Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

蒸馏和微调分别是什么意思,他们有关联吗

Answer

蒸馏和微调是在人工智能领域中常见的概念,它们有一定的区别和联系。

蒸馏是一种模型压缩技术,通过将复杂的大模型的知识和能力“提炼”到较小的模型中,以减少模型的参数和计算量,同时保持一定的性能。

微调则是在已有的预训练模型基础上,使用特定任务的数据对模型进行进一步的训练,以使其在特定任务上表现得更好。

它们的关联在于:都是为了优化模型在特定场景下的性能。不同之处在于,蒸馏侧重于模型压缩,而微调侧重于针对特定任务的适应性训练。

提示词和微调都是提高模型表现的方法,但方式不同。提示词是在使用模型时直接提供特定的指令或上下文,引导模型生成合适的回答,灵活方便,无需重新训练模型。微调则需要对模型进行额外训练,使用特定任务的数据调整模型参数,使其在该任务上表现更佳,但需要时间和计算资源。

微调具有一些优点,如能提高特定任务的性能和效率,适用于强调现有知识、自定义结构或语气、教授复杂指令等,但不适用于添加新知识和快速迭代。成功案例如 Canva 通过微调显著提高了性能。最佳实践包括从提示工程和小样本学习开始、建立基线、从小处着手并注重质量,还可以将微调和 RAG 相结合以获得最佳性能。

Content generated by AI large model, please carefully verify (powered by aily)

References

十七问解读生成式人工智能

这种模型通过一个叫做“扩散过程”的方法,先把数据(比如图像)变得越来越随机(加噪声),然后再通过学习如何逆转这个过程,把随机数据变回有意义的数据(去噪)。这样,模型就能从随机噪声中生成新的、逼真的图像或其他数据。类似于在一幅图像上逐渐增加模糊,然后再逐渐恢复清晰。扩散模型的概念来自于物理学中的扩散过程,最早在图像生成领域中应用。稳定扩散模型通过反复训练,学习如何在不同的噪声水平下恢复数据,从而能够生成非常逼真的图像。比如,OpenAI的DALL-E和谷歌的Imagen都是基于这种技术,能够根据文本描述生成高质量的图像。通过这种逐步去噪的过程,模型能够生成多样化且细节丰富的内容。[heading1]问题十四、提示词跟微调有什么关系?[content]提示词和微调都是用来提高模型表现的方法,但它们的方式不同。提示词是通过给模型提供特定的指令或上下文,来引导模型生成合适的回答。而微调是对模型进行进一步训练,使其在特定任务上表现得更好。1.提示词:直接在使用模型时提供,灵活方便,不需要重新训练模型。比如你问模型一个问题,它根据提示词生成回答。2.微调:需要对模型进行额外的训练,使用特定任务的数据来调整模型的参数,使其在该任务上表现更佳。微调后的模型在特定任务上会有更好的表现,但需要时间和计算资源。[heading1]问题十五、提示词的本质是什么?[content]提示词的本质就是给模型提供指令或者上下文,让它知道该怎么回应。当你给模型一个提示词时,实际上是在给它提供一个方向或者背景信息,这样模型就能根据这些信息生成相应的回答。提示词可以是一个问题、一段话或者某种情景描述甚至是专业结构化提示词,模型会根据这些内容来理解你的意图,并生成合适的回应。

OpenAI 春季发布会:GPT-4o

Overview:概述:Fine-tuning involves continuing the training process on a smaller,domain-specific dataset.微调涉及在较小的特定领域数据集上继续训练过程。Benefits:好处:Improves performance on specific tasks.提高特定任务的性能。Improves efficiency.提高效率。Good for:适用于:Emphasizing existing knowledge.强调现有知识。Customizing structure or tone.自定义结构或语气。Teaching complex instructions.教授复杂的指令。Not good for:不适用于:Adding new knowledge.添加新知识。Quick iteration.快速迭代。Success Story:成功案例:The presenters shared a success story from Canva,where fine-tuning improved performance significantly.演讲者分享了Canva的一个成功案例,其中微调显着提高了性能。Best Practices最佳实践1.Start with Prompt Engineering and Few-Shot Learning.从提示工程和小样本学习开始。2.Establish a Baseline.建立基线。3.Start Small and Focus on Quality.从小处着手,注重质量。Combining Fine-Tuning and RAG结合微调和RAGThe presenters highlighted the benefits of combining fine-tuning and RAG for optimal performance.演讲者强调了将微调和RAG相结合以获得最佳性能的好处。Application of Theory理论应用

19. RAG 提示工程系列(一)

微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。微调可以提高非微调模型的性能,并使交互更加频繁有效率的它特别适合强调基础模型中的现有知识,修改或自定义模型的输出,并向提供复杂的指令模型然而,微调不适合合并模型中的新知识或需要的情况新用例的快速迭代。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)

Others are asking
如何进行知识蒸馏
知识蒸馏(Knowledge Distillation)是一种将复杂模型的知识转移到简单模型中的方法。其核心思想是利用预训练好的复杂模型(教师模型)指导较小模型(学生模型)的训练,使学生模型能模仿教师模型的行为,同时保持较小规模和较高效率。 蒸馏的核心在于让学生模型学习教师模型的输出分布,而非仅仅是硬标签(ground truth)。具体而言,教师模型为输入文本生成软标签(soft labels),即概率分布,学生模型通过模仿教师模型的软标签来学习。 目前以 Ollama 上下载的模型为例,最小的有 DeepSeekR1DistillQwen1.5B,最大的有 DeepSeekR1DistillLlama70B,都是来自于 Deepseek R1 671B 的蒸馏,而非官方的 Deepseek 版本。仔细观察模型名称可以看到,Distill 代表“蒸馏”,Qwen 或者 Llama 代表使用的基础模型,一般是千问或者 Llama 。
2025-02-14
知识蒸馏是什么
知识蒸馏是一种模型压缩方法。在训练过程中,大模型作为教师模型,轻量级模型作为学生模型,学生模型不仅学习任务的真实标签,还学习教师模型生成的软标签,从而能够“站在巨人的肩膀上”学习,提高自身性能。例如,NVIDIA 技术博客介绍了通过剪枝和知识蒸馏将 Llama3.1 8B 模型缩减为 Llama3.1Minitron 4B 模型的方法。剪枝通过移除模型中的一些参数来减少计算需求和内存占用,而知识蒸馏让小模型学习大模型的输出。此外,在一些情况下,可能存在无意导致的信息蒸馏现象。
2025-02-07
知识蒸馏
知识蒸馏是一种模型压缩和训练的方法。在训练中,大模型作为教师模型,轻量级模型作为学生模型,学生模型不仅学习任务的真实标签,还学习教师模型生成的软标签,从而能够“站在巨人的肩膀上”学习。例如,NVIDIA 技术博客介绍了通过剪枝和知识蒸馏将 Llama3.1 8B 模型缩减为 Llama3.1Minitron 4B 模型的方法。剪枝通过移除模型中的一些参数来减少计算需求和内存占用,而知识蒸馏让小模型学习大模型的输出以提高性能。轻量级模型基础能力的增强,对未来的 AI 应用生态具有重要意义。同时,使用强化微调技术,轻量级模型能够通过精选数据的训练超越同代大模型的表现,这对垂直领域的模型应用也将产生很大影响。
2025-02-07
什么事大模型的蒸馏
模型蒸馏可以比作教学过程。在大模型中,一个大型专家模型(老师)将其知识传递给一个更小、更紧凑的模型(学生)。其目标是让学生模型学习最重要的技能,而不需要与老师模型相同的庞大资源。 例如,在谷歌 Gemini 模型中,Gemini Nano 是通过模型蒸馏的过程从更大的 Gemini 模型中提炼知识创建而成,能够在智能手机等设备上运行。 在 FLUX.1 模型中,FLUX.1蒸馏而来,具备相似的图像质量和提示词遵循能力,但更高效。
2024-12-06
模型蒸馏
模型蒸馏是将强化学习算法等提取到神经网络中的一种技术。 DeepMind 提出的算法蒸馏(Algorithm Distillation, AD),通过建立因果序列模型将强化学习算法提取到神经网络中。其原理是如果 Transformer 的上下文足够长到包含由于学习更新而产生的策略改进,它应能表示一个策略提升算子,这为将任何 RL 算法通过模仿学习蒸馏成强大的序列模型,并转化为 incontext RL 算法提供了技术可行性。 在视频生成方面,如 Imagen Video 应用了渐进式蒸馏来加速采样,能够将多个视频扩散模型蒸馏为每个模型仅 8 个采样步骤,且不影响感知质量。 此外,在 RLHF 研究中,还存在无意导致的信息蒸馏(unintentional distillation)现象,比如公司雇人做数据标注,此人将任务交给常用的 chatbot 模型,再粘贴结果回来,可能导致各个模型风格趋向一致。
2024-08-21
微调
微调(Finetuning)是一种迁移学习技术,常用于深度学习中。其基本思路是先有一个在大量数据上预训练过的模型,该模型已学会一些基本模式和结构,然后在特定任务数据上继续训练,使其适应新任务。 例如在情感分类中,可先使用大量语料库预训练模型,再用标注过的电影评论继续训练以判断情感;在图像分类中,先使用大量图片预训练模型,再用标注过的猫和狗的图片继续训练以区分二者。 微调的超参数选择很重要,默认超参数适用于一系列用例,唯一需要的参数是训练文件。调整超参数通常能产生更高质量输出的模型,可能需要配置的内容包括: 模型:可选择“ada”“babbage”“curie”或“davinci”之一。 n_epochs:默认为 4,指训练模型的时期数。 batch_size:默认为训练集中示例数量的 0.2%,上限为 256。 learning_rate_multiplier:默认为 0.05、0.1 或 0.2,取决于 final batch_size。 compute_classification_metrics:默认为假,若为真,在每个 epoch 结束时在验证集上计算特定于分类的指标。 微调能为应用程序定制模型带来更多收益,如比即时设计更高质量的结果、能训练更多例子、节省 Token、降低延迟请求。微调通过训练更多示例改进小样本学习,在大量任务中取得更好结果。微调涉及准备和上传训练数据、训练新的微调模型、使用微调模型等步骤。 目前微调仅适用于 davinci、curie、babbage 和 ada 等基础模型,还可继续微调微调模型以添加其他数据。建议使用 OpenAI 命令行界面,安装时需注意相关要求。
2025-02-26
rag 模型微调
RAG(检索增强生成)模型微调相关知识如下: 通用语言模型通过微调可完成常见任务,如分析情绪和识别命名实体。对于更复杂和知识密集型任务,可基于语言模型构建系统并访问外部知识源。Meta AI 引入的 RAG 方法把信息检索组件和文本生成模型结合,可微调且内部知识修改高效,无需重新训练整个模型。 RAG 接受输入并检索相关支撑文档,给出来源,与输入原始提示词组合后送给文本生成器得到输出,能适应事实变化,获取最新信息并生成可靠输出。 通用的 RAG 微调方法如 Lewis 等人(2021)提出的,使用预训练的 seq2seq 作为参数记忆,用维基百科的密集向量索引作为非参数记忆。 在微调阶段: 检索器微调的常用方法包括直接微调、添加可训练的 Adapter 模块、LSR、LLM Reward RL。 生成器微调的主要方法包括直接微调、GPT4 蒸馏、基于反馈的强化学习。 协同微调是在 RAG 系统中同时对检索器和生成器进行微调,如 RADIT 分别对 LLM 和检索器进行微调。 同时,RAG 提高了嵌入模型质量,传统 RAG 解决方案中的问题也得到解决。
2025-02-24
模型微调
以下是关于模型微调的相关信息: 微调步骤: 1. 微调脚本: LoRA 微调: 脚本见: 具体实现代码见: 单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调: 脚本见: 具体实现代码见: 2. 加载微调模型: LoRA 微调:基于 LoRA 微调的模型参数见基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数。 全量参数微调:调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 微调介绍: 微调可让您从 API 提供的模型中获得更多收益,包括比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省了 Token、更低的延迟请求。GPT3 已经在来自开放互联网的大量文本上进行了预训练。微调通过训练比提示中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示中提供示例。这样可以节省成本并实现更低延迟的请求。在高层次上,微调涉及准备和上传训练数据、训练新的微调模型、使用您的微调模型等步骤。 可微调的模型: 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。这些是原始模型,在训练后没有任何说明(例如 textdavinci003)。您还可以继续微调微调模型以添加其他数据,而无需从头开始。 OpenAI 的模型概述: OpenAI API 由具有不同功能和价位的多种模型提供支持。您还可以通过微调针对您的特定用例对我们的原始基本模型进行有限的定制。包括 GPT4 Beta、GPT3.5、DALL·E Beta、Whisper Beta、Embeddings、Codex Limited Beta、Moderation、GPT3 等模型。
2025-02-24
本地部署Deepseek如何微调呢
对于本地部署 DeepSeek 的微调,以下是一些相关信息: 对于企业级部署,首先要根据实际业务场景评估所需部署的模型规格以及所需的服务器资源,预估完服务器资源后,还需评估业务场景是否需要二次开发模型。如果只是简单微调模型就能符合业务需求,使用 Ollama、LM Studio、GTP4All 或许可以满足诉求;若需要定制化开发模型,则要考虑进行模型的原生部署。 关于微调的方法,LoRA/QLoRA 论文指出其是对模型进行廉价微调的可行方法,如 。 另外,DeepSeek 模型如 JanusPro 有特别的训练法,先进行预训练,然后老师手把手教(监督微调),最后用“精华浓缩法”保存最好的学习成果。
2025-02-23
如何在本地服务器上微调LLM
在本地服务器上微调 LLM 可以参考以下内容: 1. 提示词工程: 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,其中 INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时应注意用无关紧要的工具作示例。tools_instructions 可通过输入不同工具动态调整,让 LLM 得知可用工具及使用方法。REUTRN_FORMAT 定义调用 API 的格式。 工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,提高成功率。通过识别 LLM 返回的调用工具字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受相关角色的 LLM 接口,可改为回传给 user 角色。 2. 微调方法: 传统微调:采用在通用数据集上预训练的模型,复制模型后在新的特定领域数据集上重新训练,但大型语言模型微调面临训练时间长、计算成本高等挑战。 参数有效调优:这是一种创新的调优方法,旨在通过仅训练一部分参数来减少微调 LLM 的挑战,参数可以是现有模型参数的子集或全新的参数。 为使微调达到最佳效果,应从明确目标和高质量数据集开始,使用体现所需输出类型的数据,进行迭代测试,从小的渐进变化开始并评估结果。 对于 OpenAI 的模型,微调包括使用其提供的 API 在数据集上进一步训练,需调整超参数并监控性能。对于开源 LLM,微调可能需要更多实践工作,包括设置训练环境、管理数据流及调整模型架构。 对于需要快速迭代新用例的场景,微调作用较小。要实现微调功能,需创建大型训练数据集,整理成适当格式,启动训练任务并评估性能。建立模型改进工作流程,监控性能变化,依据反馈改进模型,记录生成的模型及评分指标,许多 LLMOps 平台能自动收集和显示最佳数据,方便微调。
2025-02-21
模型微调是怎么实现的
模型微调是一种迁移学习技术,常用于深度学习中。其基本思路是先有一个在大量数据上预训练的模型,已学会一些基本模式和结构,然后在特定任务数据上继续训练以适应新任务。 以下是关于模型微调的具体实现步骤: 1. 准备和上传训练数据。 2. 训练新的微调模型: LoRA 微调: 脚本见:。 具体实现代码见。 单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调: 脚本见:。 具体实现代码见。 3. 加载微调模型: LoRA 微调:基于 LoRA 微调的模型参数见基于 Llama2 的中文微调模型,LoRA 参数需和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数。 全量参数微调:调用方式同模型调用代码示例,只需修改其中的模型名称或保存路径。 微调的优点包括: 1. 比即时设计更高质量的结果。 2. 能够训练比提示中更多的例子。 3. 由于更短的提示而节省了 Token。 4. 更低的延迟请求。 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。 以下是两个帮助理解微调概念的例子: 1. 情感分类:先使用大量语料库预训练模型,使其学会基本语法和单词语义,再收集标注过的电影评论(积极或消极)继续训练模型,使其学会判断评论情感。 2. 图像分类:先使用大量图片(如 ImageNet 数据集)预训练模型,使其学会识别图片中的基本形状和纹理,再收集标注过的猫和狗的图片继续训练模型,使其学会区分猫和狗。
2025-02-19
有没有可以分析历史事件关联性的AI
很抱歉,上述提供的内容中没有直接提到可以分析历史事件关联性的 AI 相关信息。但目前在 AI 领域,有一些自然语言处理和数据分析的技术及工具可能会被应用于历史事件关联性的分析。例如,利用大规模的语言模型结合历史数据进行文本挖掘和关联分析。不过,具体的专门用于此目的的成熟 AI 应用可能还需要进一步的研究和开发。
2025-02-24
ai绘画与ai视频是否有关联关系
AI 绘画与 AI 视频存在关联关系。 从以下方面可以体现: 1. 创作方面:在语言驱动的创作中,AI 绘画和 AI 影像都属于概念画笔的应用范畴,目前都处于探索阶段,尚未找到最合适的表现形式。 2. 应用方面:AI 绘画的应用领域广泛,包括个体成为自媒体博主、个体商户应用、实体印刷、AI 摄影、设计接单、AI 定制萌娃头像、电商商品、自媒体素材、AI 服装预售、AI 视频接单、培训老师等,其中就包含了 AI 视频接单。 3. 发展影响方面:AI 绘画和 AI 视频都在逐渐改变着传统艺术的面貌,对艺术的审美观念和市场需求产生影响。尽管存在争议,但都为艺术创作提供了新的可能性,如帮助创作者探索新的创意表达方式、提高制作效率、降低制作成本,促进与观众的互动,提供个性化和互动的体验。 然而,AI 绘画和 AI 视频也存在一些局限性和引发的问题,如在表达情感和创造性意图方面的不足,以及带来的版权、原创性和伦理等方面的争议。
2025-02-08
知识库的实验数据,AI能关联分析思考吗?
目前的 AI 技术在一定程度上能够对知识库中的实验数据进行关联分析和思考。AI 具备处理和分析大量数据的能力,通过运用机器学习和数据挖掘算法,可以发现数据中的模式、关系和趋势。然而,AI 的分析能力取决于数据的质量、特征工程的有效性以及所采用的算法和模型的适用性。在复杂和不确定的情况下,AI 的分析结果可能存在一定的局限性,需要人类的进一步审查和判断。
2025-01-18
AI智能体是什么?AI超级个体是什么?AI智能体和超级个体有什么区别和关联?
AI 智能体是不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI 智能体产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 AI 超级个体可以理解为一种能够帮助我们充分发挥作为人类潜力的伙伴。它是我们的外脑,我们每个人独特的个性、经验和思考风格,将会与这些智能个体融合,成为我们的化身。超级智能将强化我们自身,与人类共生,共同汇聚成智能时代的新知识网络。 AI 智能体和超级个体的区别在于:AI 智能体更侧重于执行全自动化业务的能力,而超级个体更强调对人类潜力的辅助和强化,以及与人类的融合共生。它们的关联在于都是人工智能在不同应用和概念层面的体现,都旨在为人类提供帮助和服务,推动人类与人工智能的协同发展。
2025-01-16
AGI是什么意思
AGI 指的是通用人工智能(Artificial General Intelligence),是一种能够像人类一样思考、学习和执行多种任务的人工智能系统,能够胜任几乎所有人类智力活动,其能力不局限于特定领域。例如,OpenAI 致力于 AGI 的研究,ChatGPT 就是由致力于 AGI 的 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具。当 AGI 真正实现并可能迅速发展为超人工智能(ASI)时,人类社会将在随后的二十年里经历深刻变革。
2025-02-27
TPM 限制是什么意思?请用文字、数据、案例、比喻等形式进行教学
TPM 限制指的是每分钟处理的事务数(Transactions Per Minute)的限制。 以字节火山引擎为例,它默认提供了高达 500 万 TPM 的初始限流。这对于像一次工作流测试就消耗 3000 多万 tokens 的用户来说,限流的设置具有重要意义。 打个比喻,TPM 限制就好像是一条道路上设置的通行车辆数量限制,如果超过这个限制,就可能导致交通拥堵或者无法正常通行。在 AI 领域,超过 TPM 限制可能会影响服务的性能和稳定性。 比如,当有大量的请求同时发送到系统,如果没有 TPM 限制,可能会导致系统响应变慢甚至崩溃;而有了合理的 TPM 限制,就能保证系统有序地处理请求,为用户提供稳定可靠的服务。
2025-02-26
AI模型是什么意思?请用文字、数据、比喻等形式进行教学
AI 模型是指通过一系列技术和算法构建的能够处理和生成信息的系统。 以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 为了让您更好地理解,我们可以把 AI 模型想象成一个非常聪明的学生。它通过大量的学习资料(训练数据)来掌握知识和规律,就像学生通过课本和练习题来提高自己的能力一样。监督学习就像是有老师指导的学习,老师会告诉它答案是对是错;无监督学习则像是自己探索,没有老师的直接指导;强化学习就像通过奖励和惩罚来激励它找到更好的方法。而深度学习就像是这个学生有了非常复杂和深入的思考方式,能够更好地理解和处理复杂的问题。
2025-02-26
Batch调用是什么意思
在 LangChain 应用开发中,Batch 调用是一种处理多个主题的方式。例如,调用笑话对象时,传入一个主题字符串的列表,就可以得到一个笑话字符串的列表,如 joke.batch。它能够同时处理多个任务,提高处理效率。
2025-02-25
ai绘画中的模型是什么意思
在 AI 绘画中,模型具有以下含义和特点: 1. 大模型如同主菜或主食,是生成图片的基础框架,决定了图片的基本风格和内容。 2. 小模型(Lora)如同佐料或调料包,能够帮助快速实现特定风格或角色的绘制,比如改变人物形象、画风,添加模型中原本没有的元素,如绘制特定的国内节日元素。 3. 模型的选择与搭配很重要,大模型和 Lora 要基于同一个基础模型才能搭配使用,以生成各种风格的图片。 4. 常用的模型网站有:。 5. 下载模型后需要将之放置在指定的目录下,不同类型的模型放置位置不同。例如,大模型(Ckpt)放入 models\\Stablediffusion;VAE 模型放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择;Lora/LoHA/LoCon 模型放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录;Embedding 模型放入 embeddings 目录。模型的类型可以通过检测。
2025-02-22
AGI 是什么意思
AGI 即通用人工智能(Artificial General Intelligence),指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能系统。能够像人类一样思考、学习和执行多种任务,在许多领域内以人类水平应对日益复杂的问题。例如,像 GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。OpenAI 致力于实现 AGI 并使其造福全人类。
2025-02-21