Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

可以同时接多个大模型api的聊天应用

Answer

以下是一些可以同时接多个大模型 API 的聊天应用:

  1. 熊猫大侠:基于 COW 框架的 ChatBot 实现步骤
    • 能实现打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用等功能。
    • 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。
    • 可选择多模型,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM-4/LinkAI 等。
    • 支持多消息类型,包括文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。
    • 有多种部署方法,如本地运行、服务器运行、Docker 的方式。
    • 风险与注意事项:微信端因非常规使用有封号危险,不建议主力微信号接入;操作需依法合规,对大模型生成的内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。
    • 相关教程:张梦飞同学写的更适合小白的使用教程【保姆级】一步一图,手把手教你把 AI 接入微信副本
  2. DIN:全程白嫖-拥有一个 AI 大模型的微信助手
    • 搭建步骤:
      • 搭建OneAPI,用于汇聚整合多种大模型接口,并可白嫖大模型接口。
      • 搭建FastGpt,这是个知识库问答系统,可将知识文件放入,并接入大模型作为分析知识库的大脑来回答问题。若不想接入微信,其自身有问答界面。
      • 搭建chatgpt-on-wechat接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。
    • 拓展功能:搭建完后想拓展 Cow 的功能,可参考 Yaki.eth 同学的教程Yaki:GPT/MJ 接入微信,里面的 cow 插件能进行文件总结、MJ 绘画。
  3. LLM 开源中文大语言模型及数据集集合中的外部挂件应用
    • wenda:
      • 地址:https://github.com/wenda-LLM/wenda
      • 简介:一个 LLM 调用平台。为小模型外挂知识库查找和设计自动执行动作,实现不亚于大模型的生成能力。
    • JittorLLMs:
      • 地址:https://github.com/Jittor/JittorLLMs
      • 简介:计图大模型推理库:笔记本没有显卡也能跑大模型,具有成本低,支持广,可移植,速度快等优势。
    • WebCPM
    • GPT Academic:
      • 地址:https://github.com/binary-husky/gpt_academic
      • 简介:为 GPT/GLM 提供图形交互界面,特别优化论文阅读润色体验,支持并行问询多种 LLM 模型,兼容复旦 MOSS, llama, rwkv, 盘古等。
    • ChatALL:
      • 地址:https://github.com/sunner/ChatALL
      • 简介:ChatALL(中文名:齐叨)可以把一条指令同时发给多个 AI,可以帮助用户发现最好的回答。
Content generated by AI large model, please carefully verify (powered by aily)

References

熊猫大侠:基于COW框架的ChatBot实现步骤

作者:熊猫大侠COW是基于大模型搭建的Chat机器人框架,将多模型塞进自己的微信里实现方案。基于这篇张梦飞同学也写了一个更适合小白的使用教程:[【保姆级】一步一图,手把手教你把AI接入微信副本](https://waytoagi.feishu.cn/wiki/A9w1wUcXSihF6XkeKVic8CXxnHb)本文带你实现:1、打造属于自己的ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI画图等等)2、常用开源插件的安装应用正式开始前你需要知道:ChatBot相较于在各大模型网页端使用区别:本实现思路需要接入大模型API的方式实现(API单独付费)风险与注意事项:1、微信端因为是非常规使用,会有封号危险,不建议主力微信号接入。2、本文只探讨操作操作步骤,请依法合规使用-大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求。-禁止将此操作用于任何非法目的。-处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。多平台接入:微信、企业微信、公众号、飞书、钉钉等。多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM-4/LinkAI等等多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。多部署方法:本地运行、服务器运行、Docker的方式

DIN:全程白嫖 - 拥有一个AI大模型的微信助手

1.搭建[OneAPI](https://github.com/songquanpeng/one-api),这东西是为了汇聚整合多种大模型接口,方便你后面更换使用各种大模型。下面会告诉你怎么去白嫖大模型接口。2.搭建[FastGpt](https://fastgpt.in/),这东西就是个知识库问答系统,你把知识文件放进去,再把上面的大模型接进来,作为分析知识库的大脑,最后回答你问题,这么个系统。如果你不想接到微信去,自己用用,其实到这里搭建完就OK了,他也有问答界面。3.搭建[chatgpt-on-wechat](https://github.com/zhayujie/chatgpt-on-wechat),接入微信,配置FastGpt把知识库问答系统接入到微信。这里建议先用个小号,以防有封禁的风险。搭建完后想拓展Cow的功能,我推荐Yaki.eth同学这篇教程[Yaki:GPT/MJ接入微信](https://waytoagi.feishu.cn/wiki/UADkwZ9B0iAWdTkFJIjcN7EgnAh),里面的cow插件能进行文件总结、MJ绘画的能力。完成上面3步就算OK了,那我们正式开始。

LLM开源中文大语言模型及数据集集合

wenda:地址:[https://github.com/wenda-LLM/wenda](https://github.com/wenda-LLM/wenda)简介:一个LLM调用平台。为小模型外挂知识库查找和设计自动执行动作,实现不亚于于大模型的生成能力。JittorLLMs:地址:[https://github.com/Jittor/JittorLLMs](https://github.com/Jittor/JittorLLMs)简介:计图大模型推理库:笔记本没有显卡也能跑大模型,具有成本低,支持广,可移植,速度快等优势。WebCPM地址:[https://github.com/thunlp/WebCPM](https://github.com/thunlp/WebCPM)简介:一个支持可交互网页搜索的中文大模型。GPT Academic:地址:[https://github.com/binary-husky/gpt_academic](https://github.com/binary-husky/gpt_academic)简介:为GPT/GLM提供图形交互界面,特别优化论文阅读润色体验,支持并行问询多种LLM模型,支持清华chatglm等本地模型。兼容复旦MOSS,llama,rwkv,盘古等。ChatALL:地址:[https://github.com/sunner/ChatALL](https://github.com/sunner/ChatALL)简介:ChatALL(中文名:齐叨)可以把一条指令同时发给多个AI,可以帮助用户发现最好的回答。

Others are asking
可灵api
ComfyUI GeminiAPI 相关内容如下: 用途:用于在 ComfyUI 中调用 Google Gemini API。 安装说明: 手动安装: 1. 将此存储库克隆到 ComfyUI 的 custom_nodes 目录。 2. 安装所需依赖: 如果使用 ComfyUI 便携版。 如果使用自己的 Python 环境。 通过 ComfyUI Manager 安装: 1. 在 ComfyUI 中安装并打开 ComfyUI Manager。 2. 在 Manager 中搜索“Gemini API”。 3. 点击安装按钮,安装完成后重启 ComfyUI。 节点说明: Gemini 2.0 image:通过 Gemini API 生成图像的节点。 输入参数: prompt(必填):描述想要生成的图像的文本提示词。 api_key(必填):Google Gemini API 密钥(首次设置后会自动保存)。 model:模型选择。 width:生成图像的宽度(512 2048 像素)。 height:生成图像的高度(512 2048 像素)。 temperature:控制生成多样性的参数(0.0 2.0)。 seed(可选):随机种子,指定值可重现结果。 image(可选):参考图像输入,用于风格引导。 输出: image:生成的图像,可以连接到 ComfyUI 的其他节点。 API Respond:包含处理日志和 API 返回的文本信息。 使用场景: 创建独特的概念艺术。 基于文本描述生成图像。 使用参考图像创建风格一致的新图像。 基于图像的编辑操作。 API key 获取:在 Google 的 AI Studio 申请一个 API key(需要网络环境),有免费的额度,访问 https://aistudio.google.com/apikey?hl=zhcn 。 温度参数说明:温度值范围为 0.0 到 2.0,较低的温度(接近 0)生成更确定性、可预测的结果,较高的温度(接近 2)生成更多样化、创造性的结果,默认值 1.0 平衡确定性和创造性。 注意事项: API 可能有使用限制或费用,请查阅 Google 的官方文档。 图像生成质量和速度取决于 Google 的服务器状态和您的网络连接。 参考图像功能会将您的图像提供给 Google 服务,请注意隐私影响。 首次使用时需要输入 API 密钥,之后会自动存储在节点目录中的 gemini_api_key.txt 文件中。
2025-04-14
grok API能用在什么软件上
Grok API 可以用在以下软件上: 1. 扣子工作流:可以用代码模块进行 HTTP 访问,实现 0 token 脱离扣子模型来使用 Groq 作为 LLM,还能参考相关教程将扣子接入微信机器人,但有微信封号风险。 2. 沉浸式翻译:由于 Groq 的 API 与 OpenAI 的 API 几乎兼容,可以适配到任何 APP 产品可以用来填 APIKEY 调用的场景,比如沉浸式翻译这个网页翻译工具。 3. 手机类 APP:比如通过快捷方式接入 Siri。 此外,xAI 发布的 Grok 3 API 提供了多个模型版本,如 grok3beta、mini、fast 等,满足不同场景需求,上下文窗口达 131K,支持图像输入输出,但当前不支持联网或实时访问外部网页与数据。
2025-04-12
deepseek api
Jina DeepSearch 是一项基于推理大模型的深度搜索服务,其 API 已上线且开源。它可以在搜索时进行不断推理、迭代、探索、读取和归纳总结,直到找到最优答案为止。与 OpenAI 和 Gemini 不同,Jina DeepSearch 专注于通过迭代提供准确的答案,而不是生成长篇文章。它针对深度网络搜索的快速、精确答案进行了优化,而不是创建全面的报告。 使用入口:官方深度搜索 API 与 OpenAI API 架构完全兼容,您可以前往官网(jina.ai/deepsearch)了解详情;或者前往应用页面(search.jina.ai)体验。 此外,北京时间 00:30 至 08:30 期间,DeepSeek API 价格大幅下调。DeepSeekV3 降至原价的 50%,DeepSeekR1 低至 25%,鼓励用户在夜间空闲时段调用 API,以更低成本享受服务。
2025-03-30
api
以下是关于 API 的相关信息: ComfyUI GeminiAPI: 用于在 ComfyUI 中调用 Google Gemini API。 安装说明: 手动安装:将存储库克隆到 ComfyUI 的 custom_nodes 目录,安装所需依赖(根据使用的 ComfyUI 版本有所不同)。 通过 ComfyUI Manager 安装:在 ComfyUI 中安装并打开 ComfyUI Manager,搜索“Gemini API”并点击安装按钮,安装完成后重启 ComfyUI。 节点说明: Gemini 2.0 image:通过 Gemini API 生成图像的节点。输入参数包括必填的 prompt、api_key,可选的 model、width、height、temperature、seed、image 等。输出包括生成的图像和 API Respond。使用场景包括创建独特的概念艺术、基于文本描述生成图像、使用参考图像创建风格一致的新图像、基于图像的编辑操作。 API 与速率限制: 速率限制是 API 对用户或客户端在指定时间内访问服务器的次数施加的限制。 速率限制的原因包括防止滥用或误用 API、确保公平访问、管理基础设施负载等。 OpenAI 的 API 提供商在 API 使用方面有限制和规定,不同用户类型可获得不同的速率限制,若请求超过限制将返回错误响应。 关于 API 的一般性描述: API 就像是一个信差,接受一端的请求,告诉系统用户想要做的事情,然后把返回的信息发回。 学习使用 GPT 的 Action 工作流包括:确定想要的 GPT 及是否需要外部数据,寻找 API 文档或开发 API 以及编写 Action 里的 Schema 和 Prompt。 对 Action 感兴趣可以从系统了解和学习 API 相关知识、在网上寻找可用的 API 练习、发掘 GPT Action 更多潜力等方向继续前进。
2025-03-29
API是什么意思有什么用
API 是应用程序编程接口(Application Programming Interface)的缩写。它是软件之间进行交互和数据交换的接口,使得开发者能够访问和使用另一个程序或服务的功能,而无需了解其内部实现的详细信息。 API 就像是一个信差,接受一端的请求,告诉那边的系统您想要做的事情,然后把返回的信息发回给您。 APIKey 是一种实现对 API 访问控制的方法,通常是一串字符串,用于身份验证和访问控制。当开发者或应用程序尝试通过 API 与另一个程序或服务交互时,APIKey 作为请求的一部分被发送,以证明请求者具有调用该 API 的权限。APIKey 帮助服务提供商识别调用者身份,监控和控制 API 的使用情况,以及防止未经授权的访问。 要使用 API,通常需要去官网寻找 API 文档,API 的规则一般会写在网站的开发者相关页面或 API 文档里。例如,TMDB 的搜索电影 API 文档的网址是:https://developer.themoviedb.org/reference/searchmovie 。在 API 文档中,会详细告知如何使用相应的 API,包括请求方法、所需的查询参数等。您可以在文档中进行相关配置和操作。 登录网站寻找 Apikeys 创建新的密钥(记得保存好、不要泄露)。使用 APIKEY 可能需要单独充值,一共有两种模式可以使用: 1. 使用官方的 key 网站:https://platform.openai.com/apikeys 创建好您的 key 后记得复制保存。 2. 如果觉得充值比较麻烦可以考虑用第三方的网站:https://www.gptapi.us/register?aff=WLkA ,这个充值起来方便一些,模型选择也可以多一些。
2025-03-29
哪个大模型的API接口免费?
以下是一些提供免费 API 接口的大模型: 1. Silicon 硅基接口:有众多开源模型(Yi、Qwen、Llama、Gemma 等)免费使用,还赠送 14 元体验金,有效期未知。注册和使用地址为,邀请码:ESTKPm3J。注册登录后,单击左边栏的 API 密钥,单击新建 API 密钥,单击密钥即可完成 API 密钥的复制。它支持多种大模型,也支持文生图、图生图、文生视频。 2. 智普 GLM4 接口:在 BigModel.cn 上通过专属邀请链接注册即可获得额外 GLM4Air 2000 万 Tokens 好友专属福利。进入个人中心,先完成实名认证,再单击左边栏 API KEYS 或右上角的 API 密钥,进入后单击右上角的添加 API,鼠标移至密钥上方,单击复制即可得到智普的 API key。 3. 阿里的通义千问大模型:打开链接,创建个 API key。 4. 智谱 AI(ChatGLM):有免费接口。 5. 科大讯飞(SparkDesk):有免费接口。 此外,谷歌的 Gemini 大模型(gemini 1.5)和海外版 Coze 的 GPT4 模型是免费的,但需要给服务器挂梯子。
2025-03-28
推理类模型,以deepseek为代表,与此前的聊天型ai,比如chatgpt3.5,有什么差异
推理类模型如 DeepSeek 与聊天型 AI 如 ChatGPT3.5 存在以下差异: 1. 内部机制:对于大语言模型,输入的话会被表示为高维时间序列,模型根据输入求解并表示为回答。在大模型内部,是根据“最大化效用”或“最小化损失”计算,其回答具有逻辑性,像有自己的思考。 2. 多模态能力:ChatGPT3.5 是纯语言模型,新一代 GPT 将是多模态模型,能把感官数据与思维时间序列一起作为状态,并装载在人形机器人中,不仅能对话,还能根据看到、听到的事进行判断,甚至想象画面。 3. 超越人类的可能性:有人假设人按最大化“快乐函数”行动,只要“效用函数”足够复杂,AI 可完全定义人,甚至超越人类。如在“短期快乐”与“长期快乐”的取舍上,人类难以找到最优点,而 AI 可通过硬件算力和强化学习算法实现,像 AlphaGo 击败世界冠军,在复杂任务上超越人类。 4. 应用领域:文字类的总结、润色、创意是大语言模型 AI 的舒适区,如从 ChatGPT3.5 问世到 ChatGPT4 提升,再到 Claude 3.5 sonnet 在文学创作领域取得成绩,只要有足够信息输入和合理提示词引导,文案编写可水到渠成。
2025-03-18
微信聊天记录整理助手
以下是关于微信群聊总结 AI 助手(JS and Electron ver)的详细介绍: 脚本版本运行: 会弹出二维码,使用微信扫码登录,登录成功后程序持续抓取群聊记录,保存在本地文件中,位置在 data/日期文件夹/群名.txt,不会上传到第三方。 手动运行总结程序,在每天结束时对某个群的内容进行总结,命令为:npm run summarize./data/20230823/xxx.txt 总结语音生成的配置。 项目介绍: 这是基于微信机器人的微信群聊总结助手,能自动收集群聊记录并用 AI 总结发送到指定群聊。 是较简单能实现完整功能的项目,用 JS 简单封装。 每次执行 summarize 命令会生成三个总结文件。 提示:使用本项目登录微信可能存在封号风险,请慎重使用并遵守相关平台规则。 下载与支持: 本项目由免费白嫖 GPT 的智囊 AI技术支持。 自己跑不起来但需要群聊总结的同学,可加机器人微信号:aoao_eth,把机器人拉进群里。 新版本:桌面应用: 可使用桌面版,一键监控、总结、发送,也可用脚本版手动运行监控和总结。 下载后直接打开配置 app key 即可运行监控和总结,一键总结,一键发送到群内。 如需要 windows 版本,可自己构建或者直接代码运行,代码在 app 文件夹中,欢迎构建成功的同学提供 windows 安装包。 截图展示的功能: 每日群聊监控和数据统计(界面实时更新) 一键总结,一键查看总结结果,一键发送到群聊 聊天记录实时查看,直接发送内容到群聊 随时更新的配置,可配置截取的文本长度和结尾词等 机器人状态监控,账号切换 正常运行界面,点击对话可看到实时对话和记录,同时可直接输入内容对话 微信登录界面
2025-03-12
微信聊天机器人
以下是关于搭建 AI 微信聊天机器人的相关内容: 1. 纯 GPT 大模型能力的微信聊天机器人搭建: 开始搭建,配置腾讯云轻量应用服务器,配置部署 COW 组件。 在复制的 dockercompose.yml 文件中修改具体配置来串联微信号和已创建好的 AI 机器人。配置参数参考官方来源:https://docs.linkai.tech/cow/quickstart/config 。编排模板中,名称的全大写描述需对应,如 open_ai_api_key 对应 OPEN_AI_API_KEY 。私聊或群聊时,最好加上前缀触发机器人回复,如配置的对应配置参数 SINGLE_CHAT_PREFIX,群聊中对应参数是 GROUP_CHAT_PREFIX,机器人只会回复群里包含@bot 的消息。GROUP_NAME_WHITE_LIST 用来配置哪些群组的消息需要自动回复。 2. 直接对接 Coze 平台 Bot 的微信聊天机器人搭建: 微信有多种功能,个人微信/微信群目前 Coze AI 平台不支持直接对接,微信公众号、微信服务号、微信客服支持与 Coze AI 平台对接。 Coze 的国内版已正式发布 API 接口功能,可直接对接个人微信和微信群。 3. 熊猫大侠:基于 COW 框架的 ChatBot 实现步骤: COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进微信里的实现方案。 有更适合小白的使用教程:【保姆级】一步一图,手把手教你把 AI 接入微信副本 。 实现内容包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用。 正式开始前需知道: ChatBot 相较于在各大模型网页端使用区别:本实现思路需接入大模型 API(API 单独付费)。 风险与注意事项:微信端因非常规使用有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据注意脱敏。 支持多平台接入:微信、企业微信、公众号、飞书、钉钉等。 支持多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 支持多部署方法:本地运行、服务器运行、Docker 的方式。
2025-03-06
用ai帮助聊天
以下是关于用 AI 帮助聊天的相关内容: Cursor 官方: Chat 聊天:允许您与看到您的代码库的 AI 交谈。聊天室始终可以看到您当前的文件和光标,您可以向它询问诸如“这里有 bug 吗”等问题。您可以使用⌘+Shift+L 或“@”将特定代码块添加到上下文中,也可以使用⌘+Enter 与整个代码库聊天。 代码库答案:使用@Codebase 或⌘Enter 询问有关您的代码库的问题,Cursor 会搜索您的代码库以查找与您的查询相关的代码。 引用您的代码:带有@符号的参考代码可用作 AI 的上下文,只需键入@即可查看文件夹中所有文件和代码符号的列表。 使用图像:点击聊天下方的图片按钮,或将图片拖到输入框中,将视觉上下文包含在聊天中。 学习笔记:Generative AI for Everyone 吴恩达: 阅读方面:可以让 LLM 检查文本错误、总结长句。客服人员针对每一位用户传递大量信息时,可内置 LLM 快速总结信息提供给决策管理层,使用 LLM 进行语义分析,将邮箱、客户留言等外部信息传递给相关部门。构建处理信息的 LLM 模型时,要设置好提示词,持续优化。 聊天方面:聊天机器人可用于做旅游计划、职业咨询、做饭建议等,不仅能生成文本,还能产生进一步行动,如处理文本后发送订单信息等。建立聊天机器人的流程为:开始于内部聊天机器人,确保良好表现并避免问题;设置人为参与链路;确保安全后,让机器人对接用户。 大语言模型行与不行:能做类似于应届生能做的事;不可做的包括时间限制(如 GPT3 只有 2022 年 1 月前的数据)、会出现幻觉、接受有限的 prompt、输出有限制、不可以很好处理结构化数据、可能输出有害的信息。 @Chat:此功能目前仅适用于 Cmd K。您可以在 Cmd K 中使用@Chat 将当前聊天消息添加为上下文,当您与希望应用于编辑或生成代码的 AI 进行对话时很有用。
2025-03-03
帮助聊天的ai
以下是关于帮助聊天的 AI 的相关信息: Cursor: Chat 聊天:允许您与看到您的代码库的 AI 交谈。聊天室始终可以看到您当前的文件和光标,您可以向它询问诸如“这里有 bug 吗”等问题。您可以使用⌘+Shift+L 或“@”将特定代码块添加到上下文中,使用⌘+Enter 与整个代码库聊天。 Codebase Answers 代码库答案:使用@Codebase 或⌘Enter 询问有关您的代码库的问题,Cursor 会搜索您的代码库以查找与您的查询相关的代码。 Reference your Code 引用您的代码:带有@符号的参考代码,用作 AI 的上下文。只需键入@即可查看文件夹中所有文件和代码符号的列表。 Use Images 使用图像:点击聊天下方的图片按钮,或将图片拖到输入框中,将视觉上下文包含在聊天中。 Claude: Claude AI 是一款由 Anthropic 公司开发的 AI 助手,是基于自然语言处理技术和人工智能算法的聊天机器人。它能使用自然语言理解技术理解人类语言,并使用自然语言生成技术进行回答和梳理,以开创性计算机科学家克劳德·香农(Claude Shannon)的名字命名,利用最先进的机器学习技术、自然语言处理和深度学习算法,为各种应用提供支持,包括但不限于数据分析、自动化和个性化辅助。 注册步骤: 1. 访问 Claude 的官方网站。 2. 点击注册或登录界面中的“Sign Up”或“Continue with email”选项。 3. 填写邮箱地址并设置密码,然后提交表单。 4. 系统会向邮箱发送一封验证邮件,打开邮件并使用其中的验证码完成邮箱验证。 若在注册过程中遇到需要海外手机号接收验证码的问题,可能的解决方案有: 1. 使用虚拟海外号服务,如 SMSActivate、SMSPool 等,购买一个海外虚拟手机号来接收 Claude 的验证码。 2. 借助第三方服务网站如 uiuihao.com 完成注册您的 Claude 账号。 3. 若有海外朋友,可请他们帮忙接收验证码,并将验证码告知您。 完成注册后,若希望升级到 Claude Pro 版本以获取更强大功能和更高的 API 调用限额,需填写支付信息并选择合适的订阅计划。需注意,订阅 Claude Pro 可能需要使用海外支付方式。Claude.ai 目前处于公开测试阶段,未付费用户使用平台可能会受到一些限制。若在注册过程中遇到问题,可参考其他用户分享的详细注册教程和解决策略。
2025-03-03
实现基于个人聊天记录的数字分身的最佳实践
实现基于个人聊天记录的数字分身的最佳实践包括以下方面: 虚拟数字人的类型和驱动方式: 虚拟数字人通过各种技术创造,具有外观、行为和思想等人类特征,呈现为虚拟形象。 从驱动层面可分为中之人驱动和 AI 驱动两类。中之人驱动运用动作捕捉和面部捕捉技术实现交互,有上限且缺乏高并发和量产化能力;AI 驱动使用 AI 技术创建、驱动和生成内容,赋予感知和表达等交互能力。 虚拟数字人的应用类型: 服务型:如虚拟主播、助手、教师、客服和医生等,为物理世界提供服务。 表演型:如虚拟偶像,用于娱乐、影视等场景。 身份型:是物理世界“真人”进入虚拟世界的数字分身,在元宇宙中有广泛应用场景。 相关开源项目: 熊猫大侠基于 COW 框架的 ChatBot 最新版本支持多端部署、基础对话、语音识别、图片生成、丰富插件、Tool 工具和知识库等功能。可接入个人微信、微信公众号、企业微信应用,支持多种模型和个性化插件扩展,通过上传知识库文件自定义专属机器人,可作为数字分身、领域知识库、智能客服使用。项目地址包括 Github:https://github.com/zhayujie/chatgptonwechat ,Gitee:https://gitee.com/zhayujie/chatgptonwechat 。
2025-02-20
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
如何综合运用插件、工作流、知识库,搭建满足各种需求的智能体,尤其是调用多个智能体,组成像Manus这样的工具?
要综合运用插件、工作流、知识库搭建满足各种需求的智能体,尤其是调用多个智能体组成类似 Manus 的工具,需要了解以下内容: 插件:插件如同一个工具箱,里面可放置一个或多个工具,称为 API。扣子平台有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 及能处理多种任务的模型。若平台现有插件不符合需求,还可自行制作添加所需 API。 工作流:工作流类似可视化拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。工作流由多个节点组成,开始和结束节点有特殊作用,不同节点可能需要不同信息,包括引用前面节点信息或自行设定信息。 知识库:可上传私有文件作为回答参考。 智能体:智能体是对自定义操作的封装,用于解决特定场景问题。以 ChatGPT 的 GPTs 为例,包括描述作用和回复格式的提示词、作为回答参考的知识库、请求第三方 API 获取实时数据的外挂 API 以及个性化配置等。 例如,在“竖起耳朵听”的智能体中添加了插件和工作流的相关设置。创建智能体时,输入人设等信息,并配置工作流。但需注意,如工作流中使用的插件 api_token 为个人 token 时,不能直接发布,可将其作为工作流开始的输入,由用户购买后输入使用再发布。 此外,在 AI 搜索中,可预置 after_answer 钩子,将请求大模型的上下文和回答发给第三方插件整理成文章或思维导图等格式同步到第三方笔记软件。全流程中有很多节点可做 Hook 埋点,多个插件构成可插拔架构,常用功能可抽离成标准插件用于主流程或辅助流程,还可自定义智能体 Agent 等。
2025-03-29
我有个计算流体力学相关的数值模式,代码是C++写的,几万行,有多个文件,各个文件之间是相互关联,现在想对代码的运行效率、代码规范等进行优化升级,有什么AI工具推荐
目前在您所描述的这种对大规模、相互关联的 C++代码进行运行效率和代码规范优化升级的场景中,暂时没有特别直接适用的 AI 工具。不过,您可以考虑使用一些传统的代码分析和优化工具,例如: 1. ClangTidy:这是一个用于 C++代码的静态分析工具,可以帮助发现代码中的潜在问题,并提供一些改进建议。 2. Valgrind:用于检测内存管理错误和性能问题。 同时,您也可以利用一些代码版本管理工具,如 Git,来更好地跟踪和管理代码的修改。
2025-03-08
在midjourney一个画布中放置多个角色,使用pan功能添加了新的画布,怎样把新的人物描述和新人物的--cref添加到新的画布中?
在 Midjourney 中,要在一个画布中放置多个角色并将新人物描述和 cref 添加到新画布中,您可以按照以下步骤操作: 1. 使用 /settings 将 Remix 打开,然后选择 。 2. 选择将包含第二个字符的图像,然后使用 U 将其从网格中分离出来。 3. 寻找蓝色小箭头(⬆️⬇️⬅️➡️),每个都会在现有图像中添加一条新图像。选择新角色的前进方向并输入提示及其 cref。这将缝合一条新的画布。 需要注意的是: cref 命令适用于单一主题、单一角色的图像。如果计划在场景中添加多个角色,需要使用平移按钮来添加它们。 您的 cref 图像中应只包含一个角色。如果 cref 图像中有多个人物形象,Midjourney 将它们混合在一起,并混合到输出中。 另外,语雀里面整理了 211 篇文档,共有 412731 字有关 AIGC 的相关文章,MJ 手册的规范使用说明,文章包含了很多大厂经验总结。无偿且标注了文章来源,希望对大家有所帮助,地址:https://www.yuque.com/frannnk7/f7《AIGC Design 手册》
2025-03-06
基于--cref的多个人物角色出现在一个画布中,具体该如何操作?我想要详细的步骤
基于 cref 在一个画布中放置多个人物角色的操作步骤如下: 1. 使用 /settings 将 Remix 打开,然后选择 。 2. 选择将包含第二个字符的图像,然后使用 U 将其从网格中分离出来。 3. 寻找蓝色小箭头(⬆️⬇️⬅️➡️),每个箭头都会在现有图像中添加一条新图像。选择新角色的前进方向并输入提示及其 cref。这将缝合一条新的画布。 需要注意的是: cref 命令适用于单一主题、单一角色的图像。如果计划在场景中添加多个角色,需要使用平移按钮来添加。 设置画布以描绘两个人的开场提示。 您的 cref 图像中应只包含一个角色。如果 cref 图像中有多个人物形象,Midjourney 将它们混合在一起,并混合到输出中。 语雀里面整理了 211 篇文档,共有 412731 字有关 AIGC 的相关文章,MJ 手册的规范使用说明,文章包含了很多大厂经验总结。无偿且标注了文章来源,地址:https://www.yuque.com/frannnk7/aidesign?《AIGC Design 手册》
2025-03-06
如何写适配多个llm的提示词
以下是关于如何写适配多个 LLM 的提示词的详细内容: 实现原理: 提示词工程主要由两部分代码组成,即提示词注入和工具结果回传。提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,它包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时应注意用无关紧要的工具作示例以免 LLM 混淆。tools_instructions 是将通用工具字典转换成 LLM 可读的工具列表,实际使用时可动态调整以让 LLM 知晓可用工具及使用方法。REUTRN_FORMAT 定义了调用 API 的格式。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM,利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,以提高成功率。对于不接受某些角色的 LLM 接口,可改为回传给 user 角色。 相关成果: 目前绝大多数小型本地开源大语言模型以及部分商用大模型接口不支持稳定的 tool calling 功能,现有的微调 LLM 解决方案会浪费大量时间和算力。本文提出仅使用提示词工程和精巧的代码设计,让 LLM 获得稳定的 tool calling 能力。使用多个不具备该能力的 LLM 作为测试模型,在多个工具调用任务上实验成功率达 100%,且基于 comfyui 开发,适合无代码基础的人员复现和修改。
2025-03-03
怎么与多个pdf进行对话
要与多个 PDF 进行对话,可以考虑使用以下方法和工具: 1. ChatDOC:这是一个 AI 文档阅读助手,能够在数秒内总结长文档、解释复杂概念和查找关键信息。它具有以下优势: 可靠性和准确性高,在所有 ChatPDF 类产品中居首。 精通表格理解,选择表格或文本可立即获取详细信息。 支持多文档对话,不受每个文档页数限制。 每个回答均可溯源至原文,有原文档中的直接引用支持。 支持多种文档类型,包括扫描件、ePub、HTML 和 docx 格式文档。 2. AskYourPDF Research Assistant:可以与多个文件聊天,生成带有引文的文章,分析和生成论文的参考文献,创建文件的知识库并与之交互等。 在进行互动式问答时,需要注意以下几点: 1. 对于更新的数据或最新出版的书籍、报告和文件,ChatGPT 的知识库可能无法提供答案。 2. 如果有现成的 PDF,建议通过 CHATDOC 网站进行互动式问答。 3. 提问时应遵循一定的模板,例如: 输入信息:向 ChatGPT 提供要查询的书籍、报告或文件的详细信息,包括书籍的书名、作者、出版日期、出版社,报告的时间、主题,文件的名称等,提供越详细越能获得准确答案。 提出问题:例如询问书籍中提到的某些方面、原则、方法,报告中行业的增长趋势,对报告或书籍的概括、主要观点等。
2025-02-11