Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

可以同时接多个大模型api的聊天应用

Answer

以下是一些可以同时接多个大模型 API 的聊天应用:

  1. 熊猫大侠:基于 COW 框架的 ChatBot 实现步骤
    • 能实现打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用等功能。
    • 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。
    • 可选择多模型,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM-4/LinkAI 等。
    • 支持多消息类型,包括文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。
    • 有多种部署方法,如本地运行、服务器运行、Docker 的方式。
    • 风险与注意事项:微信端因非常规使用有封号危险,不建议主力微信号接入;操作需依法合规,对大模型生成的内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。
    • 相关教程:张梦飞同学写的更适合小白的使用教程【保姆级】一步一图,手把手教你把 AI 接入微信副本
  2. DIN:全程白嫖-拥有一个 AI 大模型的微信助手
    • 搭建步骤:
      • 搭建OneAPI,用于汇聚整合多种大模型接口,并可白嫖大模型接口。
      • 搭建FastGpt,这是个知识库问答系统,可将知识文件放入,并接入大模型作为分析知识库的大脑来回答问题。若不想接入微信,其自身有问答界面。
      • 搭建chatgpt-on-wechat接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。
    • 拓展功能:搭建完后想拓展 Cow 的功能,可参考 Yaki.eth 同学的教程Yaki:GPT/MJ 接入微信,里面的 cow 插件能进行文件总结、MJ 绘画。
  3. LLM 开源中文大语言模型及数据集集合中的外部挂件应用
    • wenda:
      • 地址:https://github.com/wenda-LLM/wenda
      • 简介:一个 LLM 调用平台。为小模型外挂知识库查找和设计自动执行动作,实现不亚于大模型的生成能力。
    • JittorLLMs:
      • 地址:https://github.com/Jittor/JittorLLMs
      • 简介:计图大模型推理库:笔记本没有显卡也能跑大模型,具有成本低,支持广,可移植,速度快等优势。
    • WebCPM
    • GPT Academic:
      • 地址:https://github.com/binary-husky/gpt_academic
      • 简介:为 GPT/GLM 提供图形交互界面,特别优化论文阅读润色体验,支持并行问询多种 LLM 模型,兼容复旦 MOSS, llama, rwkv, 盘古等。
    • ChatALL:
      • 地址:https://github.com/sunner/ChatALL
      • 简介:ChatALL(中文名:齐叨)可以把一条指令同时发给多个 AI,可以帮助用户发现最好的回答。
Content generated by AI large model, please carefully verify (powered by aily)

References

熊猫大侠:基于COW框架的ChatBot实现步骤

作者:熊猫大侠COW是基于大模型搭建的Chat机器人框架,将多模型塞进自己的微信里实现方案。基于这篇张梦飞同学也写了一个更适合小白的使用教程:[【保姆级】一步一图,手把手教你把AI接入微信副本](https://waytoagi.feishu.cn/wiki/A9w1wUcXSihF6XkeKVic8CXxnHb)本文带你实现:1、打造属于自己的ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI画图等等)2、常用开源插件的安装应用正式开始前你需要知道:ChatBot相较于在各大模型网页端使用区别:本实现思路需要接入大模型API的方式实现(API单独付费)风险与注意事项:1、微信端因为是非常规使用,会有封号危险,不建议主力微信号接入。2、本文只探讨操作操作步骤,请依法合规使用-大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求。-禁止将此操作用于任何非法目的。-处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。多平台接入:微信、企业微信、公众号、飞书、钉钉等。多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM-4/LinkAI等等多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。多部署方法:本地运行、服务器运行、Docker的方式

DIN:全程白嫖 - 拥有一个AI大模型的微信助手

1.搭建[OneAPI](https://github.com/songquanpeng/one-api),这东西是为了汇聚整合多种大模型接口,方便你后面更换使用各种大模型。下面会告诉你怎么去白嫖大模型接口。2.搭建[FastGpt](https://fastgpt.in/),这东西就是个知识库问答系统,你把知识文件放进去,再把上面的大模型接进来,作为分析知识库的大脑,最后回答你问题,这么个系统。如果你不想接到微信去,自己用用,其实到这里搭建完就OK了,他也有问答界面。3.搭建[chatgpt-on-wechat](https://github.com/zhayujie/chatgpt-on-wechat),接入微信,配置FastGpt把知识库问答系统接入到微信。这里建议先用个小号,以防有封禁的风险。搭建完后想拓展Cow的功能,我推荐Yaki.eth同学这篇教程[Yaki:GPT/MJ接入微信](https://waytoagi.feishu.cn/wiki/UADkwZ9B0iAWdTkFJIjcN7EgnAh),里面的cow插件能进行文件总结、MJ绘画的能力。完成上面3步就算OK了,那我们正式开始。

LLM开源中文大语言模型及数据集集合

wenda:地址:[https://github.com/wenda-LLM/wenda](https://github.com/wenda-LLM/wenda)简介:一个LLM调用平台。为小模型外挂知识库查找和设计自动执行动作,实现不亚于于大模型的生成能力。JittorLLMs:地址:[https://github.com/Jittor/JittorLLMs](https://github.com/Jittor/JittorLLMs)简介:计图大模型推理库:笔记本没有显卡也能跑大模型,具有成本低,支持广,可移植,速度快等优势。WebCPM地址:[https://github.com/thunlp/WebCPM](https://github.com/thunlp/WebCPM)简介:一个支持可交互网页搜索的中文大模型。GPT Academic:地址:[https://github.com/binary-husky/gpt_academic](https://github.com/binary-husky/gpt_academic)简介:为GPT/GLM提供图形交互界面,特别优化论文阅读润色体验,支持并行问询多种LLM模型,支持清华chatglm等本地模型。兼容复旦MOSS,llama,rwkv,盘古等。ChatALL:地址:[https://github.com/sunner/ChatALL](https://github.com/sunner/ChatALL)简介:ChatALL(中文名:齐叨)可以把一条指令同时发给多个AI,可以帮助用户发现最好的回答。

Others are asking
api接口的claude怎么写提示词?
以下是关于 Claude API 接口写提示词的一些要点: 1. 采用“Human:”/“Assistant:”的标准格式。Claude 被训练为交替对话形式的机器人,对话形式固定为:“Human:”/“Assistant:”。如果提示词在 API 里出现,固定开头为“\n\nHuman:”,固定结尾是:“\n\nAssistant:”。例如:prompt=“\n\nHuman:Why are sunsets orange?\n\nAssistant:”。 2. 提示词要清晰明确,Claude 对清晰明确的提示词反馈最好。 3. 可以指定想要的精确输出格式,也可以为 Claude 写好回复的开头(在“Assistant:”之后)。 4. 如果 Claude 在执行任务前有时间一步一步地思考,它会表现得更好。 5. 对于输入内容,可进行无害性筛选。如果内容提到有害、色情或非法的活动,回复。 6. 若 Claude 不理解任务,可后退几步,再进行提示词迭代,并询问 Claude 是否理解。
2025-03-10
deekseek APi推荐
以下是为您推荐的与 DeepSeek API 相关的内容: 此外,还有以下与 DeepSeek 相关的其他信息供您参考: 同时,关于 DeepSeek 的其他相关日报信息: DeepSeek 暂停 API 充值服务,已充值金额可继续使用。DeepSeekchat 模型优惠期至 2025 年 2 月 8 日 24:00,之后按每百万输入 tokens 2 元,每百万输出 tokens 8 元计费。Deepseekreasoner 模型上线即按每百万输入 tokens 4 元,每百万输出 tokens 16 元计费。 Google 修改 AI 伦理原则,允许军事用途。
2025-03-09
免费语音合成API
以下是关于出门问问语音合成(TTS)API 的相关信息: 接口请求域名:https://open.mobvoi.com/api/tts/v1 接口请求频率限制:5 次/秒 调用参数及说明: 字段名:text 必填:是 类型:String 描述:要合成的文本内容,限制为 1000 字符。支持 ssml 标记语言,使用说明见附录 3。 字段名:appkey 必填:是 类型:String 描述:开发者在 AI 开放平台上申请的 appkey。 字段名:signature 必填:是 类型:String 描述:签名,通过“appkey+secret+timestamp”进行 md5 加密,得到的 32 位 MD5 值。其中加号也参与 MD5 的计算。每次请求实时计算签名,签名有效期为 10 分钟。 字段名:timestamp 必填:是 类型:Long 描述:当前时间戳,单位为秒。 字段名:speaker 必填:否 类型:String 描述:合成音频指定发音人。默认值:cissy_meet。其他发音人传值及计费价格请参考声音商店。 字段名:audio_type 必填:否 类型:String 描述:合成音频的格式。默认值:mp3。可选值:pcm/mp3/speexwb10/wav。只支持这四种格式中的一种。 字段名:speed 必填:否 类型:Float 描述:发音人合成的语速,支持小数点后两位。默认值:1.0。可选值:0.5 2.0。 字段名:convert 必填:否 类型:String 描述:默认值:无。可选值:robot。是否转化为机器声。 字段名:rate 必填:否 类型:Long 描述:音频采样率。默认值:无,由 speaker 指定默认值。可选值:8000/16000/24000。 字段名:volume 必填:否 类型:Float 描述:合成音量。默认值:1.0。可选值:0.1 1.0。 字段名:pitch 必填:否 类型:Float 描述:语调参数,参数小于 0 则语调变低,反之则高。默认值:0。可选值:10 < pitch < 10(streaming 接口不支持)。 字段名:symbol_sil 必填:否 类型:String 描述:符号停顿时长映射方法(逗号分割)见下方停顿符号映射表。充值后自动开通权限(streaming 接口不支持)。 字段名:ignore_limit 必填:否 类型:Boolean 描述:默认值:false。可选值:false/true。是否限制字符数,如果设置 true,传输的文本可以超过 1000 字符限制,最大字符数 3000。充值后自动开通权限。 出门问问语音合成技术(TTS)可以将任意文本转化为语音,实现让机器和应用张口说话。其可应用于视频 APP 配音解说、小说 App 有声阅读、移动 App 新闻语音播报、智能设备语音提醒、车载导航语音合成的个性化语音播报等场景。该服务提供了普通话、台湾腔、粤语、四川话、东北话等多种方言,数百个发音人,上千种风格,满足不同场景的选择需求。实时合成支持 SSML,语法详见 SSML 标记语言。 HTTP Method:支持 POST 请求。
2025-03-07
在飞书的多维表格字段类型选择”ai音频摘要&文案提取“时,要求关联账号,提示需要通过API KEY关联,如何获取api key?
获取 API key 的方法如下: 火山引擎 API 申请:在火山引擎申请 API,注册链接有送代金券,可用于 token 消耗。 通义千问大模型:先去,点击创建 API key,复制保存即可。 腾讯云(新用户): 1. 点击去注册腾讯云:。 2. 进入腾讯云,微信扫码注册。 3. 首次注册选择推荐页面的第一个或第二个。 4. 点击立即试用,选择地域和镜像(下拉框最上边的宝塔 8.1.0),然后点击“立即试用”。 5. 进入腾讯云服务台,点击“登录”。 6. 登录后,在当前页面复制 sudo /etc/init.d/bt default,粘贴进入图示位置,然后点击回车,保存此处输出的内容。 7. 返回服务器控制台,点击空白区域,选择“防火墙”菜单栏,点击【添加规则】按钮,新增规则,手动输入相关内容,除图中的内容外,需要再添加一个 3000 备注 FastGPT。
2025-03-07
小白用户,使用API结合cherry studio建立本地知识库之后,应该怎么训练使AI更聪明
以下是使用 API 结合 cherry studio 建立本地知识库后训练使 AI 更聪明的方法: 1. 在线知识库: 点击创建知识库,创建一个画小二课程的 FAQ 知识库。 知识库的飞书在线文档中,每个问题和答案以分割。 选择飞书文档,选择自定义的自定义,输入。 编辑修改和删除内容,添加 Bot 并在调试区测试效果。 2. 本地文档: 注意拆分内容,提高训练数据准确度。 对于画小二课程,将 80 节课程分为 11 个章节,不能一股脑全部放进去训练。 首先将 11 章的大章节名称内容放进来,章节内详细内容按照固定方式进行人工标注和处理。 然后选择创建知识库自定义清洗数据。 3. 发布应用: 点击发布,确保在 Bot 商店中能够搜到。 此外,在训练 AI 时,还需要注意以下几点: 提示词:告诉 AI 它的角色和要专注的技能。 知识库:相当于给 AI 发放工作手册,例如可以放入特定的剧情等内容。 希望以上内容对您有所帮助。
2025-03-06
结合API建立本地知识库,具体什么操作比较容易
要结合 API 建立本地知识库,以下是较为容易的操作步骤: 1. 进入知识库页面,单击创建知识库。 2. 在弹出的页面配置知识库名称、描述,并单击确认。需注意一个团队内的知识库名称不可重复,必须是唯一的。 3. 在单元页面,单击新增单元。 4. 在弹出的页面,选择表格格式。 5. 选择 API 上传方式: 获取在线 API 的 JSON 数据,将 JSON 数据上传至知识库。 在表格格式页签下,选择 API,然后单击下一步。 单击新增 API。 输入网址 URL 并选择数据的更新频率,然后单击下一步。 输入单元名称或使用自动添加的名称,然后单击下一步。 配置数据表信息后,单击下一步。 确认表结构:系统已默认获取了表头的列名,您可以自定义修改列名,或删除某一列名。 指定语义匹配字段:选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。 查看表结构和数据,确认无误后单击下一步。 完成上传后,单击确定。 您也可以选择自定义上传方式: 在表格格式页面下,选择自定义,然后单击下一步。 输入单元名称。 在表结构区域添加字段,单击增加字段添加多个字段。 设置列名,并选择指定列字段作为搜索匹配的语义字段。 单击确定。 单击创建分段,然后在弹出的页面输入字段值,然后单击保存。
2025-03-06
微信聊天记录整理助手
以下是关于微信群聊总结 AI 助手(JS and Electron ver)的详细介绍: 脚本版本运行: 会弹出二维码,使用微信扫码登录,登录成功后程序持续抓取群聊记录,保存在本地文件中,位置在 data/日期文件夹/群名.txt,不会上传到第三方。 手动运行总结程序,在每天结束时对某个群的内容进行总结,命令为:npm run summarize./data/20230823/xxx.txt 总结语音生成的配置。 项目介绍: 这是基于微信机器人的微信群聊总结助手,能自动收集群聊记录并用 AI 总结发送到指定群聊。 是较简单能实现完整功能的项目,用 JS 简单封装。 每次执行 summarize 命令会生成三个总结文件。 提示:使用本项目登录微信可能存在封号风险,请慎重使用并遵守相关平台规则。 下载与支持: 本项目由免费白嫖 GPT 的智囊 AI技术支持。 自己跑不起来但需要群聊总结的同学,可加机器人微信号:aoao_eth,把机器人拉进群里。 新版本:桌面应用: 可使用桌面版,一键监控、总结、发送,也可用脚本版手动运行监控和总结。 下载后直接打开配置 app key 即可运行监控和总结,一键总结,一键发送到群内。 如需要 windows 版本,可自己构建或者直接代码运行,代码在 app 文件夹中,欢迎构建成功的同学提供 windows 安装包。 截图展示的功能: 每日群聊监控和数据统计(界面实时更新) 一键总结,一键查看总结结果,一键发送到群聊 聊天记录实时查看,直接发送内容到群聊 随时更新的配置,可配置截取的文本长度和结尾词等 机器人状态监控,账号切换 正常运行界面,点击对话可看到实时对话和记录,同时可直接输入内容对话 微信登录界面
2025-03-12
微信聊天机器人
以下是关于搭建 AI 微信聊天机器人的相关内容: 1. 纯 GPT 大模型能力的微信聊天机器人搭建: 开始搭建,配置腾讯云轻量应用服务器,配置部署 COW 组件。 在复制的 dockercompose.yml 文件中修改具体配置来串联微信号和已创建好的 AI 机器人。配置参数参考官方来源:https://docs.linkai.tech/cow/quickstart/config 。编排模板中,名称的全大写描述需对应,如 open_ai_api_key 对应 OPEN_AI_API_KEY 。私聊或群聊时,最好加上前缀触发机器人回复,如配置的对应配置参数 SINGLE_CHAT_PREFIX,群聊中对应参数是 GROUP_CHAT_PREFIX,机器人只会回复群里包含@bot 的消息。GROUP_NAME_WHITE_LIST 用来配置哪些群组的消息需要自动回复。 2. 直接对接 Coze 平台 Bot 的微信聊天机器人搭建: 微信有多种功能,个人微信/微信群目前 Coze AI 平台不支持直接对接,微信公众号、微信服务号、微信客服支持与 Coze AI 平台对接。 Coze 的国内版已正式发布 API 接口功能,可直接对接个人微信和微信群。 3. 熊猫大侠:基于 COW 框架的 ChatBot 实现步骤: COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进微信里的实现方案。 有更适合小白的使用教程:【保姆级】一步一图,手把手教你把 AI 接入微信副本 。 实现内容包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用。 正式开始前需知道: ChatBot 相较于在各大模型网页端使用区别:本实现思路需接入大模型 API(API 单独付费)。 风险与注意事项:微信端因非常规使用有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据注意脱敏。 支持多平台接入:微信、企业微信、公众号、飞书、钉钉等。 支持多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 支持多部署方法:本地运行、服务器运行、Docker 的方式。
2025-03-06
用ai帮助聊天
以下是关于用 AI 帮助聊天的相关内容: Cursor 官方: Chat 聊天:允许您与看到您的代码库的 AI 交谈。聊天室始终可以看到您当前的文件和光标,您可以向它询问诸如“这里有 bug 吗”等问题。您可以使用⌘+Shift+L 或“@”将特定代码块添加到上下文中,也可以使用⌘+Enter 与整个代码库聊天。 代码库答案:使用@Codebase 或⌘Enter 询问有关您的代码库的问题,Cursor 会搜索您的代码库以查找与您的查询相关的代码。 引用您的代码:带有@符号的参考代码可用作 AI 的上下文,只需键入@即可查看文件夹中所有文件和代码符号的列表。 使用图像:点击聊天下方的图片按钮,或将图片拖到输入框中,将视觉上下文包含在聊天中。 学习笔记:Generative AI for Everyone 吴恩达: 阅读方面:可以让 LLM 检查文本错误、总结长句。客服人员针对每一位用户传递大量信息时,可内置 LLM 快速总结信息提供给决策管理层,使用 LLM 进行语义分析,将邮箱、客户留言等外部信息传递给相关部门。构建处理信息的 LLM 模型时,要设置好提示词,持续优化。 聊天方面:聊天机器人可用于做旅游计划、职业咨询、做饭建议等,不仅能生成文本,还能产生进一步行动,如处理文本后发送订单信息等。建立聊天机器人的流程为:开始于内部聊天机器人,确保良好表现并避免问题;设置人为参与链路;确保安全后,让机器人对接用户。 大语言模型行与不行:能做类似于应届生能做的事;不可做的包括时间限制(如 GPT3 只有 2022 年 1 月前的数据)、会出现幻觉、接受有限的 prompt、输出有限制、不可以很好处理结构化数据、可能输出有害的信息。 @Chat:此功能目前仅适用于 Cmd K。您可以在 Cmd K 中使用@Chat 将当前聊天消息添加为上下文,当您与希望应用于编辑或生成代码的 AI 进行对话时很有用。
2025-03-03
帮助聊天的ai
以下是关于帮助聊天的 AI 的相关信息: Cursor: Chat 聊天:允许您与看到您的代码库的 AI 交谈。聊天室始终可以看到您当前的文件和光标,您可以向它询问诸如“这里有 bug 吗”等问题。您可以使用⌘+Shift+L 或“@”将特定代码块添加到上下文中,使用⌘+Enter 与整个代码库聊天。 Codebase Answers 代码库答案:使用@Codebase 或⌘Enter 询问有关您的代码库的问题,Cursor 会搜索您的代码库以查找与您的查询相关的代码。 Reference your Code 引用您的代码:带有@符号的参考代码,用作 AI 的上下文。只需键入@即可查看文件夹中所有文件和代码符号的列表。 Use Images 使用图像:点击聊天下方的图片按钮,或将图片拖到输入框中,将视觉上下文包含在聊天中。 Claude: Claude AI 是一款由 Anthropic 公司开发的 AI 助手,是基于自然语言处理技术和人工智能算法的聊天机器人。它能使用自然语言理解技术理解人类语言,并使用自然语言生成技术进行回答和梳理,以开创性计算机科学家克劳德·香农(Claude Shannon)的名字命名,利用最先进的机器学习技术、自然语言处理和深度学习算法,为各种应用提供支持,包括但不限于数据分析、自动化和个性化辅助。 注册步骤: 1. 访问 Claude 的官方网站。 2. 点击注册或登录界面中的“Sign Up”或“Continue with email”选项。 3. 填写邮箱地址并设置密码,然后提交表单。 4. 系统会向邮箱发送一封验证邮件,打开邮件并使用其中的验证码完成邮箱验证。 若在注册过程中遇到需要海外手机号接收验证码的问题,可能的解决方案有: 1. 使用虚拟海外号服务,如 SMSActivate、SMSPool 等,购买一个海外虚拟手机号来接收 Claude 的验证码。 2. 借助第三方服务网站如 uiuihao.com 完成注册您的 Claude 账号。 3. 若有海外朋友,可请他们帮忙接收验证码,并将验证码告知您。 完成注册后,若希望升级到 Claude Pro 版本以获取更强大功能和更高的 API 调用限额,需填写支付信息并选择合适的订阅计划。需注意,订阅 Claude Pro 可能需要使用海外支付方式。Claude.ai 目前处于公开测试阶段,未付费用户使用平台可能会受到一些限制。若在注册过程中遇到问题,可参考其他用户分享的详细注册教程和解决策略。
2025-03-03
实现基于个人聊天记录的数字分身的最佳实践
实现基于个人聊天记录的数字分身的最佳实践包括以下方面: 虚拟数字人的类型和驱动方式: 虚拟数字人通过各种技术创造,具有外观、行为和思想等人类特征,呈现为虚拟形象。 从驱动层面可分为中之人驱动和 AI 驱动两类。中之人驱动运用动作捕捉和面部捕捉技术实现交互,有上限且缺乏高并发和量产化能力;AI 驱动使用 AI 技术创建、驱动和生成内容,赋予感知和表达等交互能力。 虚拟数字人的应用类型: 服务型:如虚拟主播、助手、教师、客服和医生等,为物理世界提供服务。 表演型:如虚拟偶像,用于娱乐、影视等场景。 身份型:是物理世界“真人”进入虚拟世界的数字分身,在元宇宙中有广泛应用场景。 相关开源项目: 熊猫大侠基于 COW 框架的 ChatBot 最新版本支持多端部署、基础对话、语音识别、图片生成、丰富插件、Tool 工具和知识库等功能。可接入个人微信、微信公众号、企业微信应用,支持多种模型和个性化插件扩展,通过上传知识库文件自定义专属机器人,可作为数字分身、领域知识库、智能客服使用。项目地址包括 Github:https://github.com/zhayujie/chatgptonwechat ,Gitee:https://gitee.com/zhayujie/chatgptonwechat 。
2025-02-20
ai接入微信、钉钉聊天的软件
以下是关于将 AI 接入微信、钉钉聊天的相关信息: 基于 COW 框架的 ChatBot 实现步骤: 作者为熊猫大侠,COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信。 张梦飞同学写了更适合小白的使用教程: 。 可实现打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)和常用开源插件的安装应用。 正式开始前需知:ChatBot 相较于在各大模型网页端使用区别在于需要接入大模型 API(API 单独付费)。 风险与注意事项:微信端因非常规使用有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 零基础模板化搭建 AI 微信聊天机器人: COW 全称 Chatgptonwechat,可在微信、飞书、钉钉等主流社交平台上实现对接各种大模型的功能。 在刚买的腾讯云服务器上通过 Docker 运行 COW,并将之前在极简未来平台创建的 API 信息填入其中。 使用 Docker 服务部署 COW 组件,宝塔面板可让技术小白以图形交互方式运维服务器,手动配置部署容器编排模板。
2025-02-15
手绘风格图片生成模型
以下是关于手绘风格图片生成模型的相关内容: 艺术字生成: 模型选择:图片 2.1,输入提示词(可参考案例提示词)。 案例参考提示词: 金色立体书法,“立冬”,字体上覆盖着积雪,雪山背景,冬季场景,冰雪覆盖,枯树点缀,柔和光影,梦幻意境,温暖与寒冷对比,静谧氛围,传统文化,唯美中国风。 巨大的春联,金色的书法字体,线条流畅,艺术美感,“万事如意”。 巨大的字体,书法字体,线条流畅,艺术美感,“书法”二字突出,沉稳,大气,背景是水墨画。 巨大的奶白色字体“柔软”,字体使用毛绒材质,立在厚厚的毛绒面料上,背景是蓝天。 原文链接:https://mp.weixin.qq.com/s/jTMFYKxsN8dYNZu3VHKBnA 【06】在线生图定制主题海报: 操作步骤: 选择模型:推荐使用的模型,如(例图 1)风格模型>中国风>水墨工笔;(例图 2)风格模型>儿童>童话绘本;(例图 3)风格模型>MJ>剪纸艺术;(例图 4)风格模型>儿童>皮克斯(模型选择过程如图所示)。 输入画面描述:更好地描述画面的方法包括使用本课件提供的自选关键词、按主体+氛围+视角+画质的顺序输入关键词、使用括号()强调关键词。 选择画面大小:无界 AI 已将尺寸与用途标注在选项中,制作主题海报可选择 9:16 的宣传海报比例,选择 17283072 的分辨率可以更快生成图片。 其他设置:增加作图数量可以在同样参数的控制下一次性生成多幅图片,方便挑选。 优化海报:使用可画(https://www.canva.cn/?displaycomoption=true)在线编辑海报。 0 基础手搓 AI 拍立得: 背景:每次使用大模型工具时流程繁琐冗长,出于简化操作、提升效率的需求,萌生了“AI 拍立得”的概念,即拍即得,简化流程,让操作更直观、更高效。之前的直播分享内容中也有提到关于 AI 拍立得的能力,往期回顾: 在线体验:快速体验 AI 拍立得,微信小程序搜索:Pailido,丰富场景自由切换,可快速生成闲鱼文案、生成外卖/大众点评。 交互逻辑:用户选择拍摄场景类型并立即拍照,AI 自动识别和分析照片中的内容信息,依据预设场景规则迅速生成符合情境的反馈,避免繁琐操作。 实现场景: 图片转成文本:逻辑为用户上传图片后,大模型根据选择的场景生成与内容相关的文字描述或解说文本,核心是图片理解和文本整理润色,场景包括生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:逻辑为用户上传图片后,大模型按照指定的风格快速生成图像的转绘版本,适应不同风格和场景需求,核心是图片风格化滤镜,场景包括图片粘土风、图片积木风、图片像素风等。
2025-03-18
2025.3.18 新的大模型新闻
以下是 2025 年 3 月 18 日的一些新的大模型新闻: DeepSeek 深夜发布大一统模型 JanusPro,将图像理解和生成统一在一个模型中。其官网发声渠道包括微信公众号:DeepSeek;小红书:@DeepSeek(deepseek_ai);X:DeepSeek(@deepseek_ai);知乎账号(2025 年 3 月 1 日注册)。模型(7B)和(1B)的相关信息可参考特定链接。 2025 年 3 月 10 日的新闻:《大模型的未来,是 Agent 还是 App?》中提到 OpenAI 的 Deep Research 被视为一种新型的研究语言模型,具备自主执行搜索任务的能力。 2025 年 3 月 3 日的新闻:2025 年将是智谱的开源年,即将发布全新大模型并开源。2024 年 12 月,智谱已完成 D+轮 30 亿元人民币融资。
2025-03-18
写学术论文用哪一个 AI大模型比较好
在写学术论文时,以下 AI 大模型可供选择: 1. 智谱 AI 大模型开放平台:其 GLM 系列模型凭借强大的语义理解能力,能够快速总结论文内容、进行精准翻译。模型通用性强,能适应不同学科和复杂文本,提炼核心观点,为研究工作提速。在使用前,需将文献转换为可供模型解析的文本格式,可借助平台工具高效完成文件内容的提取。 2. 对于论文排版,有以下工具: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 Latex:广泛用于学术论文排版,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,可重新表述和改进文本。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 通常是受欢迎的选择;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2025-03-18
哪些模型的视频理解能力比较好?
以下是一些视频理解能力较好的模型: 1. 通义千问的 Qwen2.5VL 模型:具有以下优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 2. Sora 模型:周鸿祎认为其技术思路完全不同,能像人一样理解现实世界,将大语言模型和 Diffusion 结合起来训练,实现了对现实世界的理解和模拟两层能力,对物理世界的模拟将对机器人具身智能和自动驾驶带来巨大影响。 3. 腾讯的混元模型:在语义理解方面表现出色,能够精准还原复杂的场景和动作,例如一只银渐层在游乐园里奔跑跳到小女孩怀里、一位紫衣女修在竹林中抚琴、星系边缘宇宙战舰引爆反物质引擎等场景。
2025-03-18
大语言模型的技术原理
大语言模型的技术原理包括以下几个方面: 1. 相关概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,经典任务如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 2. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 3. 工作原理: 包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强。 Transformer 是大语言模型训练架构,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的 temperature。 Transformer 模型通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率,是一个偏向概率预测的统计模型。 4. 可能存在的问题:大模型可能因错误数据导致给出错误答案,即大模型幻觉,优质数据集对其很重要。 5. 相关应用: 国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。 Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。 Fine tuning 微调是基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。
2025-03-18
我准备用无影云电脑部署一个独属于我们公司的AI,在大模型方面我准备用deepseek的满血版,你有什么建议吗
以下是关于您准备用无影云电脑部署公司专属 AI 并使用 deepseek 满血版大模型的一些建议: 1. 本地部署方面:如果拥有云服务器,要了解如何进行本地部署以及满血版本地部署的实际情况。 2. 免费额度:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 3. 平台服务差异:了解 DLC、DSW 和 EAS 等模型部署平台服务的差别。 4. 模型蒸馏微调:可以学习并实践模型的蒸馏和微调相关知识。 5. 获取 DeepSeekR1 满血版密钥: 注册并登录火山引擎,点击立即体验进入控制台。 创建一个接入点,点击在线推理创建推理接入点。 为接入点命名为 DeepSeekR1。 若有提示未开通模型,点击“立即开通”,勾选全部模型和协议一路开通。 确认无误后点击“确认接入”按钮。 复制推理点的 ID 并保存。 点击【API 调用】按钮,复制 API Key 并保存。 6. 模型选择与配置:可以参考理想的配置,如推理模型选择 gemini2.0flashthinking,代码模型选择 claude3.5sonet 或 gpt4omini,多模态模型选择 gemini2.0flash,常规模型选择 DeepSeek V3。同时,了解 OpenRouter 新发布的 BYOK 功能,它能集成第三方 Key,整合免费额度并解放更多槽位。若对现有供应商支持的模型不满意,还可考虑 simpleoneapi。
2025-03-18
我有个计算流体力学相关的数值模式,代码是C++写的,几万行,有多个文件,各个文件之间是相互关联,现在想对代码的运行效率、代码规范等进行优化升级,有什么AI工具推荐
目前在您所描述的这种对大规模、相互关联的 C++代码进行运行效率和代码规范优化升级的场景中,暂时没有特别直接适用的 AI 工具。不过,您可以考虑使用一些传统的代码分析和优化工具,例如: 1. ClangTidy:这是一个用于 C++代码的静态分析工具,可以帮助发现代码中的潜在问题,并提供一些改进建议。 2. Valgrind:用于检测内存管理错误和性能问题。 同时,您也可以利用一些代码版本管理工具,如 Git,来更好地跟踪和管理代码的修改。
2025-03-08
在midjourney一个画布中放置多个角色,使用pan功能添加了新的画布,怎样把新的人物描述和新人物的--cref添加到新的画布中?
在 Midjourney 中,要在一个画布中放置多个角色并将新人物描述和 cref 添加到新画布中,您可以按照以下步骤操作: 1. 使用 /settings 将 Remix 打开,然后选择 。 2. 选择将包含第二个字符的图像,然后使用 U 将其从网格中分离出来。 3. 寻找蓝色小箭头(⬆️⬇️⬅️➡️),每个都会在现有图像中添加一条新图像。选择新角色的前进方向并输入提示及其 cref。这将缝合一条新的画布。 需要注意的是: cref 命令适用于单一主题、单一角色的图像。如果计划在场景中添加多个角色,需要使用平移按钮来添加它们。 您的 cref 图像中应只包含一个角色。如果 cref 图像中有多个人物形象,Midjourney 将它们混合在一起,并混合到输出中。 另外,语雀里面整理了 211 篇文档,共有 412731 字有关 AIGC 的相关文章,MJ 手册的规范使用说明,文章包含了很多大厂经验总结。无偿且标注了文章来源,希望对大家有所帮助,地址:https://www.yuque.com/frannnk7/f7《AIGC Design 手册》
2025-03-06
基于--cref的多个人物角色出现在一个画布中,具体该如何操作?我想要详细的步骤
基于 cref 在一个画布中放置多个人物角色的操作步骤如下: 1. 使用 /settings 将 Remix 打开,然后选择 。 2. 选择将包含第二个字符的图像,然后使用 U 将其从网格中分离出来。 3. 寻找蓝色小箭头(⬆️⬇️⬅️➡️),每个箭头都会在现有图像中添加一条新图像。选择新角色的前进方向并输入提示及其 cref。这将缝合一条新的画布。 需要注意的是: cref 命令适用于单一主题、单一角色的图像。如果计划在场景中添加多个角色,需要使用平移按钮来添加。 设置画布以描绘两个人的开场提示。 您的 cref 图像中应只包含一个角色。如果 cref 图像中有多个人物形象,Midjourney 将它们混合在一起,并混合到输出中。 语雀里面整理了 211 篇文档,共有 412731 字有关 AIGC 的相关文章,MJ 手册的规范使用说明,文章包含了很多大厂经验总结。无偿且标注了文章来源,地址:https://www.yuque.com/frannnk7/aidesign?《AIGC Design 手册》
2025-03-06
如何写适配多个llm的提示词
以下是关于如何写适配多个 LLM 的提示词的详细内容: 实现原理: 提示词工程主要由两部分代码组成,即提示词注入和工具结果回传。提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,它包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时应注意用无关紧要的工具作示例以免 LLM 混淆。tools_instructions 是将通用工具字典转换成 LLM 可读的工具列表,实际使用时可动态调整以让 LLM 知晓可用工具及使用方法。REUTRN_FORMAT 定义了调用 API 的格式。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM,利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,以提高成功率。对于不接受某些角色的 LLM 接口,可改为回传给 user 角色。 相关成果: 目前绝大多数小型本地开源大语言模型以及部分商用大模型接口不支持稳定的 tool calling 功能,现有的微调 LLM 解决方案会浪费大量时间和算力。本文提出仅使用提示词工程和精巧的代码设计,让 LLM 获得稳定的 tool calling 能力。使用多个不具备该能力的 LLM 作为测试模型,在多个工具调用任务上实验成功率达 100%,且基于 comfyui 开发,适合无代码基础的人员复现和修改。
2025-03-03
怎么与多个pdf进行对话
要与多个 PDF 进行对话,可以考虑使用以下方法和工具: 1. ChatDOC:这是一个 AI 文档阅读助手,能够在数秒内总结长文档、解释复杂概念和查找关键信息。它具有以下优势: 可靠性和准确性高,在所有 ChatPDF 类产品中居首。 精通表格理解,选择表格或文本可立即获取详细信息。 支持多文档对话,不受每个文档页数限制。 每个回答均可溯源至原文,有原文档中的直接引用支持。 支持多种文档类型,包括扫描件、ePub、HTML 和 docx 格式文档。 2. AskYourPDF Research Assistant:可以与多个文件聊天,生成带有引文的文章,分析和生成论文的参考文献,创建文件的知识库并与之交互等。 在进行互动式问答时,需要注意以下几点: 1. 对于更新的数据或最新出版的书籍、报告和文件,ChatGPT 的知识库可能无法提供答案。 2. 如果有现成的 PDF,建议通过 CHATDOC 网站进行互动式问答。 3. 提问时应遵循一定的模板,例如: 输入信息:向 ChatGPT 提供要查询的书籍、报告或文件的详细信息,包括书籍的书名、作者、出版日期、出版社,报告的时间、主题,文件的名称等,提供越详细越能获得准确答案。 提出问题:例如询问书籍中提到的某些方面、原则、方法,报告中行业的增长趋势,对报告或书籍的概括、主要观点等。
2025-02-11
什么工具能实现和多个pdf或word文档对话
以下工具可以实现和多个 PDF 或 Word 文档对话: 1. ChatDOC(海外官网:chatdoc.com):是一个 AI 文档阅读助手,能在数秒内总结长文档、解释复杂概念和查找关键信息。在可靠性和准确性方面,它在所有 ChatPDF 类产品中居首。其优势包括精通表格理解、多文档对话、每个回答均可溯源至原文,还支持多种文档类型,如扫描件、ePub、HTML 和 docx 格式文档。 2. IncarnaMind:是一个可以使用大型语言模型(如 GPT)与个人文档(PDF、TXT)进行聊天的工具。它通过滑动窗口分块机制和检索器,能高效查询细粒度和粗粒度信息,支持多文档查询和稳定的解析,还具有自适应分块、多文档对话问答、文件兼容性和模型兼容性等特点。
2025-02-11