Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我该怎么学习ai?帮我组织一个流程,能很好的利用你的资源。

Answer

以下是为您组织的学习 AI 的流程:

一、了解 AI 基本概念 建议阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。

二、开始 AI 学习之旅 在「入门:AI 学习路径」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。

三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等方面。您可以根据自己的兴趣选择特定的模块进行深入学习,同时一定要掌握提示词的技巧,它上手容易且很有用。

四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,在知识库中也有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。

五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。

另外,费曼学习法也是一种有效的学习方式。它强调通过教授他人来深化个人理解和知识的掌握,基本步骤包括选择一个概念、教给他人、回顾和简化、组织和比较。其应用场景包括个人学习、教学和培训、知识分享等。

WaytoAGI(通往 AGI 之路)是一个致力于人工智能学习的中文知识库和社区平台,汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯,还有丰富的学习资源、实践活动,并倡导开放共享的知识体系。在没有任何推广的情况下,WaytoAGI 一年时间已有超过 100 万用户和超千万次的访问量,目前合作过众多公司和产品。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

【实战】用 AI + 思维模型 探索问题的全新解答.pdf

费曼学习法是以诺贝尔物理学奖得主理查德·费曼的名字命名的学习方法,它强调通过教授他人来深化个人理解和知识的掌握。1、定义​费曼学习法的本质特征,是强调知识从学习到吸收,还得再输出才能算完整的学习过程。如果没有输出,那只是对知识的眼见,耳闻,知识让大脑知道而已,而费曼学习法的达成标准,是让知识通过我们的嘴巴教给下一个人,从而让下一个人的大脑达到知道的水平,这样一整套流程下来,我们才算真正掌握了知识。[heading4]基本上分为以下几步:[content]1.1.选择一个概念:挑选你想要学习或理解的概念或者知识。​2.2.教给他人:以通俗易懂的方式向他人解释这个概念,帮助他人理解。3.3.回顾和简化:在解释过程中遇到困难时,回到书本或参考资料中去查找问题,然后继续以简单的语言表达出来,持续循环教授知识的流程。4.4.组织和比较:整理知识点,比较不同来源的信息进行评估可靠性和差异,再主动思考和深化理解。就比如我这次讲AI+思维模型的内容一样,我不仅花了大量时间来收集资料和学习,来进行过脑子,并且我在过程中进行了多次实践,把理论+实践所产生的知识通俗化的方式呈现给大家。​目的就是为了深化知识,再教给大家。当然,这个过程中也会经历不断的回顾和迭代来继续完善。2、应用场景​•个人学习:在学习新知识或技能时,用以加深理解和记忆。•教学和培训:教师或培训师在准备教材和教学计划时,确保内容清晰易懂。•知识分享:在工作或社交场合,当需要向他人清晰地传达复杂信息或概念时使用。

介绍说明

AJ,产品经理,「通往AGI之路」WaytoAGI开源知识库的创建者从自己收录整理信息,补齐信息差,到希望得到更多交流可以更好学习这个是项目的起源和社群开发的初衷[heading3]社区介绍[content]WaytoAGI(通往AGI之路)是一个致力于人工智能(AI)学习的中文知识库和社区平台。为学习者提供系统全面的AI学习路径,覆盖从基础概念到实际应用的各个方面。全球领先的AI开源社区最新最全面的AI资源丰富多样的技术活动100+进行中的活动4000+学习资源1500000+社区成员1.知识库与社区平台:WaytoAGI汇集了上千个人工智能网站和工具,提供最新的AI工具、AI应用、AI智能体和行业资讯。2.学习资源:平台提供丰富的学习资源,包括文章、教程、工具推荐以及最新的AI行业资讯等。3.实践活动:社区定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。4.开放共享:WaytoAGI引领并推广开放共享的知识体系,倡导共学共创等形式,孵化了AI春晚、离谱村等大型共创项目。5.用户基础:在没有任何推广的情况下,WaytoAGI一年时间已有超过100万用户和超千万次的访问量。6.目标与愿景:WaytoAGI的目标是让每个人的学习过程少走弯路,让更多的人因AI而强大通往AGI之路:目前合作过的公司/产品阿里云,通义千问,淘宝,智谱,支付宝,豆包,火山引擎,marscode,coze,堆友,即梦,可灵,MiniMax海螺AI,阶跃星辰,百度,Kimi,吐司,liblib,华硕,美团,美的,360,伊利,魔搭,央视频,Civitai,Openart,Tripo3D,青椒云等

Others are asking
作为产品经理小白 我该如何学习成为一名合格的aipm
以下是为您提供的关于产品经理小白如何学习成为一名合格的 AI PM 的建议: 首先,了解一些重要的 AI 技术概念和框架: 1. 思维链:谷歌在 2022 年的论文中提到,思维链能显著提升大语言模型在复杂推理方面的能力,即便不用小样本提示,也可在问题后加一句“请你分步骤思考”。 2. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一起传给 AI,可搭建企业知识库和个人知识库。 3. PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助如 Python 解释器等工具作为计算工具。 4. ReAct:2022 年《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,比如用搜索引擎对关键字进行搜索,观察行动结果,可借助 LangChain 等框架简化构建流程。 个人总结:很多大佬都强调要关注或直接阅读技术论文,像产品经理转型为 AI 产品经理,需要懂技术脉络。但小白直接看技术论文有难度,虽可让 AI 辅助阅读,但仍需一定知识储备。林粒粒呀的相关视频是很好的科普入门,值得观看。 此外,还可以观看一些关于技术框架与未来想象的访谈视频,比如安克创新 CEO 阳萌的访谈,其观点可能会给您带来启发。
2025-02-19
我想当一名ai产品经理 我该从哪学起
如果您想成为一名 AI 产品经理,可以从以下几个方面学起: 1. 掌握算法知识: 理解产品核心技术,了解基本的机器学习算法原理,有助于做出更合理的产品决策。 与技术团队有效沟通,掌握一定的算法知识,减少信息不对称带来的误解。 评估技术可行性,在产品规划阶段做出更准确的判断。 把握产品发展方向,了解算法前沿更好地规划产品未来。 提升产品竞争力,发现产品独特优势,提出创新特性。 提升数据分析能力,很多 AI 算法涉及数据处理和分析。 2. 学习相关案例:可以参考一些成功的 AI 产品经理的经验,比如 Kelton 作为 AIPM 一枚,深耕 NLP 方向 2 年,从 0 1 打造过两款 AIGC 产品,还完成过 LLM 评测体系的搭建。 3. 了解技术原理与框架: 如思维链,谷歌在 2022 年论文提到其能显著提升大语言模型在复杂推理的能力。 了解 RAG(检索增强生成),将外部知识库切分成段落后转成向量存于向量数据库。 学习 PAL(程序辅助语言模型)和 ReAct 框架等。 同时,建议您关注或直接阅读技术论文,虽然有难度,但完成一定知识储备后,可借助 AI 辅助阅读。也可以通过一些通俗易懂的科普内容入门,比如相关的科普视频。
2025-02-19
我是一个有23年软件系统开发和设计经验的架构师,但是对AI还没有系统化了解过,请问我该如何开始?如何在短时间内掌握AI的使用、原理以及二次开发?
以下是为您提供的在短时间内系统化学习 AI 的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。我建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识 (1)基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 (2)历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 (1)统计学基础:熟悉均值、中位数、方差等统计概念。 (2)线性代数:了解向量、矩阵等线性代数基本概念。 (3)概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 (1)监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 (2)无监督学习:熟悉聚类、降维等算法。 (3)强化学习:简介强化学习的基本概念。 4. 评估和调优 (1)性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 (2)模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 (1)网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 (2)激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,以证件照为例,Code AI 应用开发教学中,智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。但 AI CODING 虽强,目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。在创建 AI 应用时,要学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-02-17
我该从哪里开始
学习 AI 是一个长期的过程,需要耐心和持续的努力。对于新手来说,可以参考以下建议: 1. 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 2. 如果您想从零开始,可以参考 GPT1 到 Deepseek R1 所有公开论文 The 2025 AI Engineer Reading List 。其中我们挑选了 50 篇论文/模型/博客,涉及人工智能工程的 10 个领域:LLMs、基准、提示、RAG、代理、CodeGen、视觉、语音、扩散、微调。 3. 对于微调(Finetuning)方面,假设您已经按照上述说明准备了训练数据。使用 OpenAI CLI 开始微调工作,从 BASE_MODEL 开始选择基本模型的名称(ada、babbage、curie 或 davinci),您可以使用后缀参数自定义微调模型的名称。每个微调工作都从一个默认为 curie 的基本模型开始,模型的选择会影响模型的性能和运行微调模型的成本。开始微调作业后,可能需要一些时间才能完成,具体取决于模型和数据集的大小。
2025-02-15
waytoagi知识如此丰富 我该从哪里学起
如果您觉得 WayToAGI 知识丰富但不知从何学起,可以参考以下建议: 1. 从某一个板块开始,比如 Agent 板块。链接: 。使用方法是从下往上看,一个一个点进去,里面都有视频。共学视频都是手把手从注册开始的教学,不会就多看几遍,基本能保障一个工具能调通、一个 Agent 能搭好。但要注意,内容确实有点多,可以先选择自己听过的工具开始,以免太累。 2. 在看了一些视频之后,如果您想了解理论还是应用,可以找到导航,想看哪里点哪里。链接: 。但要注意,智能千帆、阿里云百炼有视频,其余没有。而且内容较多,您需要考虑聚焦,先挑一个,开始手把手一起做起来,看看能不能持续用起来,只要开始用起来,这事儿就成啦!如果快捷菜单找不到,可以参考相关说明。 WayToAGI 不仅是一个知识库,还是连接学习者、实践者和创新者的社区。这里以“无弯路,全速前进”为目标,助力每一个怀揣 AI 梦想的人疾速前行。每一份尝试都值得赞美,每一份付出都应得到鼓励,其成长得益于大家的支持。 此外,WayToAGI 还有整活区。如果您想造艘船,不要只忙于分配工作,而是要激起对大海的向往。在 WayToAGI 有很多垂直板块,这里不是系统性学习的地方,而是一起做有趣事的游乐场。我们大部分时候用 AI 做有用的事,但有用不是必须的,很多创新始于有趣的想法。在整活区,您不用证明想法“有什么用”,可以尽情发挥对 AI 天马行空的想象,把 AI 玩出新花样。
2025-02-12
我该如何系统学习ai
以下是系统学习 AI 的一些建议: 1. 从编程语言入手学习:可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习筑牢根基。 2. 尝试使用 AI 工具和平台:例如 ChatGPT、Midjourney 等生成工具,体验其应用场景。也可以探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程,掌握主要技术如机器学习、深度学习等,同时学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,锻炼动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,要从编程基础、工具体验、知识学习、实践项目等多方面着手,全面系统地学习 AI 知识和技能。 另外,《雪梅 May 的 AI 学习日记》中提到,学习 AI 要注重系统性,避免碎片化输入,比如可以通过看书听课进社区的方式。初期可以系统地看书听课,了解 AI 的底层原理和发展历程。同时,加入像“通往 AGI 之路”这样的开源社区,按照新手指引入门,能帮助您少走弯路,更高效地学习。
2025-02-11
Ai工具英文不熟悉,怎么提升自己,快速掌握,可替代的中文ai工具推荐
如果您对 AI 工具的英文不熟悉,想要快速掌握并寻找可替代的中文 AI 工具,以下是一些建议和推荐: 提升英语能力以更好地掌握 AI 工具: 多进行英语阅读,包括 AI 相关的文章和文档。 参加英语培训课程或学习在线教程。 中文 AI 工具推荐: 秘塔写作猫(https://xiezuocat.com/):是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作(https://ibiling.cn/):是智能写作助手,能应对多种写作需求,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作(https://effidit.qq.com/):由腾讯 AI Lab 开发的创作助手,能提升写作效率和创作体验。 此外,使用 AI 学习一门外语可以通过以下方法和工具: 方法: 利用语言学习应用,根据个性化体验和进度调整练习内容。 借助 AI 对话助手模拟对话练习,提高交流能力。 工具: 语言学习应用: Duolingo:使用 AI 个性化学习体验,提供词汇、语法、听力和口语练习。下载应用,选择语言,按课程指引学习。 Babbel:结合 AI 技术提供个性化课程和练习,注重实际交流技能。注册账户,选择课程,按学习计划学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析进度提供练习和反馈。注册并选择语言,使用多种练习模式学习。 AI 对话助手: ChatGPT:可模拟对话练习,询问语法、词汇等问题,模拟交流场景。在聊天界面选择目标语言进行对话。 Google Assistant:支持多种语言,可进行日常对话和词汇学习。设置目标语言,通过语音或文本输入互动。 另外,Trae Win+Mac 版已全量上线,标配 Claude3.5sonnet 模型免费不限量,编辑器所有功能原生支持中文,是一款对中文用户友好的 AI 编程工具。
2025-02-19
如何用Ai工具做好产品营销,适合新媒体运营
使用 AI 工具做好产品营销,适合新媒体运营,可参考以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速获取关键信息,如受欢迎的产品、价格区间、销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提升搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具,根据市场趋势和用户偏好生成吸引人的产品页面布局。 4. 内容生成:依靠 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:利用 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:让 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户购买历史和偏好提供个性化产品推荐,增加销售额。 9. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 客户服务,解答疑问,提高满意度。 10. 营销活动分析:依靠 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:利用 AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:通过 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 在电子商务领域,AI 工具已成为重要助力。像 Flair、Booth 和 Bloom 等工具能帮助品牌创建吸引人的产品照片。除产品照片外,AdCreative、Pencil 可制作营销材料,Frase 或 Writesonic 能编写 SEO 优化的产品描述。未来,用户有望仅通过描述期望的审美并点击按钮,就能创建完整的电商商店及营销材料。
2025-02-19
AI在强业务规则的公文写作场景可以如何应用?
在强业务规则的公文写作场景中,AI 可以通过以下方式应用: 1. 先梳理传统公文写作工作流,包括选题、搜资料、列提纲、起标题、配图片、排版发布等环节。 2. 在资料搜集环节,可以使用 AI 搜索工具辅助,提高搜集效率和准确性。 3. 在写作环节,可引入如 Claude 等工具辅助创作。 4. 对于公文润色,AI 能够在保留文章结构和准确性的基础上,提升公文质量。 5. 例如“学习强国公文助手”,可以帮助用户进行文汇检索、AI 公文书写等。 需要注意的是,在引入 AI 之前要先理清传统工作流,明确每个环节的因果逻辑和输入输出关系,以业务逻辑为先,让 AI 为更高效地达成业务目标服务。
2025-02-19
AI在垂直领域的应用
AI 在垂直领域有广泛的应用,以下为您详细介绍: 1. 医疗保健: 医学影像分析:用于分析医学图像,辅助诊断疾病。 药物研发:加速药物研发,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据,提供个性化治疗方案。 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,辅助贷款决策。 投资分析:分析市场数据,帮助投资者做出明智投资决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题,解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输:暂未提及具体应用。 在 2024 年,AI 在以下领域有新的应用与发展趋势: 1. 机器人研究:苹果 Vision Pro 成为必备工具,用于远程操作控制机器人的运动和动作。 2. 医学:利用大模型生成合成数据,如微调 Stable Diffusion 生成高保真度和概念正确的合成 X 射线扫描数据。 3. 企业自动化:新方法如 FlowMind 和 ECLAIR 使用基础模型解决传统机器人流程自动化的限制,提高工作流理解准确率和完成率。 在电子商务领域,AI 工具已被广泛整合,如 Flair、Booth 和 Bloom 帮助品牌创建产品照片,AdCreative、Pencil 制作营销材料,Frase 或 Writesonic 编写产品描述,未来有望通过简单描述创建完整电商商店及营销材料。
2025-02-19
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
ai作画中, 如何把一个建筑物变成jellycat
要将一个建筑物变成 Jellycat 风格,您可以按照以下步骤操作: 1. 打开即梦 AI,选择图片生成,网址为:https://jimeng.jianying.com/ 2. 输入提示词,格式为:Jellycat 风+毛茸茸的建筑物名称,例如“Jellycat 风+毛茸茸的埃菲尔铁塔”,您可以充分发挥创意。 3. 选择最新的模型,将精细度拉到最大值。 4. 点击生成,几秒钟后就能看到您想要的图片效果。 以下是一些案例参考: 提示词:jellycat 风格,一个毛茸茸的埃菲尔铁塔 提示词:jellycat 风格,一个毛茸茸的锅子和饺子 提示词:jellycat 风格,一个毛茸茸的星巴克咖啡杯 提示词:jellycat 风格,一个毛茸茸的水蜜桃 原文链接:https://mp.weixin.qq.com/s/4w1dEvlH1l6mqTrPLGPC4g
2025-02-19
有什么可以通过文字生成流程图或其他图片的AI网址
以下是一些可以通过文字生成流程图或其他图片的 AI 网址: DALL·E:由 OpenAI 推出,可根据输入的文本描述生成逼真的图片。 StableDiffusion:开源的文生图工具,能生成高质量图片,支持多种模型和算法。 MidJourney:因高质量的图像生成效果和用户友好的界面设计而受欢迎,在创意设计人群中流行。 您可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104 )查看更多文生图工具。 此外,还有一些文字生成视频的 AI 产品,如: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多的文生视频网站可查看:https://www.waytoagi.com/category/38 。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-18
wps怎么接入deepseek 流程
以下是 WPS 接入 DeepSeek 的流程: 1. 注册并登录火山引擎,点击立即体验进入控制台。链接:https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台,在 AI 领域最为大众所熟知的应该是“豆包大模型”,这里就是源头) 2. 创建一个接入点:点击在线推理创建推理接入点 3. 为接入点命名为 DeepSeekR1。然后可能会提示:“该模型未开通,开通后可创建推理接入点”。如果有提示,就点击“立即开通”,开通一下就可以了。如果无提示则直接到第 5 步,点击确认接入。 4. 点击“立即开通”跳转到此页面,勾选全部模型和协议,一路点击开通即可。(这里是免费的) 5. 确认以下无误后,点击“确认接入”按钮。 6. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”(我们刚才自己设置的命名)。重点来了:这个就是推理点的 ID,复制他放到您的微信里,发给自己保存一下。 7. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】 8. 如果您已经有 API key 了,就直接查看并复制。如果没有,则点击【创建 API key】 9. 把这个复制好之后,也放到您自己微信里,保存好。到这一步,我们已经完成拿到了模型的密钥。接着,就可以去把它配置到网页聊天里使用。
2025-02-17
wps接入deepseek 的流程
以下是 WPS 接入 DeepSeek 的流程: 1. 注册并登录火山引擎,点击立即体验进入控制台。链接:https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台,在 AI 领域最为大众所熟知的应该是“豆包大模型”,这里就是源头) 2. 创建一个接入点:点击在线推理创建推理接入点 3. 为接入点命名为 DeepSeekR1。然后可能会提示:“该模型未开通,开通后可创建推理接入点”。如果有提示,就点击“立即开通”,开通一下即可。如果无提示则直接到第 5 步,点击确认接入。 4. 点击“立即开通”跳转到此页面,勾选全部模型和协议,一路点击开通(这里是免费的) 5. 确认以下无误后,点击“确认接入”按钮。 6. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”(我们刚才自己设置的命名)。重点来了:这个就是推理点的 ID,复制他放到您的微信里,发给自己保存一下。 7. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】 8. 如果您已经有 API key 了,就直接查看并复制。如果没有,则点击【创建 API key】 9. 把这个复制好之后,也放到您自己微信里,保存好。到这一步,我们已经完成拿到了模型的密钥。接着,就可以去把它配置到网页聊天里使用。
2025-02-17
可以根据制度梳理流程的AI
以下是关于可以根据制度梳理流程的 AI 的相关信息: 基于 Agent 的创造者学习方向:以大语言模型为大脑,串联所有已有的工具和新造的 AI 工具,着重关注在创造能落地 AI 的 agent 应用。 Agent 工程(基础版)的迭代范式: 梳理流程:梳理工作流程 SOP,并拆解成多个单一「任务」和多个「任务执行流程」。 「任务」工具化:自动化每一个「任务」,形成一系列的小工具,让机器能完成每一个单一任务。 建立规划:串联工具,基于 agent 框架让 bot 来规划「任务执行流程」。 迭代优化:不停迭代优化「任务」工具和「任务执行流程」规划,造就能应对实际场景的 Agent。 关于 AI 在 DevOps 流程中的作用:AI 可以在 DevOps 中承担指定计划、拆分任务和调用工具的角色,但目前无法完全评定任务结果的正确性和质量。现阶段更靠谱的方式是让 AI 辅助完成部分任务(如画原型图、设计表结构、写自动化测试代码),但需要人类验证后才能进行下一步操作。完全依赖 AI 可能带来风险,如生产环境出错或被黑客恶意利用漏洞。 关于 ChatGPT 的记忆能力:ChatGPT 支持记忆功能,可通过摘要保存对话内容以延续角色和对话风格,但新开会话可能在高推理任务中效果更好。建议将角色设定和部分对话作为样例(fewshot)放入提示词中,以优化生成质量。 学习 GPT 的妙招:结合视频教程、文字转录和基础资料,通过 ChatGPT 讲解学习内容。更好的方式是角色反转,自己当老师,ChatGPT 当学生,通过提问互动和查漏补缺能有效提升学习效果。
2025-02-12
能生成流程图吗
生成流程图有以下几种方式: 1. 可视化拖拽: 代表产品有:(web 工具)、visio(本地软件)。 优点:直观。 缺点:需要花时间在布局上。 2. 语法渲染成图形: 代表语法:。 优点: 只用关注逻辑,文本即图形,方便直接嵌入在 markdown 文件中,比如在用 tyora、markdown 写文档时。 多样性,不同渲染引擎可渲染成多种样式。 缺点:有点抽象。 可以用 ChatGPT 来帮忙,通过自然语法转成图形语法,生成流程如下: 1. 确定制作目标。 2. 通过自然语法描述逻辑。 3. 在线校验测试是否成功。 此外,还有“超级微信机器人”可以通过 GPT4 tubro(128k)大模型、Dalle 3 绘画、智能 Bing&Google 搜索、谷歌搜图、GPT4v 识图、B站 等各大网站专用搜索、Generate MindMap 生成流程图来支撑其强大的能力,但使用微信机器人存在封号危险,且操作需依法合规,注意数据处理等问题。
2025-02-11
企业准备把钉钉迁移打企业微信,智能人事 审批流程 考勤打卡这些都能依靠企业微信达到吗
企业微信具备智能人事、审批流程和考勤打卡等功能。但具体能否完全满足您企业从钉钉迁移过来后的需求,还需要根据您企业的业务特点和具体要求进行评估和适配。一般来说,企业微信在这些方面提供了较为全面的解决方案,但在实际应用中可能会存在一些差异和需要调整的地方。
2025-02-10
我是一个小白,怎么能在这个网站上学习
以下是为您提供的在网站上学习 AI 的一些建议: 1. 从基础的 prompt 开始:在 3.5 刚出现时,对 AI 生成原理的理解加上写好 prompt,能提高问问题和解决问题的效率。 2. 参与社区活动:例如《谁是人类》这类活动,社区中已经解决了很多门槛问题,只需花时间和做准备。 3. 利用开发工具:如 Windsurf ,它具有卓越的上下文理解能力、强大的功能特性和广泛的应用支持,能让环境配置变得轻松,还能自动完成一些重复性操作,支持多语言和跨平台。 4. 从游戏入手:像通过 Coze 平台打造图像流游戏 Bot ,掌握 AI 人格设定和对话逻辑的设计方法,了解如何配置图像生成功能,并不断优化。 希望这些建议对您有所帮助。
2025-02-19
如何快速学习cursor
以下是关于快速学习 Cursor 的相关内容: Cursor 附带一组第三方文档,可通过@Docs 符号访问。若要添加自定义文档,可通过@Docs>Add new doc 实现,粘贴所需文档的 URL 后会显示相应模式,之后 Cursor 会索引并学习文档,您就能像使用其他文档一样将其用作上下文。在 Cursor Settings>Features>Docs 下可管理自定义文档,能进行编辑、删除或添加新文档的操作。 0 编程基础入门 Cursor 极简使用指南: 下载 Cursor:https://www.cursor.com/ 注册账号,可用邮箱(如 google/github/163/qq 邮箱)登录。 安装中文包插件。 参考相关链接获取更多信息: 做一个贪吃蛇游戏(在网页中玩)的需求设置:在设置中 Rule for AI 配置,按 ctrl/cmd+i 输入需求,如“帮我做一个贪吃蛇游戏,这个游戏的规则和逻辑如下……”,并清晰表达需求,包括游戏界面、蛇的移动、食物、增长、死亡条件、得分、难度递增、游戏结束等方面。 Cursor 总结: 优点:是对话式编程工具,像在线编程学习机,集代码编写、报错调试、运行于一体,能以对话方式消除学习代码的恐惧感,适合简单、原型类项目,能让小白无压力入门代码,解决实际问题,提高专业程序员效率。 不足:目前 AI 编程替代专业程序员是伪命题,它较适合简单项目,复杂和商业化应用有困难,需考虑长期维护、用户场景和稳定性等因素。代码编写只是开发一环,程序员工作还包括需求评估沟通、架构设计、调试部署等多个模块,大语言模型面对复杂项目可能改好一个 bug 产生一个新 bug。但应积极拥抱技术发展,从需求出发解决实际问题,让小白也能编程。
2025-02-19
学习路径
以下是不同方向的学习路径: LLM 开发学习路径: 1. 掌握深度学习和自然语言处理基础:包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理基础,如词向量、序列模型、注意力机制等。相关课程有吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理:包括 Transformer 模型架构及自注意力机制原理,BERT 的预训练和微调方法,掌握相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调:包括大规模文本语料预处理,LLM 预训练框架,如 PyTorch、TensorFlow 等,微调 LLM 模型进行特定任务迁移。相关资源有 HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署:包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,模型服务化、在线推理、多语言支持等。相关资源有 ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习:结合行业场景,进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态:关注顶会最新论文、技术博客等资源。 AI 与宠物结合的学习路径: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 AI 技术研究方向学习路径: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 AI 应用方向学习路径: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-02-19
我是一个小白,我想要一个deepseek学习路线
以下是为您提供的 DeepSeek 学习路线: 1. 首先,通过相关报道和研究,了解 DeepSeek 在全球 AI 社区的意义,包括技术突破与资源分配策略。重点关注其长上下文能力、量化商业模式以及对 AI 生态系统的深远影响。您可以参考: 2. 深入研究 DeepSeek 在架构和工程上的创新,例如 MoE、MLA、MTP 和 FP8 混合精度训练。思考其在工程和应用平衡中的高效优化方式,以及开源与闭源竞争的相关反思和 AI 生态未来发展方向。相关内容: 3. 了解 DeepSeek R1 模型,它属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考来提升回答质量。理解这种模拟人类深度思考的能力以及其背后独特的“教育方式”。 4. 学习 DeepSeek 深夜发布的大一统模型 JanusPro,它将图像理解和生成统一在一个模型中。了解其具有的两种本领,包括理解模式和画画模式,以及其核心的 DeepSeek 语言模型、特别训练法、与 Diffusion 模型的区别、好处和关键设计等方面。
2025-02-19
入门学习
新手入门学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果是入门强化学习: 1. 如果没有概率论和线性代数基础,且差不多都忘完了,可以去看一下相关课程学习一下,大约周末一天时间能搞定;如果不关注公式,这一步可先忽略。 2. 对机器学习没有基础的话,可以先看吴恩达的课程,有大致理解后,再看李宏毅的课程作为补充。如果单纯想入门学习强化学习,只需要看李宏毅课程前几节讲完神经网络那里就差不多了,这个视频课程估计要看 25 小时左右。 3. 学完之后可以跟着《动手学深度学习 https://hrl.boyuai.com/》一起动手学习学到的概念,写写代码,入门的话看前五章就好,本篇文章的很多资料也整理自这本书,大约 10 小时左右。 4. 接下来可以看看 B 站王树森的深度学习的课程,先看前几节学习强化学习的基础知识点,大约 5 小时左右。 5. 到这个阶段可能还是懵的,需要上手做点项目,可以看《动手学强化学习》这本书,已开源 https://hrl.boyuai.com/,只看到 DQN 的部分,大约十几小时。
2025-02-19