生成式 AI 相关知识如下:
此外,台湾大学李宏毅教授的生成式 AI 课程介绍了其基本概念、发展历程、技术架构和应用场景等内容,共 12 讲,每讲约 2 小时。通过学习该课程,可掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解其发展现状和未来趋势。课程包括生成式 AI 的定义和分类、生成式模型、生成式对话、预训练语言模型、生成式 AI 的挑战与展望等内容,并提供了教材、参考书籍、在线课程、开源项目等学习资源和学习方法。
在引入AIGC的概念之前,本报告将先解释另一相关的热门词条“GenAI”,全称Generative AI,即生成式AI。GenAI是一种基于深度学习技术(deep learning algorithm),利用机器学习(machine learning)算法从已有数据中学习并生成新的数据或内容的AI应用。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。GenAI为游戏、娱乐和产品设计等应用提供了新颖且有创意的解决方案,如自动写作、虚拟现实、音乐创作等,甚至协助科学研究开辟了新的可能性。目前典型的GenAI包括OpenAI推出的语言模型ChatGPT、GPT-4、图像模型DALL-E以及百度推出的文心一言、阿里云推出的通义千问等。虽然生成式AI是一种非常强大的技术,能够应用于诸多专业领域;但其在数据处理过程中存在多重潜在合规风险,如未经授权收集信息、提供虚假信息、侵害个人隐私等。AIGC(全称AI-Generated Content)指利用GenAI创建的内容,如图像、视频、音频、文本和三维模型。具体来讲,AIGC工具使用机器学习算法,通常以自然语言处理为基础,分析大型文本数据集,并学习如何生成风格和语气相似的新内容。国内目前主要是在《网络安全法》《数据安全法》以及《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》共同监管AIGC行业。
一、课程介绍这是台湾大学李宏毅教授的生成式AI课程,主要介绍了生成式AI的基本概念、发展历程、技术架构和应用场景等内容。课程共分为12讲,每讲约2小时。二、学习目标通过学习本课程,掌握生成式AI的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式AI的发展现状和未来趋势。三、学习内容1.什么是生成式AI生成式AI的定义和分类生成式AI与判别式AI的区别生成式AI的应用领域2.生成式模型生成式模型的基本结构和训练方法生成式模型的评估指标常见的生成式模型及其优缺点3.生成式对话生成式对话的基本概念和应用场景生成式对话系统的架构和关键技术基于生成式模型的对话生成方法4.预训练语言模型预训练语言模型的发展历程和关键技术预训练语言模型的优缺点预训练语言模型在生成式AI中的应用5.生成式AI的挑战与展望生成式AI面临的挑战和解决方法生成式AI的未来发展趋势和研究方向四、学习资源1.教材:《生成式AI导论2024》,李宏毅2.参考书籍:《深度学习》,伊恩·古德费洛等3.在线课程:李宏毅的生成式AI课程4.开源项目:OpenAI GPT-3、字节跳动的云雀等五、学习方法
GenAI(即生成式AI)是一种能够从已有数据中学习并生成新的数据或内容的AI应用,利用GenAI创建的内容即AIGC(全称AI-Generated Content)。作为一种强大的技术,生成式AI能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对AIGC的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。AIGC主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs和Transformer等模型生成文本,如GPT-4和Gemini Ultra。图像生成依赖于GANs、VAEs和Stable Diffusion等技术,应用于数据增强和艺术创作,代表项目有Stable Diffusion和StyleGAN 2。音视频生成利用扩散模型、GANs和Video Diffusion等,广泛应用于娱乐和语音生成,代表项目有Sora和WaveNet。此外,AIGC还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。AIGC应用可能引发内生风险、数据隐私问题和知识产权风险。内生风险包括算法的不可解释性和不可问责性,以及代码开源可能带来的安全和伦理担忧。数据隐私方面,AIGC工具可能导致数据泄露、匿名化不足、未经授权的数据共享等问题。应用风险涉及作品侵权、不当竞争等问题。相关法律和规定对AIGC的透明性、数据收集和处理、知识产权归属等提出了要求。然而,著作权归属、数据隐私等问题尚需更多法律明确规定。此外,AIGC的滥用可能导致虚假信息传12AIGC法律风险研究报告播、侵犯隐私等问题,因此需要进一步加强监管和伦理约束。13AIGC法律风险研究报告14AIGC法律风险研究报告