掉绝大多数欲望了。7月~8月小红书更新进入瓶颈,更完知识图谱几篇不知道demo还能做啥,食之无味,弃之可惜。机缘巧合下参与WaytoAGI社区的Coze活动,一拍脑袋,费劲巴拉从头用框架搭demo还不如直接在Coze上捏bot。虽然也会吐槽简陋的知识库,缺乏路由循环,但整体用下来还是真香,尤其当时大模型随便用,Token几万,几十万的造想想都爽。当时为了综合测试Coze各节点,实验性的捏了当时上面最复杂的一个虚拟女友李思思(灵感来源皮皮的洛云)。今天还看到她发的今年最后一条朋友圈,挺有回忆。

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

合成数据是Phi family的主要训练数据来源,Anthropic在培训Claude 3时使用合成数据,来代表可能在训练数据中缺失的场景。Hugging Face使用Mixtral-8x7B Instruct生成超过3000万份文件和250亿个合成教科书、博客文章和故事,以重新创建Phi-1.5训练数据集,他们将其称为Cosmopedia。为了使合成数据更容易,NVIDIA发布了Nemotron-4-340B家族,这是一个专为合成数据生成设计的模型套件,可通过许可协议获得。另外Meta的Llama也可以用于合成数据生成。通过直接从对齐的LLM中提取它,也有可能创建合成高质量指令数据。使用像Magpie这样的技术,有时可以将模型进行微调,以达到与Llama-3-8B-Instruct相当的表现。RAG提高嵌入模型质量虽然检索和嵌入不是新的,但对增强生成检索(RAG)的兴趣增长促使了嵌入模型质量的提高。在常规的LLMs中,证明有效的剧本是大规模性能改进的关键(GritLM有约47亿个参数,而之前的嵌入模型只有1.1亿个)。同样,大规模语料库的使用和改进过滤方法导致了小型模型的巨大改善。同时,ColPali是一种利用文档的视觉结构而不是文本嵌入来改进检索的视图-语言嵌入模型。检索模型是少数几个开放模型通常优于大型实验室专有模型的子领域之一。在MTEB检索排行榜上,OpenAI的嵌入模型排名第29位,而NVIDIA的开放NV-Embed-v2排名第一。传统RAG解决方案中的问题得到解决

Others are asking
ai领域可以找什么工作
在 AI 领域,您可以从事以下工作: 产品经理:熟悉如 ChatGPT 等技术,写过提示词(prompt),使用过如 SD、MJ 等工具,负责产品的规划和管理。 数据科学家:熟悉 prompt 创作,掌握如 midjourney、runway 等工具,进行数据分析和模型开发。 算法技术人员:关注并学习 AIGC 方向,部署大模型、绘图、视频生成等项目,熟悉多种相关工具。 此外,AI 领域的工作还包括但不限于以下方面: 技术研发:写代码调用 API,探索 AI 在教育等领域的应用。 法律监管:确保 AI 技术的使用符合法律法规,处理潜在的法律风险和问题。 随着 AI 的不断发展,新的工作岗位和职业方向也在不断涌现。
2025-03-04
假如你是一名测试工程师,要写一个关于《AI智能体输入输出验证》专利申请书,申请书的内容包括以下几点: 1、发明名称(一种xxxxxxxx算法/架构/设计/外观等等等等) 2、发明背景技术 3、具体的技术方案描述 4、本发明的有益效果
以下是为您生成的关于《AI 智能体输入输出验证》的专利申请书内容: 发明名称:一种基于 Coze 工作流的 AI 智能体输入输出验证算法 发明背景技术: 在当前的 AI 应用中,构建和测试智能体的功能至关重要。特别是在处理复杂的任务,如生成思维导图时,需要确保输入和输出的准确性和有效性。然而,现有的技术在配置子任务节点和验证其可用性方面存在不足,导致效率低下和结果不稳定。 具体的技术方案描述: 1. 对于生成思维导图的任务,首先确定处理方式为“单次”,因为一次精读任务仅需生成一张思维导图。 2. 在输入方面,<generateTreeMind>插件节点仅需设置{{query_text}}变量,格式为 string 字符串,通过引用“标题、导语、大纲”节点的{{enTreeMind}}变量来提供输入。 3. 在输出方面,观察输出区的众多字段,根据字段名称、「查看示例」中的示例说明或试运行来确定所需的字段。对于生成图片格式的思维导图,确定 pic 为所需的输出。 4. 完成任何一个节点的配置后,进行试运行测试。具体步骤包括:点击「测试该节点」,按格式要求输入待测试的内容(对于 array 等其他格式,自行对话 AI 或搜索网络确认格式要求),点击「展开运行结果」,检查输入、输出项是否有误。若有误,依次检查“测试输入内容”、“节点配置”以及优化“提示词”,以提升对生成内容的约束力。 本发明的有益效果: 1. 提高了 AI 智能体在处理生成思维导图等任务时输入输出配置的准确性和效率。 2. 通过明确的步骤和规范的测试流程,有效减少了错误和不确定性,提升了智能体的稳定性和可靠性。 3. 能够更好地满足用户在复杂任务中的需求,为相关领域的应用提供了更优质的解决方案。
2025-03-04
介绍AI进阶操作
以下是关于 AI 进阶操作的介绍: 在 Obsidian 中使用 AI 工具的进阶配置方法包括: 1. 笔记仓库嵌入大模型(Copilot) 2. 笔记内容作为 RAG 嵌入大模型(Smart Conections) 3. 笔记内使用大模型编写内容 在 Liblibai 中,有以下进阶概念和功能: 1. 迭代步数:调整图片内容的次数,并非越多越好,效果提升非线性。 2. 尺寸:影响图片生成的大小,需适中选择,高清图可设置中等尺寸并用高分辨率修复。 3. 生成批次:用本次设置重复生成的图批次数。 4. 每批数量:每批次同时生成的图片数量。 5. 提示词引导系数:影响图像与 prompt 的匹配程度,过高会使图像质量下降。 6. 随机数种子:固定后可对图片进行“控制变量”操作。 7. ADetailer:面部修复插件,高阶技能。 8. ControlNet:控制图片中特定图像,高阶技能。 9. 重绘幅度:图生图时,幅度越大,输出图与输入图差别越大。 此外,杭州站的 AI 活动聚焦在动手操作上,共分为 5 天进行,被定义为带领大家进阶玩转 AI 的实操落地活动,从学习写 prompt 到生成图片再到分组成立项目,活动形式丰富多样,难度和节奏层层递进。
2025-03-04
关于换脸的AI
以下是关于 AI 换脸的详细介绍: AI 换脸可以通过以下步骤实现: 1. 选择云服务解决方案,如 AutoDL(官网:https://www.autodl.com/home )。注册完成后,在算力市场中选择能接受价格且 GPU 配置较高的算力服务器。 2. 通过模型镜像启动 GPU 服务器:在算法社区查找 facefusion 镜像,选择合适的镜像启动。 3. 启动实例并打开相关工具:点击右下角的创建实例按钮,创建并启动实例。点击快捷工具中顶部的 JupyterLab 打开工具,新打开一个终端窗口,在终端窗口中输入命令执行相关操作。 4. 打开 facefusion 软件:返回实例列表,点击自定义服务按钮,通过新的浏览器窗口访问 facefusion 提供的 UI 界面。 5. 在 facefusion 软件界面上传准备好的图片、视频,在右侧可看到预览效果,点击下方的开始按钮执行换脸处理。 执行完成后,在输出位置会出现处理后的视频,输出窗口右上角有下载按钮可导出视频到本地。 本次 GPU 服务器的使用花费情况: 1. 时间:大约 10 分钟左右。 2. 制作数字人视频:免费。 3. 数字人换脸:约 0.8 元。 有多个 AI 产品可以实现换脸效果,这里介绍的开源、免费的解决方案是 facefusion,其开源地址:https://github.com/facefusion/facefusion 。但本地化安装需要一定编程知识,且对计算机配置有要求,执行速度可能较慢,因此不推荐本地化安装。
2025-03-04
这个网站有学习AI绘画的教程吗
以下是一些学习 AI 绘画的教程资源: 视频教程: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?: 从 0 入门 AI 绘画教程: 线上教程: AI 线上绘画教程:
2025-03-04
AI办公
AI 办公领域目前有以下相关内容: 360AI 办公:核心价值主张为每天 6 毛钱,尽享 200+AI 权益,产品能力包括 AI 图片、AI 文档、AI 写作、AI 音视频、AIPPT、AI 翻译、模版大全、办公工具。 在 toB 领域,智能办公产品价值主要体现在办公垂域场景中,比如快速总结群聊内容或会议信息,为写公文提供结构模板参考等。
2025-03-04
推理行大模型对于RAG的准确性提升,带来哪些改变
推理行大模型对 RAG 准确性提升带来了以下改变: 1. 当辅以能有效提取文档中结构化信息并整合为提示词的 PDF 解析器时,大语言模型能作出更准确的响应,提高了提供给模型的数据质量和相关性,从而提升模型输出质量。 2. 大模型应用领域常用的 RAG 方法,能让模型用自定义数据生成结果,处理无尽私有数据,将模型当成高效推理机器。但 RAG 存在一些常见误区: 随意输入任何文档不一定能得到准确回答,RAG 流程中的多个环节都会影响最终质量。 RAG 虽能减少幻觉,但不能完全消除,只要有大模型参与就可能产生幻觉。 RAG 仍消耗大模型的 Token,最终需大模型处理检索结果生成通顺回答。 未来,将研究分享更多基于深度学习的文档解析方法,以更全面理解 RAG 质量和文档解析质量的关系。同时,前沿模型研发团队力争做到吞吐量、速度和准确度的最佳平衡。
2025-03-03
什么是RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在黑盒不可控和幻觉干扰等问题。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且不影响原有知识。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档。 2. 文本分割:把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-03-02
基础搭建的知识库效果很差,模型答案的幻觉很严重,我应该怎么改进?(Deepseek调用api接入本地faiss的rag库)
以下是一些改进基础搭建的知识库效果、减轻模型答案幻觉问题的建议: 1. 更换大模型:例如从 ChatGLM26B 替换成 baichuan213b,针对您的场景,后者的性能可能提升一倍左右。 2. 更换 embedding 模型:将 embedding 模型从 LangChain Chatchat 默认的 m3ebase 替换为 bgelargezh,后者可能更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果可能最优。 4. 对文档名称进行处理:人工对文件进行重命名,上传相同文件构建知识库,同时在构建知识库时勾选【开启中文标题加强】选项,虽然重命名文件对结果的提升效果不明显,但勾选该选项后,回答的无关信息可能减少,效果有所提升。 RAG(RetrievalAugmented Generation)即检索增强生成,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务。 在大模型中,向量可想象成空间中的点位,每个词或短语对应一个点。系统通过查看词在虚拟空间中点的位置,寻找直线距离最近的点来检索语义上接近的词语或信息。理解向量后,当收到一个对话时,RAG 的完整工作流程为:检索器从外部知识中检索相关信息,生成器利用这些信息生成答案。 要优化幻觉问题和提高准确性,需要了解从“问题输入”到“得到回复”的过程,针对每个环节逐个调优,以达到最佳效果。
2025-02-27
anythingLLM和RAG Flow哪个部署更容易
RAG Flow 和 LLM 的部署难易程度如下: RAG Flow: 公网 MaaS:通常只需要一个 API key 即可对接,默认提供了通义千问。比较特殊的是 OpenAI 的接口上提供了修改 endpoint,也就是支持中间商。 本地部署:目前仅支持 Xinference 和 Ollama 方式部署。但是实际上只要是 API 接口一致,对接方式一致都可以用该方式对接。此处基础 Url 只需要写到 v1 为止,不需要写 embeddings 的二级接口。添加模型后需要在“系统模型配置”中设置,方能让模型生效。 LLM:关于 LLM 的部署难易程度,上述内容中未给出直接对比信息。但 Dify.AI 作为一个开源的大规模语言模型应用开发平台,具有快速部署等特点,用户可以在 5 分钟内部署定制化的聊天机器人或 AI 助手。 综合来看,仅根据所提供的信息,难以确切判断 RAG Flow 和 LLM 哪个部署更容易,还需结合更多具体的技术细节和实际需求进行评估。
2025-02-27
企业建立私有大模型时候,采用什么工具进行RAG,高效实习企业知识文档、表格和pdf图纸的向量化
企业建立私有大模型进行 RAG 并实现企业知识文档、表格和 PDF 图纸向量化时,可参考以下工具和方法: 1. 本地部署资讯问答机器人: 导入依赖库,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 Python 程序中跑大模型(使用前需确保 ollama 服务已开启并下载好模型)。 从订阅源获取内容,通过专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,可使用文本向量模型 bgem3,从 hf 下载好模型后,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效的向量存储。 2. 开发:LangChain 应用开发指南 大模型的知识外挂 RAG 加载数据,根据数据源类型选择合适的数据加载器,如网页可使用 WebBaseLoader。 将文档对象分割成较小的对象,根据文本特点选择合适的文本分割器,如博客文章可用 RecursiveCharacterTextSplitter。 将文档对象转换为嵌入并存储到向量存储器中,根据嵌入质量和速度选择合适的文本嵌入器和向量存储器,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 创建检索器,使用向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数创建检索器对象。 创建聊天模型,根据性能和成本选择合适的聊天模型,如 OpenAI 的 GPT3 模型。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-02-27
智能RAG客服系统搭建
搭建智能 RAG 客服系统主要包括以下方面: 1. RAG 全貌概览: RAG 的流程分为离线数据处理和在线检索两个过程。 离线数据处理的目的是构建知识库,知识会按照某种格式及排列方式存储在其中等待使用。 在线检索是利用知识库和大模型进行查询的过程。 2. 应用场景: 以构建智能问答客服为例,了解 RAG 所有流程中的“What”与“Why”。 3. 客服系统的要求: 具备结构清晰、全面的 FAQ 库,覆盖常见问题并根据实际场景动态更新。 例如订票平台,可基于用户信息提前呈现可能遇到的问题及解答。 4. 企业客户实践案例: 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。 5. RAG 提示工程: 在利用 RAG 架构构建智能问答系统时,“指代消解”是关键挑战之一,特别是在多轮对话场景中。 目前采用 Prompt 方法解决指代消解问题,会增加计算资源消耗和系统响应延迟,需权衡推理负荷、Token 消耗和问答准确性等因素,根据具体应用环境和需求做出合理选择。
2025-02-26
怎么用飞书搭建一个人工智能知识库
以下是使用飞书搭建人工智能知识库的相关内容: 1. 参考文章: 《这可能是讲 Coze 的知识库最通俗易懂的文章了》:介绍了一系列关于 AI 知识库的知识,包括“通往 AGI 之路”这个使用飞书软件搭建的 AI 知识库,以及相关文章对 AI 时代知识库的讲解,读完可收获 AI 时代知识库的概念、实现原理、能力边界等内容。 《【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档》:其中提到创建知识库时可使用手动清洗数据,包括在线知识库和本地文档的处理方式,如在线知识库需创建飞书在线文档,每个问题和答案以“”分割等;还介绍了发布应用时要确保在 Bot 商店中能搜到。 《「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人》:提到创建知识库的路径为个人空间知识库创建知识库,文档类型支持本地文档、在线数据、飞书文档、Notion 等,本次使用本地文档,可按照操作指引上传文档、分段设置、确认数据处理,同时提到知识库内容切分粒度的小技巧,如使用特殊分割符“”。 2. 总体步骤: 确定所需的数据清洗方式,如手动或自动清洗。 对于在线知识库,创建飞书在线文档,每个问题和答案以特定方式分割,选择飞书文档、自定义等选项,并可编辑修改和删除。 对于本地文档,注意拆分内容以提高训练数据准确度,按照固定方式进行人工标注和处理。 完成创建后可发布应用,确保在 Bot 商店中能搜到。
2025-03-04
用deepseek打造个人知识库
以下是关于用 DeepSeek 打造个人知识库的相关信息: 可以先将文本拆分成若干小文本块(chunk),通过 embeddings API 将其转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。当用户提出问题时,将问题也转换成向量,与储存库中的向量比对,提取关联度高的文本块,与问题组合成新的 prompt 发送给 GPT API,从而提高回答的准确性和相关性。例如对于“此文作者是谁?”的问题,可以直观或通过比较 embeddings 向量找到关联度最高的文本块,如“本文作者:越山。xxxx。”。 在 RAGFlow 中,可配置本地部署的 DeepSeek 模型。选择 Ollama 并配置相关信息,导入嵌入模型用于文本向量化。设置系统模型后,可创建知识库,导入文件(可设置文件夹)并解析,解析速度取决于本机 GPU 性能。解析完成后进行检索测试,没问题即可进入聊天界面,还可自行设置助理。 此外,AI 编程与炼金术中也涉及 DeepSeek 的相关知识,如在不同章节中的应用,包括给老外起中文名、驱动 Life Coach 等,具体内容可通过相关链接进一步查看。
2025-03-04
你有 AI+知识库应用的架构图吗
以下是 AI+知识库应用的架构图相关内容: 一、问题解析阶段 1. 接收并预处理问题,通过嵌入模型(如 Word2Vec、GloVe、BERT)将问题文本转化为向量,确保问题向量能有效用于后续检索。 二、知识库检索阶段 1. 知识库中的文档同样向量化后,比较问题向量与文档向量,选择最相关的信息片段并抽取传递给下一步骤。 2. 文档向量化:要在向量中进行检索,知识库被转化成一个巨大的向量库。 三、信息整合阶段 1. 接收检索到的信息,与上下文构建形成融合、全面的信息文本。 信息筛选与确认:对检索器提供的信息进行评估,筛选出最相关和最可信的内容,包括对信息的来源、时效性和相关性进行验证。 消除冗余:识别和去除多个文档或数据源中的重复信息。 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等。 上下文构建:将筛选和结构化的信息组织成一个连贯的上下文环境,包括对信息进行排序、归类和整合。 语义融合:合并意义相近但表达不同的信息片段,以减少语义上的重复并增强信息的表达力。 预备生成阶段:整合好的上下文信息被编码成适合生成器处理的格式,如将文本转化为适合输入到生成模型的向量形式。 四、大模型生成回答阶段 1. 整合后的信息被转化为向量并输入到 LLM(大语言模型),模型逐词构建回答,最终输出给用户。因为这个上下文包括了检索到的信息,大语言模型相当于同时拿到了问题和参考答案,通过 LLM 的全文理解,最后生成一个准确和连贯的答案。 五、其他预处理阶段 1. 文本预处理:包括去除无关字符、标准化文本(例如将所有字符转换为小写)、分词等,以清洁和准备文本数据。 2. 嵌入表示:将预处理后的文本(词或短语)转换为向量,通常通过使用预训练的嵌入模型来完成。 3. 特征提取:对于整个问题句子,可能会应用进一步的特征提取技术,比如句子级别的嵌入,或使用深度学习模型(如 BERT)直接提取整个句子的表示。 4. 向量优化:问题的向量表示可能会根据具体任务进行优化,例如通过调整模型参数来更好地与检索系统的其他部分协同工作。
2025-03-04
coze构建知识库
构建 Coze 知识库的步骤如下: 1. 手动清洗数据: 在线知识库:点击创建知识库,创建画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以“”分割,选择飞书文档、自定义的自定义,输入“”,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容以提高训练数据准确度,将海报内容训练到知识库中。例如画小二 80 节课程分为 11 个章节,先放入大章节名称内容,再按固定方式细化处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到。 3. 标准流程搭建产品问答机器人: 收集知识:确认了解知识库支持的数据类型,收集知识通常有三种方式,包括企业或个人沉淀的 Word、PDF 等文档,企业或个人沉淀的云文档(通过链接访问),互联网公开的一些内容(可安装 Coze 提供的插件采集)。 创建知识库:路径为个人空间知识库创建知识库,支持本地文档、在线数据、飞书文档、Notion 等文档类型,本次可使用本地文档,按照操作指引上传文档、分段设置、确认数据处理,可使用特殊分割符“”,分段标识符号选择“自定义”,内容填“”。 希望以上内容对您有所帮助。
2025-03-04
知识库如何搭建
搭建知识库的方法主要有以下几种: 1. 利用本地部署大模型搭建个人知识库: RAG 技术:利用大模型的能力搭建知识库是 RAG 技术的应用。在这个过程中,首先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。RAG 的应用包括文档加载(从多种不同来源加载文档)、文本分割(把 Documents 切分为指定大小的块)、存储(将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库)、检索(通过某种检索算法找到与输入问题相似的嵌入片)、Output(把问题以及检索出来的嵌入片一起提交给 LLM 生成答案)。 文本加载器:将用户提供的文本加载到内存中,便于进行后续的处理。 2. 使用 Dify 构建知识库: 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 创建数据集:在 Dify 中创建新的数据集,上传准备好的文档,并为数据集编写良好的描述。 配置索引方式:Dify 提供了三种索引方式供选择,根据实际需求选择合适的方式。 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集的使用方式。 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库。 3. 在 Coze 智能体中创建知识库: 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。知识库的飞书在线文档中,每个问题和答案以分割,选择飞书文档、自定义的自定义,输入,然后可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:对于本地 word 文件,注意拆分内容以提高训练数据准确度。例如画小二课程分为多个章节,先放入大的章节名称内容,再按固定方式处理章节内详细内容。 发布应用:点击发布,确保在 Bot 商店中能够搜到。
2025-03-03
知识库目录
以下是通往 AGI 之路的知识库目录: 1. 直播一期:知识库及 GPT 基础介绍 知识库及社群介绍 知识库目录导览 2. 5.关于我们&致谢 AGI 知识库:一个启程的故事 3. 🌈通往 AGI 之路分享会 深入浅出理解 AI 目录 有趣的 AI 案例 AI 的原理 Diffusion 原理和案例 什么是 Agent 此外,还包括以下相关链接: 直播回放:https://www.bilibili.com/video/BV1QN411j719/ (小红书)
2025-03-03
我是一个创业者,想做AI软件外包业务,帮助其他公司定制AI软件应用,我自身应该掌握哪些知识?
如果您想做 AI 软件外包业务,帮助其他公司定制 AI 软件应用,自身应掌握以下知识: 1. AIPM 技能: 理解产品核心技术,了解基本的机器学习算法原理,以做出更合理的产品决策。 与技术团队有效沟通,掌握一定的算法知识,减少信息不对称带来的误解。 评估技术可行性,在产品规划阶段做出更准确的判断。 把握产品发展方向,了解算法前沿,更好地规划产品未来。 提升产品竞争力,发现产品独特优势,提出创新特性。 具备数据分析能力,处理和分析相关数据。 2. 提示词工程相关: 了解 2C 业务,为 C 端用户制作有丰富提示词的网页应用程序。 熟悉 B2B2C 业务,为垂直领域企业定制提示词应用。 3. Python 及相关编程知识: Python 基础:包括基本语法规则、数据类型、控制流。 函数:定义和调用函数,理解参数和返回值,以及作用域和命名空间。 模块和包:学会导入模块,使用包来扩展程序功能。 面向对象编程:了解类和对象、属性和方法等概念。
2024-08-12