Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI大模型的类别

Answer

AI 大模型主要包括以下类别:

  1. 生成式 AI:能够生成文本、图片、音频、视频等内容形式,生成的内容称为 AIGC。
  2. LLM(大语言模型):例如谷歌的 BERT 模型,可用于语义理解,如上下文理解、情感分析、文本分类等,生成只是其处理任务之一。对于生成式 AI,生成图像的扩散模型不属于大语言模型。

相关技术名词及概念关系:

  1. AI:即人工智能。
  2. 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习。
    • 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。
    • 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。
    • 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。
  3. 深度学习:一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。

技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,其完全基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。

Content generated by AI large model, please carefully verify (powered by aily)

References

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。

Others are asking
如何用AI进行考公
很抱歉,目前提供的内容中没有关于如何用 AI 进行考公的直接相关信息。但可以为您提供一些可能有帮助的思路: 1. 利用自然语言处理(NLP)技术辅助学习和理解考公相关的资料,例如对政策文件、法律法规等进行解析和总结。 2. 借助 AI 智能体进行模拟面试练习,提高应对面试的能力。 3. 运用数据分析技术,分析历年考公的题目和趋势,为备考提供参考。 同时,关于 AI 相关的其他方面,如 AI 面试官产品,有以下例子: 1. 用友大易 AI 面试产品:具有强大的技术底座、高度的场景贴合度、招聘全环节集成的解决方案、先进的防作弊技术以及严密的数据安全保障。可以帮助企业完成面试,还能借助人岗匹配模型,自主完成初筛,并对符合企业要求的候选人自动发送面试邀约。 2. 海纳 AI 面试:通过在线方式、无需人为干预完成自动面试、自动评估,精准度高达 98%,面试效率比人工方式提升 5 倍以上。同时候选人体验也得到改善、到面率比之前提升最高达 30%。 3. InterviewAI:这是一个在线平台,提供与面试职位相关的问题和由 AI 生成的推荐答案。候选人可以使用设备上的麦克风回答每个问题,每个问题最多回答三次。对于每个答案,候选人将收到评估、建议和得分。 在 AI 视频制作方面,作为小白需要思路清晰,给 AI 确切的画面让其执行,例如:一个中年妇女辅导 12 岁的女儿作业,女孩看着妇女,妇女挠挠头,表情沉重。然后拿出手机对着桌子上的书拍照,然后放下手机,跟小姑娘说话,表情舒缓,欣慰,温柔。侧面镜头,镜头环绕到正面。要杜绝不确切描述,如“一个女生备考,用纳米 AI 定制模拟专题练习,最后成功上岸”。 另外,关于个人定位和画像,例如邬嘉文在 AI 求职助手中,具备产品设计与开发、人工智能与技术、市场与用户研究、沟通与协作、分析工具与方法、创新与思维等方面的核心技能,以及技术与开发、数据分析与人工智能、市场营销与销售、管理与沟通等方面的非核心技能。
2025-02-23
有没有能接入招聘网站的AI工具?
以下是一些能接入招聘网站的 AI 工具: 1. 智联招聘 APP:具有 AI 招聘筛选工具,利用自然语言处理和机器学习技术,帮助企业快速筛选简历,提高招聘效率。 2. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 3. Rezi:是一个领先的 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 4. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 此外,通过对 Cursor 等工具进行魔改,如文中提到的在一小时内实现类似 Devin 90%的功能,也可以用于相关招聘网站的开发。更多相关信息,您还可以查看:https://www.waytoagi.com/category/79 。 以上内容由 AI 大模型生成,请仔细甄别。
2025-02-23
豆包,chatgpt算哪种类型的ai
ChatGPT 是由致力于 AGI(通用人工智能)的公司 OpenAI 研发的一款 AI 技术驱动的 NLP(自然语言处理)聊天工具。它于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM(大型语言模型)。 ChatGPT 是 AIGC(人工智能生成内容)技术的一个应用实例,形象比喻为通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。其英文解释为:Chat 聊天,G:Generative 生成,P:Pretrained 预训练,T:Transformer 类神经网络模型。它是美国 OpenAI 公司开发的一款基于大型语言模型的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。
2025-02-23
对话ai平台有哪些,各有什么特色
以下是一些常见的对话 AI 平台及其特色: 1. Replika:是最早和最著名的全栈伴侣应用程序之一,于 2017 年推出。用户可以设计理想的伴侣,关系会随时间发展,其代表能存储记忆用于未来对话,甚至发送照片。Replika 的 Subreddit 展示了其热情的用户群,用户会分享各种与代表的互动。但今年早些时候该应用程序移除了“情色角色扮演”功能,引起用户不满。 2. Character AI:基于角色的平台,可与数百个由 AI 驱动的角色对话,包括名人和受欢迎的动漫角色,还能创建自己的角色并赋予各种属性和功能,用户可训练角色、评价回答并生成新回答。 3. Chai:专门用于与机器人聊天的应用程序。 4. Janitor AI:专门用于与机器人聊天的应用程序。 5. Chub AI:专门用于与机器人聊天的应用程序。 6. Charstar:专门用于与机器人聊天的应用程序。 7. SpicyChat:专门用于与机器人聊天的应用程序。 8. Character.ai:行业扛把子,创建角色功能简洁,支持上传声音片段实现语言克隆。用户通过一问一答的多轮对话方式与角色交互,支持回复重新生成、回滚至指定位置。 9. 筑梦岛:背靠阅文,内容 IP 资源相对丰富。具有单人聊天和多人聊天模式,多人聊天为伪群聊。角色设定是核心人设属性,有梦境、小剧场等功能,创建角色需要提供各类信息。
2025-02-23
AI能做到什么
AI 能做到的事情非常广泛,主要包括以下方面: 1. 科学发现:例如利用计算机视觉模型拼凑出首个距离地球 5500 万光年的黑洞图像,解决蛋白质折叠难题等。 2. 医疗领域:如预测蛋白质结构以预防抗生素耐药、推进疾病研究、辅助乳腺癌筛查等。 3. 文本生成:涵盖写文章、对话聊天、编程写代码、翻译、阅读理解、推理等众多任务。 4. 图像和视频理解:能理解真实世界的图像、网页截图和文字数据的图片,甚至能看懂抽象表达并进行推理作答,还能看懂专业的医学图像,理解人类的“笑点”。 5. 图像生成:包括生成写实、油画、超现实、写意等多种风格的图像,可应用于商品设计、商标设计、UI 界面设计、家装设计等,电商平台上的许多商品图片也由 AI 生成。 6. 农业领域:提高农业生产效率,如通过 AI 机器人。 7. 社会生活:在气候变化应对、创造就业、改善工作场所等方面发挥作用。
2025-02-23
AI工具汇总
以下是一些常见的 AI 工具汇总: 创作方面: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 图片处理:DallE、Leonardo、BlueWillow、Midjourney 版权写作:Rytr、Copy AI、Wordtune、Writesonic 设计:Canva、Clipdrop、Designify、Microsoft Designer 网站搭建:10Web、Framer、Hostinger、Landingsite 视频处理:Klap、Opus、Invideo、Heygen 音频处理:Murf、LovoAI、Resemble、Eleven Labs SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope Logo 设计:Looka、LogoAI、Brandmark、Logomaster 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 自动化工具:Make、Zapier、Bardeen、Postman 市场营销 相关资讯: Writerbuddy AI 分析了 3000 多种 AI 工具,选出访问量最大的 50 个工具,共产生超过 240 亿次访问量,ChatGPT 独占 140 亿流量,占 60%,AI 行业每月增长 2.363 亿访问量,50 个工具增长率达 10.7 倍。 AI 用户的地理分布方面,美国领先,印度和东南亚国家紧随其后,中国 AI 用户未进前 20,可能因本土工具和监管环境,欧洲合计 39 亿访问量,占 16.21%。 MotionGPT 发布,这是多模态运动语言模型,可以通过文字聊天生成逼真的人体运动,并发布了演示视频。 多邻国因 AI 翻译能力解雇大量翻译合同工,前员工证实被解雇,剩余人员审查 AI 内容。 Radishes 是开源无版权音乐平台,支持 Windows、macOS、Linux 和 Web,功能包括音乐搜索、下载、每日歌单推荐等。
2025-02-23
AI应用的类别
以下是一些 AI 应用的类别: 1. AI 摄影参数调整助手:使用图像识别、数据分析技术,在摄影 APP 中实现根据场景自动调整摄影参数,市场规模达数亿美元。 2. AI 音乐情感分析平台:运用机器学习、音频处理技术,通过音乐情感分析软件分析音乐的情感表达,市场规模达数亿美元。 3. AI 家居智能照明系统:借助物联网技术、机器学习,如小米智能照明系统实现家居照明的智能化控制,市场规模达数十亿美元。 4. AI 金融风险预警平台:利用数据分析、机器学习,通过金融风险预警软件提前预警金融风险,市场规模达数十亿美元。 5. AI 旅游路线优化平台:采用数据分析、自然语言处理,如马蜂窝路线优化功能根据用户需求优化旅游路线,市场规模达数亿美元。 6. AI 游戏道具推荐系统:使用数据分析、机器学习,在游戏内商城推荐功能中根据玩家需求推荐游戏道具,市场规模达数亿美元。 7. AI 天气预报分时服务:运用数据分析、机器学习,如彩云天气分时预报提供精准的分时天气预报,市场规模达数亿美元。 8. AI 医疗病历分析平台:借助数据分析、自然语言处理,通过医渡云病历分析系统分析医疗病历,辅助诊断,市场规模达数十亿美元。 9. AI 会议发言总结工具:利用自然语言处理、机器学习,如讯飞听见会议总结功能自动总结会议发言内容,市场规模达数亿美元。 10. AI 书法作品临摹辅助工具:采用图像识别、数据分析,在书法临摹软件中帮助书法爱好者进行临摹,市场规模达数亿美元。 11. AI 菜谱口味调整工具:运用自然语言处理、数据分析,如下厨房口味调整功能根据用户反馈调整菜谱口味,市场规模达数亿美元。 12. AI 语言学习纠错平台:借助自然语言处理、机器学习,如英语流利说纠错功能帮助语言学习者纠正错误,市场规模达数十亿美元。 13. AI 电影剧情分析系统:利用数据分析、自然语言处理,如豆瓣电影剧情分析工具分析电影剧情,提供深度解读,市场规模达数亿美元。 14. AI 办公文件分类系统:采用数据分析、机器学习,如腾讯文档分类功能自动分类办公文件,方便管理,市场规模达数亿美元。 15. AI 美容护肤方案定制平台:借助图像识别、数据分析,如美丽修行定制方案功能根据用户肤质定制护肤方案,市场规模达数亿美元。
2025-02-05
如何训练一个自己的模型用来识别不同的图片类别
训练自己的模型来识别不同的图片类别可以参考以下方法: 对于扩散模型(如 Midjourney): 强大的扩散模型训练往往消耗大量 GPU 资源,推理成本高。在有限计算资源下,可在强大预训练自动编码器的潜在空间中应用扩散模型,以在复杂度降低和细节保留间达到平衡,提高视觉保真度。引入交叉注意力层可使其成为灵活的生成器,支持多种条件输入。 Midjourney 会定期发布新模型版本以提升效率、连贯性和质量。最新的 V5 模型具有更广泛的风格范围、更高的图像质量、更出色的自然语言提示解读能力等。 用 SD 训练贴纸 LoRA 模型: 对于原始形象,可通过 MJ 关键词生成不同风格的贴图,总结其特征。注意关键词中对颜色的限制,保持正面和负面情绪数据比例平衡。若训练 25626 大小的表情包,初始素材可能够用,若训练更高像素图片,可能需进一步使用 MJ 垫图和高清扩展功能。 进行高清化时,从 256 到 1024 分辨率,输入左图并加入内容和风格描述,挑选合适的图片。 多模态模型(以 StableDiffusion 为例): 多模态模型包括文生图、图生图、图生视频、文生视频等,底层逻辑通常从生图片源头开始。 扩散模型(如 StableDiffusion 中使用的)的训练是对图片加减噪点的过程。先对海量带有标注文字描述的图片逐渐加噪点,模型学习每一步图片向量值和文字向量值的数据分布演变规律,完成训练。输入文字后,模型根据文字向量指导充满噪点的图片减噪点生成最终图片。扩散模型加减噪点方式与大脑构思图片方式类似,且多模态模型会关联文字向量值和图片像素点向量值。
2025-01-31
大模型家族、类别、应用场景
大模型主要分为以下两类: 1. 大型语言模型:专注于处理和生成文本信息,主要应用于自然语言处理任务,如文本翻译、文本生成、情感分析等。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。 大型多模态模型与大型语言模型的不同点包括: 1. 处理的信息类型不同:大型语言模型专注于文本信息,大型多模态模型能处理多种类型信息。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,大型多模态模型应用领域更广泛。 3. 数据需求不同:大型语言模型主要依赖大量文本数据训练,大型多模态模型需要多种类型数据训练。 对于聊天大模型的深度用户,把同一个问题让不同的大模型解答是高频操作,主要适用于以下场景: 1. 对回答的精准性、全面性要求较高的问题,因为不同大模型在解决不同问题时各有优劣。 2. 需要多方交叉验证,规避模型幻觉的客观事实类问题。 常用的模型网站有: 1. 2. 3. 4. 5. 下载模型后需要将之放置在指定的目录下,不同类型的模型放置目录不同: 1. 大模型(Ckpt):放入 models\\Stablediffusion 2. VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 3. Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 4. Embedding 模型:放入 embeddings 目录 模型的类型可以通过检测。
2025-01-06
大模型家族、类别、应用场景
大模型主要分为以下两类: 1. 大型语言模型:专注于处理和生成文本信息,主要应用于自然语言处理任务,如文本翻译、文本生成、情感分析等。其训练主要依赖大量的文本数据。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。其训练需要多种类型的数据,包括文本、图片、音频等。 此外,还有相对规模较小的模型,这些模型通常是为完成特定任务而设计的。 大模型的应用场景包括: 1. 对于回答的精准性、全面性要求较高的问题,不同的大模型各有优劣,可兼听获取更好的答案。 2. 需要多方交叉验证,规避模型幻觉的客观事实类问题。 常用的模型网站有: 1. 2. 3. 4. 5. 下载模型后,不同类型的模型放置位置不同: 1. 大模型(Ckpt):放入 models\\Stablediffusion 2. VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 3. Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 4. Embedding 模型:放入 embeddings 目录
2025-01-06
大模型家族、类别、应用场景
大模型主要分为以下两类: 1. 大型语言模型:专注于处理和生成文本信息,主要应用于自然语言处理任务,如文本翻译、文本生成、情感分析等。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。 大型多模态模型与大型语言模型的不同点包括: 1. 处理的信息类型不同:大型语言模型专注于文本,大型多模态模型能处理多种类型信息。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,大型多模态模型应用领域更广泛。 3. 数据需求不同:大型语言模型主要依赖大量文本数据训练,大型多模态模型需要多种类型数据训练。 对于聊天大模型的深度用户,常见的应用场景有: 1. 对回答的精准性、全面性要求较高的问题,因为不同大模型各有优劣。 2. 需要多方交叉验证,规避模型幻觉的客观事实类问题。 常用的模型网站有: 1. 2. 3. 4. 5. 下载模型后,不同类型的模型放置位置如下: 1. 大模型(Ckpt):放入 models\\Stablediffusion 2. VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 3. Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 4. Embedding 模型:放入 embeddings 目录
2025-01-06
帮我生成一个 AI 写作领域的产业图谱,只关注应用层,按照产品的类别来分类和举例
以下是 AI 写作领域应用层的产业图谱分类及举例: |序号|产品|主题|使用技术|市场规模|一句话介绍| ||||||| |1|Grammarly、秘塔写作猫|AI 智能写作助手|自然语言处理|数十亿美元|利用 AI 技术辅助用户进行高质量写作。| |2|阿里小蜜等电商客服|AI 智能客服外包服务|自然语言处理、机器学习|数十亿美元|为企业提供智能客服解决方案。|
2024-10-28
我是高中历史老师,我想知道用什么AI模型可以“将自己的PPT变成一篇论文”
目前在将 PPT 转换为论文方面,GPT 模型可能会有所帮助。例如,在“教育:一个历史老师用 GPT 给学生讲课”的案例中,学生利用 GPT 相关功能进行模拟体验,并根据要求撰写论文,包括分析模拟的准确性、进行事实核查等。 另外,Claude 模型也能在相关工作中发挥作用。比如可以帮助快速寻找符合条件的论文、提取精炼论文中的信息,甚至找到适合的 PPT 制作工具并指导使用。 此外,一些神经网络大模型通过预测下一个字的方式生成文字,这种方式具有一定的创意性,且可拓展到图像、声音等领域。但需要注意的是,AI 的预测不一定保证完全正确。
2025-02-22
ai绘画中的模型是什么意思
在 AI 绘画中,模型具有以下含义和特点: 1. 大模型如同主菜或主食,是生成图片的基础框架,决定了图片的基本风格和内容。 2. 小模型(Lora)如同佐料或调料包,能够帮助快速实现特定风格或角色的绘制,比如改变人物形象、画风,添加模型中原本没有的元素,如绘制特定的国内节日元素。 3. 模型的选择与搭配很重要,大模型和 Lora 要基于同一个基础模型才能搭配使用,以生成各种风格的图片。 4. 常用的模型网站有:。 5. 下载模型后需要将之放置在指定的目录下,不同类型的模型放置位置不同。例如,大模型(Ckpt)放入 models\\Stablediffusion;VAE 模型放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择;Lora/LoHA/LoCon 模型放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录;Embedding 模型放入 embeddings 目录。模型的类型可以通过检测。
2025-02-22
美国有哪些语言模型
美国的语言模型主要有 OpenAI 的 GPT4 、谷歌 DeepMind 与纽约大学团队开发的语言模型、谷歌的 LaMDA 等。其中,Llama 3.1 是较大的版本,在推理、数学、多语言和长上下文任务中能与 GPT4 相抗衡。此外,还包括被评估的如 GPT3 、PaLM 等语言模型。
2025-02-22
学习AI大模型
以下是关于学习 AI 大模型的相关知识: 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 概念与关系 AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似特征的组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-02-22
适合当作搜索引擎的大模型是什么?
以下是一些适合当作搜索引擎的大模型: Perplexity.ai:本质是个可联网的搜索引擎,完全免费,支持网页版、APP(目前支持 iOS,安卓即将推出)、Chrome 插件。网页版能力全面,能够根据提问从互联网上搜寻信息并给出总结后的答案。很多 Chat GPT 中调用插件才能解决的事情(联网查询、旅行、住宿、商品推荐)靠 Perplexity 就可以解决了。能给出信息来源网址,根据搜索内容给出继续对话的问题建议。支持筛选 Academic(包含不同领域的学术研究论文)、Wolfram|Alpha(包含数学、科学、经济学、语言学、工程学、社会科学、文化等领域的知识库)、Wikipedia(维基百科)、Youtube、Reddit(娱乐、社交和新闻网站)、News 进行搜索。访问地址: 。但要注意不要在开着浏览器翻译能力的同时使用,很可能会报错。另外,不使用 Copilot 能力的效果比较灾难,无法给出具体的酒店建议,只是列举了几个可以查酒店的渠道。
2025-02-22
2024 年值得关注的中文大模型全景图
2024 年,AI 大模型在生产和生活中落地速度迅猛,被称为国内大模型落地元年。以下是一些值得关注的情况: 国内大模型行业形成了以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争格局。 2024 年 1 至 11 月,国内大模型中标项目数量和金额大幅增长,中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。 在金融行业,百度以 14 个中标数量、3734.4 万元中标金额排名第一;科大讯飞居第二。 在智能终端行业,超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 百度表现突出,截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%。 2024 年 9 月 AI 行业大事记: 9 月 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。 9 月 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSEMoEA36B;OpenAI 发布 o1 模型。 9 月 14 日:人工智能生成合成内容标识办法;Jina AI 发布 ReaderLM、Jina Embeddings V3。 9 月 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。 9 月 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。 9 月 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step2 万亿参数 MoE 语言大模型。 9 月 21 日:大模型测试基准研究组正式成立。 9 月 23 日:钉钉 365 会员上线。 9 月 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。 9 月 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 WestlakeOmni。 大模型进入产业落地后,除了大模型本身能力质量要过硬外,落地应用所需要的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力,大模型的竞争正在加速成为体系化之战。
2025-02-21