Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想完全本地化部署deepseek,然后,将我的文档,文本,图片等内容丢给它训练,微调。我要完全本地化,因为我的文档设计隐私。我要免费开源流程。如何实现,

Answer

要完全本地化部署 DeepSeek 并使用您的文档、文本、图片等内容进行训练和微调,以下是一些相关的信息和步骤:

  1. 模型训练与平台服务:

    • 模型复现与微调:1:1 复现通常没问题,但理解细节并自行制作需要基础知识。有手把手教程、数据集等可帮助 1:1 复现,微调在特定领域可降低幻觉,参数量不变但权重变化。
    • 训练模型的学习方法:先会用再学会训,从训的过程中倒推学习参数调整,这是以用导学的学习方法。
    • 模型回答效果对比:微调后的模型在回答排列组合等问题时,思考前几乎无反馈,答案多为英文且格式稳定,但仍可能答错。
  2. 平台服务介绍:

    • 阿里云提供多种解决方案。
    • 百炼是提供多种模型服务的 Maas 平台。
    • 派平台是提供云服务的 PaaS 平台,二者在定位、服务内容和核心差异上有所不同。
  3. 关于模型训练与数据集相关问题:

    • 数据资源情况:默认提供公共数据训练集,百派平台能匹配模型和数据,通义开源了不少数据集。
    • 多模态训练:多模态有自身标注方式,如视频拉框标注。
    • 参数量变化:通常训练模型参数量固定,若想改变需改模型层,但可能要从头调。
    • 本地微调框架:可使用 llama factory 等框架,需搭建并部署。
    • 开源数据下载:可在 GitHub、hugging face、Mo Model Scope 等平台获取。
    • 数据集转化:将文档资料转成数据集可先手动形成 SOP,再逐步自动化,初期需大量人力。
  4. 本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。

  5. 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。

  6. 平台服务差异:介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。

  7. 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。

    • R1 模型的强化学习:通过强化学习,在训练过程中给予模型反馈,如路线规划是否成功到达终点、输出格式是否符合期望等,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。
    • R1 模型的蒸馏与微调:用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。
    • R1 与其他模型的差别:R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。
    • 模型的相互帮助:Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。

请注意,在进行本地化部署和训练微调时,需要具备一定的技术知识和经验,并且要遵循相关的法律法规和道德规范。

Content generated by AI large model, please carefully verify (powered by aily)

References

智能纪要:02-25 | 最新的DeepSeek玩法教学 2025年2月25日

[01:57:41](https://waytoagi.feishu.cn/minutes/obcnxm53m6nzpp16a89r5c8s?t=7061000)大模型及知识库使用讲解与问题解答本章节许键介绍模型API调用方法与知识库创建。告知获取API key位置及调用设置,详细讲解创建Rag应用(知识库)流程,包括上传非结构化文件、数据解析、切分段落等操作,还回答诸多问题,如知识库访问权限、智能体接收文档等,并提及作业是构建常用应用。[02:15:10](https://waytoagi.feishu.cn/minutes/obcnxm53m6nzpp16a89r5c8s?t=8110000)工作流创建、模型能力及相关问题探讨本章节主要讨论工作流相关问题。涉及历史版本功能,如对话流不支持上传文档,可向百练提需求;探讨了根据小说写序章、英文翻译、文字校对等工作流搭建;解释了模型能力、query概念;还提到工作流发布渠道、联网搜索网站设置及根据用户语言回复等内容。[02:22:50](https://waytoagi.feishu.cn/minutes/obcnxm53m6nzpp16a89r5c8s?t=8570000)通义千问相关应用及明天课程安排交流本章节主要讨论智能体相关内容,包括图片识别后让大语言模型回答防治方法,智能体应用及工作流概念、工具添加等。还提及明天将教Deepseek本地部署、蒸馏模型部署及微调,分享了发布智能体消耗token等情况,最后回答了一些问题并预告通义千问推理模型进展。

智能纪要:02-26 | DeepSeek部署+蒸馏 2025年2月26日

关于模型训练与平台服务的介绍模型复现与微调:1:1复现没问题,理解细节并自行制作需基础知识。提供手把手教程、数据集等可1:1复现,微调在特定领域可降低幻觉,参数量不变但权重变化。训练模型的学习方法:先会用再学会训,从训的过程中倒推学习参数调整,这是一种以用导学的学习方法。模型回答效果对比:微调后的模型在回答排列组合等问题时,思考前几乎无反馈,答案多为英文且格式稳定,但仍可能答错。平台服务介绍:阿里云提供多种解决方案,百炼是提供多种模型服务的Maas平台,派平台是提供云服务的PaaS平台,二者在定位、服务内容和核心差异上有所不同。关于模型训练与数据集相关问题的探讨数据资源情况:默认提供公共数据训练集,百派平台能匹配模型和数据,通义开源了不少数据集。多模态训练:多模态有自身标注方式,如视频拉框标注。参数量变化:通常训练模型参数量固定,若想改变需改模型层,但可能要从头调。本地微调框架:可使用llama factory等框架,需搭建并部署。开源数据下载:可在GitHub、hugging face、Mo Model Scope等平台获取。数据集转化:将文档资料转成数据集可先手动形成SOP,再逐步自动化,初期需大量人力。

智能纪要:02-26 | DeepSeek部署+蒸馏 2025年2月26日

关于AI模型部署与相关知识的讲解本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。免费额度说明:指出在freely.aliyun.com可领取500元免费额度,但有使用限制,不能部署满血版和较大的增流模型。平台服务差异:介绍了DLC、DSW和EAS等模型部署平台服务的差别。模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。Deepseek R1模型的制作及相关模型比较R1模型的强化学习:通过强化学习,在训练过程中给予模型反馈,如路线规划是否成功到达终点、输出格式是否符合期望等,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。R1模型的蒸馏与微调:用Deepseek RE Zero蒸馏出带思考的数据,基于Deepseek V3微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成R1。R1与其他模型的差别:R1是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。模型的相互帮助:Deepseek R1反过来蒸馏数据微调V3,形成互相帮助的局面,使两个模型都更强。

Others are asking
我要跟AI工作流有关的文章链接,只要飞书里边的,多给一点
以下是为您提供的与 AI 工作流相关的飞书文章链接: 1. 《》 2. 《》 3. 《》 4.
2025-03-04
我要跟AI工作流有关的文章链接,只要飞书里边的,
以下是为您提供的与 AI 工作流相关的飞书文章链接: 此外,还有以下相关内容供您参考: 在“AI 实战:搭建信息情报官 Agent”中,提到搭建飞书机器人并获取多维表格编辑权限的方法,以及工作流的具体执行和应用,如通过微信文章链接进行文章解读成摘要报告,构建消息情报官 Bot 并发布到多个平台等。 在“2 月 27 日社区动态速览”中,介绍了 Anthropic 分享的企业 AI 落地实践与误区,以及飞书+DeepSeek R1 自动化工作流的流程、飞书模板、Deep Research 提示词模板等。 在“夙愿:AI 工作流,赋能我的十倍增长”中,提到飞书文档图片链接有时效性以及排版的注意事项和解决办法。
2025-03-04
我要跟AI工作流有关的文章,只要飞书里边的,最好是飞行社和通往AGI之路里面的
以下是为您整合的与 AI 工作流相关的飞书内容: 根据 AI 使用的多少,人和 AI 协同的方式分为三种: 1. 嵌入式模式:工作仍由人主导,仅在部分步骤借助 AI 进行搜索或提供建议。 2. 协作模式:AI 完成部分完整步骤,如写文章时由 AI 完成初稿,人再调整,此模式基于目前 AI 发展程度最为常用。 3. 智能体模式:人设定目标并监督,整个工作流程由 AI 完成。 ChatGPT 给出了 AI 聊天机器人可完成的任务供参考,结合有效提示词,ChatGPT 能做的远超此列表,且 AI 工具不止 ChatGPT 一种。 个人常用任务对应的国内外 AI 产品可供了解尝试,需注意 AI 产品众多且更新变化快。 推荐网站“通往 AGI 之路”,该网站有大量 AI 相关的技术、产品、教程和案例等信息,并持续更新。 AI 不仅是个人的“外挂”,对公司也会带来变革。未来公司会加速数字化,业务拓展更多依托算力增加而非人力扩充,可能出现更多高效的小团队公司,满足未被满足的需求。 此外,“通往 AGI 之路”还有以下相关内容: 1. 对“飞书”感兴趣或想交流企业/个人效率提升,可访问“飞书官方社区——飞行社”。 2. 如需下载研究报告,可加入知识星球,内有数百份涵盖 AI 各方面的报告,并保持长期活跃更新。 3. 作者 Allen 端午假期实践了三篇教程,并准备调整写作工作流。
2025-03-04
我要你的跟AI智能体工作流相关的文章
以下是为您提供的与 AI 智能体工作流相关的文章: 1. 《》:聚焦于工作流在 AI 智能体中的重要性,回顾了集成平台的演变,探讨了工作流在自动化和手动编排中的应用以及如何提升灵活性以应对不断变化的需求。 2. 《》 3. 《》:介绍了 ComfyUI 的工作流,特别是“黑猴子悟空换脸”项目,包括工作流下载链接、底图及模型的网盘地址以及报错解决方法。 4. 《AIGC Weekly91》中的“”:探讨了 AI 智能体这一新兴领域,包括智能体工作流(与传统 AI 模型直接提供答案不同,智能体工作流涉及使用网络浏览器等工具来规划和执行任务,能够在无人干预的情况下持续运行)、竞争格局、市场动态、投资趋势和未来前景等方面。 5. 《夙愿:AI 工作流,赋能我的十倍增长》中的“三、怎么搭建 AI 工作流 3.1 搭建 AI 工作流的三种能力 3.1.3 搭建 AI 智能体”:介绍了搭建 AI 智能体,指出其能根据设定的工作流自动调用不同的 AI 工具完成全流程任务,以写文章为例说明了其工作流程,并强调了其提高效率的作用。
2025-03-04
我要做表格数据分析,哪个AI工具最好?
以下是一些适用于表格数据分析的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,通过聊天形式,用户告知需求后,Copilot 会自动完成任务,包括数据分析和格式创建等。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,还有一些专门的数据分析工具,如: 1. Kalodata:专注于数据分析。网址:kalodata.com 2. Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat 3. ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ 4. EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ 5. SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ 6. SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ 7. SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ 8. SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ 9. Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 随着技术的不断发展,未来可能会有更多更好的工具出现,您可以根据自己的需求和使用习惯进行选择。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-28
我要学习AI 写作
以下是关于学习 AI 写作的相关内容: 一、陈财猫的观点 1. AI+内容创作是现阶段最好的赛道 基于对大模型发展现状的观察和对“开车”“写作”两类任务的对比,该赛道有完美的产品模型匹配和产品市场匹配,且天花板高。 2. AI 写作的实践成果 业务包含营销和小说、短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版 agent。 3. 定义好文字 好文字能引起人的生理共鸣与情绪,AI 因预训练数据量大能学会引发共鸣,从而写出好文字。 4. 用 AI 写出好文字的方法 选好模型,评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力。 克服平庸,平衡“控制”与“松绑”。 显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。 5. 对 AI 创作的看法 AI 创作的内容有灵魂,只要读者有灵魂,文本就有灵魂。 有人讨厌 AI 是因其未改变多数人生活,或自身是受害者。作者期望 AI 能力进一步提升,改变每个人的生活。 二、AI 写作变现指南 1. 项目启动 确定目标客户群体,如大学生、职场人士、自媒体从业者等。 选择合适的 AI 写作工具,以满足不同客户的需求。 2. 准备阶段 学习并实践 AI 写作技术,通过书籍、在线课程等资源提升写作技能。 构建团队,培养和扩充团队成员,以提高运营效率。 3. 商业模式构建 确定服务内容,如提供论文、报告、文案等直接写作服务。 制定质量控制标准,确保写作内容满足客户要求。 4. 运营与推广 在淘宝等电商平台上开设店铺,展示并销售写作服务。 建立写作培训社群,分享写作技巧和 AI 应用经验,提升品牌影响力。 通过社交媒体和线下活动进行品牌和社群建设。 与绘画团队、其他写作工作室等合作,共同开发新项目。 5. 项目优化与发展 持续关注 AI 技术进展,提升服务质量和效率。 根据市场需求,拓展新的服务和产品。 收集客户反馈,不断优化和改进服务。 三、利用 AI 写课题的步骤和建议 1. 确定课题主题 明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料 使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息 利用 AI 文本分析工具分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲 使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述 利用 AI 工具帮助撰写文献综述部分,确保内容准确完整。 6. 构建方法论 根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析 若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑 利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献 使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改 利用 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查 最后,使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2025-02-28
企业本地化部署AI
企业本地化部署 AI 主要包括以下方面: RPA 与财务税务问答机器人:RPA 与 AI 结合具有多种应用和优势。操作流程简单,无需代码,适合小白和无 IT 经验者。有众多应用案例,如奥康和方太在各部门的订单处理等操作中搭建了大量脚本。封装了众多组件,还可通过触发器设置机器人每天工作。数字化包括标准化、自动化、RPA 加 AI 使机器人更智能三个阶段,交付的是动态能力,让用户自己搭建机器人。产品可本地化私有部署,面向企业有费用,私有化部署能保障数据安全,企业大模型可封装调用。RPA 有容错处理方式,但受多种因素影响。 LangChain 与 NVIDIA:NVIDIA NIM 是一系列用户友好的微服务,旨在加速企业内部生成式 AI 的部署进程。支持广泛的 AI 模型,基于强大的推理引擎和技术构建,提供无缝的 AI 推理体验。其自托管特性可保障数据安全,提供预构建容器,具有可扩展性。开始使用 NIM 可在 NVIDIA API 目录中获取多种 AI 模型,它是 NVIDIA AI Enterprise 的一部分。 从 LLM 大语言模型、知识库到微信机器人:以 windows10 系统为例,安装环境时先在系统中输入“cmd”打开命令窗口,确认是否有 python 和 pip。若没有则需安装,如安装 python 可下载安装包。部署项目时下载 COW 机器人项目并解压缩。
2025-03-02
AI大模型本地化部署的逻辑是什么?输入的数据不会外泄吗?
AI 大模型本地化部署的逻辑主要包括以下步骤: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,要根据自身的资源、安全和性能需求来决定。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,并优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 关于输入数据是否会外泄,这取决于本地化部署的安全性措施和配置。如果采取了严格的安全措施,如数据加密、访问控制、网络隔离等,输入的数据外泄的风险可以大大降低。但如果安全措施不到位,就存在数据外泄的可能。例如,赞成把一个训练好就不动的模型部署在端侧(如手机或家庭计算中心),记录所有知识和记忆的相关数据就不会跑到云端,能更好地保障数据安全。
2025-02-28
Deepseek本地化部署
以下是关于 DeepSeek 本地化部署的相关信息: 在“智能纪要:0225|最新的 DeepSeek 玩法教学 2025 年 2 月 25 日”中提到,明天(02/26 20:00)将教授 DeepSeek 本地部署。 在“第三期「AI 实训营」手把手学 AI【第三期:尝鲜阿里云上的 DeepSeek 玩法】”中,02/26 20:00 的课程主题为“人工智能平台 PAI 篇:本地部署满血版 DeepSeek”,课程内容包括 DeepSeek R1 技术原理、解锁 DeepSeek 的不同玩法(问答助手、蒸馏、微调)以及实战演练 DeepSeek R1 满血版快速部署和蒸馏训练。相关课程文档为
2025-02-26
如何本地化部署deepseek
本地化部署 DeepSeek 的步骤如下: 1. 拥有扣子专业版账号:如果您还是普通账号,请自行升级或注册专业号后使用。开通成功后会显示相应状态。 2. 开通 DeepSeek R1 大模型:访问地址 https://console.volcengine.com/cozepro/overview?scenario=coze ,打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务。添加在线推理模型,添加后在扣子开发平台才能使用。添加过程包括添加模型和完成接入。 3. 创建智能体:点击创建,先完成一个智能体的创建。 需要注意的是,本地部署的版本能作为替补,但很难作为长期使用的版本。DeepSeek 具有三种含义指向,包括 deepseek 公司(深度求索)、deepseek 网站和手机应用,以及有推理功能的 deepseek R1 大模型(权重文件开源,可本地部署)。
2025-02-11
deepseek的本地化部署对于软硬件的具体要求
DeepSeek 的本地化部署对于软硬件的具体要求如下: 系统:Windows 7 以上(不建议使用 XP 系统)。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘:留有足够的空间,最低 100G 起步(包括模型)。 内存和显存配置: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 需要注意的是,mac 系统、AMD 显卡、低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。最低配置可能运行非常慢。
2025-02-06
ai本地化部署
AI 本地化部署主要包括以下方面: 线上和线下本地部署的 AI 特点: 线上 AI 出图速度快,不吃本地显卡配置,无需下载大模型,能看他人作品,但出图尺寸受限。 线下部署可添加插件,不卡算力,出图质量高,但使用时电脑易宕机,配置不高可能爆显存导致出图失败。 线上和线下平台的结合使用: 线上用于找参考、测试模型。 线下作为主要出图工具。 智谱 BigModel 共学营第二期微信助手本地电脑环境部署(以 Windows 为例): 程序在本地运行,关闭窗口进程结束,若要持续使用需保持窗口打开和运行。 若突然不管用,可点击窗口并按空格,因选中状态下 powershell 窗口不继续执行。 完成部署后: 登录成功给微信发送消息可看到正常回复。 可在智谱清流更改 AI 功能或人设,即时生效。 对文件内代码更改需重新打印登陆二维码,在“文件”的【终端】输入 python app.py 重新扫码登录。 无手机登录可用夜神模拟器模拟。 报错“wxsid”可能因微信未实名,实名即可。 制作完成后 24 小时内会掉线一次,重新登录即可,先不要急着加好友。
2025-01-31
有没有专业文档排版AI
以下是关于专业文档排版 AI 的相关信息: AI 文章排版工具主要用于自动化和优化文档的布局和格式,特别是在处理学术论文和专业文档时。一些流行的 AI 文章排版工具包括: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 3. Latex:虽不是纯粹的 AI 工具,但在学术论文排版中广泛使用,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等更适用。 此外,还有一些 AI 辅助的 PPT 工具,如: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。 2. 美图 AI PPT:通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。 3. Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。 关于《促进创新的人工智能监管方法》的相关内容:文中提到,AI 已融入日常生活,带来诸多实际好处,如流媒体服务推荐节目、导航规划路线等。同时指出,应在支持创新的同时提供监管框架以识别和应对风险,避免过度严格的方法抑制创新和减缓 AI 应用,应建立适度且支持创新的监管框架,关注 AI 部署的情境而非特定技术,以平衡收益与潜在风险。
2025-03-04
有没有什么AI工具可以把文档性质的内容转化为表格形式
以下是一些可以将文档性质的内容转化为表格形式的 AI 工具和相关方法: 1. GPT4:可以通过指令让其以表格形式输出细节描述,具有打破叙事习惯、便于局部调整和确保内容具体细节等优点。 2. Claude:可用于处理相关内容,但可能存在修改关键情节等问题。 3. Langchain: 对于表格: 方法 1:读入表格 markdown 格式,嵌入 template。 方法 2:直接使用 function call,绕过 langchain 定义数据库读取的方式。 对于文字:包括文字相似度检索过程,如读入文字、进行清洗、句子切分、向量化、计算相似度、取前几的答案等。 此外,还可以参考相关的代码和脚本,如 https://github.com/yuanzhoulvpi2017/DocumentSearch 。同时,https://gitee.com/cyz6668/langchainsimplerag 也对相关内容进行了整理。
2025-03-03
AI类需求产品经理应该如何写需求文档
以下是为您提供的关于 AI 类需求产品经理如何写需求文档的相关内容: 工具推荐: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard(uizard.io/autodesigner/) 项目管理:Taskade(taskade.com) 写邮件:Hypertype(hypertype.co) 会议信息:AskFred(fireflies.ai/apps) 团队知识库:Sense(senseapp.ai) 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI(ellie.ai) 企业自动化:Moveworks(moveworks.com) 开发流程: 1. 基础小任务: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 对于特定技术学习(如 chrome 插件开发),让 AI 按照最佳实践生成示范项目,包含典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成相关脚本的要求。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,包含影响技术方案选择的细节,方便后续开发时与 AI 交流。 银海相关: 可以通过 Prompt 提示词来复现产品的轻量化版本。 Prompt 提示词是给 AI 的指令,可以是文字或按一定格式的参数描述。 学习 Prompt 提示词可参考:https://www.promptingguide.ai/zh 提供了 10 个场景及相应的 Prompt 提示词和实现效果,包括行业洞察分析、方法论专家、头脑风暴、需求文档设计、功能价值分析、竞品分析报告、流程图/图表设计、思维导图设计、解决方案专家、周报生成器。
2025-02-28
如何通过langchain实现上传 一个客户需求文档,生成一个产品规格书doc格式的文档
要通过 LangChain 实现上传客户需求文档并生成产品规格书(doc 格式),可以按照以下步骤进行: 1. 上传文档:用户可以上传包含知识的文档,支持 txt、pdf、docx 等格式,LangChain ChatChat 会将文档转换为 Markdown 格式。 2. 文本切割:为便于分析和处理,将长文本切割为小块(chunk)。 3. 文本向量化:将切割的 chunk 通过 embedding 技术,转换为算法可以处理的向量,存入向量数据库。 4. 问句向量化:用户提问后,同样将用户的问句向量化。 5. 语义检索匹配:将用户的问句与向量数据库中的 chunk 匹配,匹配出与问句向量最相似的 top k 个。 6. 提交 prompt 至 LLM:将匹配出的文本和问句,一起添加到配置好的 prompt 模板中,提交给 LLM。 7. 生成回答:LLM 生成回答,返回给用户。
2025-02-27
企业建立私有大模型时候,采用什么工具进行RAG,高效实习企业知识文档、表格和pdf图纸的向量化
企业建立私有大模型进行 RAG 并实现企业知识文档、表格和 PDF 图纸向量化时,可参考以下工具和方法: 1. 本地部署资讯问答机器人: 导入依赖库,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 Python 程序中跑大模型(使用前需确保 ollama 服务已开启并下载好模型)。 从订阅源获取内容,通过专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,可使用文本向量模型 bgem3,从 hf 下载好模型后,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效的向量存储。 2. 开发:LangChain 应用开发指南 大模型的知识外挂 RAG 加载数据,根据数据源类型选择合适的数据加载器,如网页可使用 WebBaseLoader。 将文档对象分割成较小的对象,根据文本特点选择合适的文本分割器,如博客文章可用 RecursiveCharacterTextSplitter。 将文档对象转换为嵌入并存储到向量存储器中,根据嵌入质量和速度选择合适的文本嵌入器和向量存储器,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 创建检索器,使用向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数创建检索器对象。 创建聊天模型,根据性能和成本选择合适的聊天模型,如 OpenAI 的 GPT3 模型。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-02-27
知识库中关于 deepseek 有哪些文档
以下是关于 DeepSeek 的相关文档和内容: 章节: 知识点: 申请: 接入: 此外,还有以下相关内容: 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日的智能纪要,包括关于 DP 模型的使用分享、音系学和与大模型互动的分享、DeepSeek 的介绍与活动预告等。 DP 模型的功能、使用优势、存在问题、审核方法、使用建议、使用场景和案例展示。 音系学研究、大模型取队名。 DeepSeek 文档分享、使用介绍、未来活动预告。
2025-02-25
用deepseek打造个人知识库
以下是关于用 DeepSeek 打造个人知识库的相关信息: 可以先将文本拆分成若干小文本块(chunk),通过 embeddings API 将其转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。当用户提出问题时,将问题也转换成向量,与储存库中的向量比对,提取关联度高的文本块,与问题组合成新的 prompt 发送给 GPT API,从而提高回答的准确性和相关性。例如对于“此文作者是谁?”的问题,可以直观或通过比较 embeddings 向量找到关联度最高的文本块,如“本文作者:越山。xxxx。”。 在 RAGFlow 中,可配置本地部署的 DeepSeek 模型。选择 Ollama 并配置相关信息,导入嵌入模型用于文本向量化。设置系统模型后,可创建知识库,导入文件(可设置文件夹)并解析,解析速度取决于本机 GPU 性能。解析完成后进行检索测试,没问题即可进入聊天界面,还可自行设置助理。 此外,AI 编程与炼金术中也涉及 DeepSeek 的相关知识,如在不同章节中的应用,包括给老外起中文名、驱动 Life Coach 等,具体内容可通过相关链接进一步查看。
2025-03-04
deepseek提示词
以下是关于 deepseek 提示词的相关内容: 生成小红书爆款单词视频:输入单词主题、图片风格、单词数量,选择 deepseekr1 模型生成单词数组。角色为专业的单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容并以数组形式呈现。 Deepseek 时代提示词的关键诉求:完整的长提示词可能不如片段有效甚至干扰模型思考,在 deepseek 时代或模型有深度思考能力时,用户只需在关键点引导,采用“关键诉求直通车”模式,如像对聪明助理打暗号。 让 DeepSeek 生成相机运动轨迹的提示词:以往提示词是场景、构图等的组合,现在可以把这些提示词以“相机运动轨迹”的方式描述给 DeepSeek,如“相机向上飞升至上空轨道视角,拍摄站在泳池旁的女子”。
2025-03-04
deepseek如何在wps中使用
在 WPS 中使用 DeepSeek 可以参考以下步骤: 1. 搜索 www.deepseek.com,点击“开始对话”。 2. 将装有提示词的代码发给 DeepSeek。 3. 认真阅读开场白之后,正式开始对话。 另外,还可以通过以下多种方法和途径使用: 1. 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。 2. 打开聊天页面:点击右上角的插件列表,找到 Page Assist 插件,点击打开。 3. 配置“DeepSeekR1”模型的 API key:基础 URL:https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。 4. 添加“DeepSeekR1”模型。 5. 可以愉快玩耍,无需担心“服务器繁忙”了,打开联网功能,还可以支持联网搜索使用 R1。
2025-03-04
claude 3.7和deepseek r1比,能力怎么样
Claude 3.7 在多个方面表现出色。相较于 DeepSeek R1,除了数学方面,带有扩展思考模式的 Claude 3.7 在任务指令跟随、通用推理、多模态能力和自主编程方面表现出色,拿下最高分。在多项基准测试中,“扩展思考”模式加持下的 Claude 3.7 在数学、物理、指令执行、编程等方面刷新了 SOTA,编码能力暴涨 10%以上,几乎完全碾压 o3mini 和 DeepSeek R1,与 Grok 3 不相上下。宾夕法尼亚大学沃顿商学院的教授 Ethan Mollick 对 Claude 3.7 进行了测试,对其能力既惊叹不已又感到一丝不安。例如,Claude 3.7 能通过自然对话或文档获得可运行的程序,还能对需求进行预判和采用新方法思考,生成超出要求的成果。参考资料:https://www.anthropic.com/news/claude37sonnet https://x.com/alexalbert__/status/1894093648121532546 https://x.com/AnthropicAI/status/1894092430560965029 https://www.oneusefulthing.org/p/anewgenerationofaisclaude37
2025-03-04
利用deepseek写脚本短视频
以下是关于利用 DeepSeek 写脚本短视频的相关信息: 基于其他博主开源的视频生成工作流进行了功能优化,实现了视频全自动创建,并写了教程供参考。 功能方面,通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具包括 Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径为:通过 Coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频;发布 Coze 智能体到飞书多维表格;在多维表格中使用字段捷径,引用该智能体;在多维表格中创建自动化流程,推送消息给指定飞书用户。 此外,人们使用 DeepSeek 做了很多事情,例如脑爆活动方案、出会议纪要方案、本地搭超级 AI 助手、处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、改简历、写论文、写小红书笔记、写周报、做设计头脑风暴、做网站等。 还有案例是让 DeepSeek 给海螺更大胆的想法,如特定的 Prompt 描述,结合海螺 AI 灵动自如的镜头运动,制作游戏恢弘场景,无需昂贵设备和团队,现在编剧“DeepSeek”+导演“你”+创作顾问“海螺 AI”,想象力是唯一边界。
2025-03-04
第三方满血deepseek R1
以下是关于第三方满血 DeepSeek R1 的相关信息: 云计算厂商提供的版本及价格特点: PPIO 派欧云:提供满血版全版本 DeepSeekR1,输入价格为¥4/百万 tokens,输出价格为¥16/百万 tokens。开发者福利包括新注册立得 500 万 tokens(关注 PPIO 公众号回“deepseek”再领 1 亿),初创企业认证+10 万算力补贴。产品服务特点为服务稳定性 99.9%,保持 0 故障,与 DeepSeek 官方同价,客户支持通道 10 分钟响应。 百度智能云:DeepSeekR1 限时免费,配额 1000RPM/10000TPM,无调用 tokens 上限。本模型将于 2025 年 2 月 19 日 00:00 起正式商用计费,输入价格 0.002 元/千 tokens,输出价格 0.008 元/千 tokens,有在线体验。 硅基流动:DeepSeekR1 输入价格为¥4/M Tokens,输出价格为¥16/M Tokens,有在线体验。2025 年 2 月 6 日起,未实名用户每日最多请求此模型 100 次。 社区动态: 微信接入 DeepSeek 确认为满血 R1,腾讯将有更多 APP 持续接入。微信推出 AI 搜索功能,提供“快速回答”和“深度思考”选项,用户可获取高质量答案并一键分享。 百度官宣全面接入 DeepSeek,7 亿用户光速进入 AI 搜索时代。2 月 16 日晚,百度文心大模型最新上线的深度搜索功能,也集成到百度搜索当中。 有文章《DeepSeek 的爱情观,远比人类轰轰烈烈》,提出爱情需在工程与诗篇之间找到平衡,保持适度距离,并重新理解承诺为动态过程。行动建议包括分享温暖时刻、表达感激与设定暂停机制。
2025-03-03