Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

美国有哪些语言模型

Answer

美国的语言模型主要有 OpenAI 的 GPT-4 、谷歌 DeepMind 与纽约大学团队开发的语言模型、谷歌的 LaMDA 等。其中,Llama 3.1 是较大的版本,在推理、数学、多语言和长上下文任务中能与 GPT-4 相抗衡。此外,还包括被评估的如 GPT-3 、PaLM 等语言模型。

Content generated by AI large model, please carefully verify (powered by aily)

References

为什么图片模型比语言模型小

用户在形成一些使用习惯后,可能会发现,如果引入内嵌的AI技术,他们的体验会变得更加理想。我觉得,这种技术在文字理解方面,可能会比大多数现有技术要好。这是有道理的。比如一个绘图软件或AI,要想绘制出优秀的作品,首先需要对图像有深刻理解。那么,谁拥有最好的语言模型呢?目前看来,是OpenAI和它的GPT-4模型。因为图像生成(无论是text to image还是text to video)的核心质量,实际上是由文本控制的。去掉图片,只用文字表达,其实要求的模型复杂度会小很多,因为人类对图像的容错率相对较高。但如果一句话语法或逻辑错误,我们很容易察觉。我们的大脑在处理视觉信息时可以进行一定程度的“脑补”,但对于语言,这种补偿是有限的。所以,对于我们这些普通人来说,文字的准确性仍然非常重要。

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

Llama 3.1是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与GPT-4相抗衡。这标志首次开放模型缩小与专有前沿的差距。上图为人们关于Llama 3.1 405B与GPT,Claude的评估,win:胜Tie:平Loss:输借助AlphaGeometry,符号推理引擎得以拯救谷歌DeepMind与纽约大学团队使用符号引擎生成了数百万条合成定理和证明,利用这些数据从零开始训练了一个语言模型。AlphaGeometry在语言模型提出新构造,与符号引擎执行推理交替进行,直至找到解决方案。令人印象深刻的是,AlphaGeometry在奥林匹克级几何问题基准测试中解决了30题中的25题,接近人类国际数学奥林匹克金牌得主的表现。第二好的AI表现仅得10分。它还展示了泛化能力——例如,发现2004年国际数学奥林匹克问题中的一个具体细节对于证明并非必要“尽管受到制裁,中国LLMs在排行榜上风头正劲”由DeepSeek、零一万物、知谱AI和阿里巴巴开发的模型在LMSYS排行榜上取得了优异的成绩,尤其在数学和编程方面表现尤为出色。中国的最强模型与美国生产的第二强前沿模型竞争,同时在某些子任务上挑战了SOTA。中国模型更能优先考虑计算效率,以弥补GPU访问的限制,并学会比美国同行更有效地利用资源。中国模型各有优势。例如,DeepSeek在推理过程中通过多头隐式注意力减少内存需求,并且改进了MoE架构。同时,零一万物更加关注数据集的建设而不是建筑创新。由于在像Common Crawl这样的流行存储库中相对缺乏数据,因此它更加关注建立强大的中文数据集来弥补不足。

小七姐:Chain-of-Thought Prompting 精读翻译

语言模型。我们评估了五个大型语言模型。第一个是GPT-3(Brown等人,2020),我们使用的是text-ada-001、text-babbage-001、text-curie-001和text-davinci-002,这些模型可能对应于InstructGPT模型,分别有350M、1.3B、6.7B和175B参数(Ouyang等人,2022)。第二个是LaMDA(Thoppilan等人,2022),它有422M、2B、8B、68B和137B参数的模型。第三个是PaLM,其模型分别有8B、62B和540B参数。第四个是UL2 20B(Tay等人,2022),第五个是Codex(Chen等人,2021,OpenAI API中的code-davinci-002)。我们通过贪婪解码从模型中采样(尽管后续工作显示,通过取多次采样生成的最后答案的多数票,可以改进思维链提示(Wang等人,2022a))。对于LaMDA,我们报告了五个随机种子的平均结果,其中每个种子都有一个不同的随机洗牌的示例顺序。由于LaMDA的实验在不同的种子之间没有显示出大的差异,为了节省计算资源,我们报告了所有其他模型的单一示例顺序的结果。

Others are asking
我是高中历史老师,我想知道用什么AI模型可以“将自己的PPT变成一篇论文”
目前在将 PPT 转换为论文方面,GPT 模型可能会有所帮助。例如,在“教育:一个历史老师用 GPT 给学生讲课”的案例中,学生利用 GPT 相关功能进行模拟体验,并根据要求撰写论文,包括分析模拟的准确性、进行事实核查等。 另外,Claude 模型也能在相关工作中发挥作用。比如可以帮助快速寻找符合条件的论文、提取精炼论文中的信息,甚至找到适合的 PPT 制作工具并指导使用。 此外,一些神经网络大模型通过预测下一个字的方式生成文字,这种方式具有一定的创意性,且可拓展到图像、声音等领域。但需要注意的是,AI 的预测不一定保证完全正确。
2025-02-22
ai绘画中的模型是什么意思
在 AI 绘画中,模型具有以下含义和特点: 1. 大模型如同主菜或主食,是生成图片的基础框架,决定了图片的基本风格和内容。 2. 小模型(Lora)如同佐料或调料包,能够帮助快速实现特定风格或角色的绘制,比如改变人物形象、画风,添加模型中原本没有的元素,如绘制特定的国内节日元素。 3. 模型的选择与搭配很重要,大模型和 Lora 要基于同一个基础模型才能搭配使用,以生成各种风格的图片。 4. 常用的模型网站有:。 5. 下载模型后需要将之放置在指定的目录下,不同类型的模型放置位置不同。例如,大模型(Ckpt)放入 models\\Stablediffusion;VAE 模型放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择;Lora/LoHA/LoCon 模型放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录;Embedding 模型放入 embeddings 目录。模型的类型可以通过检测。
2025-02-22
学习AI大模型
以下是关于学习 AI 大模型的相关知识: 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 概念与关系 AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似特征的组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-02-22
适合当作搜索引擎的大模型是什么?
以下是一些适合当作搜索引擎的大模型: Perplexity.ai:本质是个可联网的搜索引擎,完全免费,支持网页版、APP(目前支持 iOS,安卓即将推出)、Chrome 插件。网页版能力全面,能够根据提问从互联网上搜寻信息并给出总结后的答案。很多 Chat GPT 中调用插件才能解决的事情(联网查询、旅行、住宿、商品推荐)靠 Perplexity 就可以解决了。能给出信息来源网址,根据搜索内容给出继续对话的问题建议。支持筛选 Academic(包含不同领域的学术研究论文)、Wolfram|Alpha(包含数学、科学、经济学、语言学、工程学、社会科学、文化等领域的知识库)、Wikipedia(维基百科)、Youtube、Reddit(娱乐、社交和新闻网站)、News 进行搜索。访问地址: 。但要注意不要在开着浏览器翻译能力的同时使用,很可能会报错。另外,不使用 Copilot 能力的效果比较灾难,无法给出具体的酒店建议,只是列举了几个可以查酒店的渠道。
2025-02-22
2024 年值得关注的中文大模型全景图
2024 年,AI 大模型在生产和生活中落地速度迅猛,被称为国内大模型落地元年。以下是一些值得关注的情况: 国内大模型行业形成了以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争格局。 2024 年 1 至 11 月,国内大模型中标项目数量和金额大幅增长,中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。 在金融行业,百度以 14 个中标数量、3734.4 万元中标金额排名第一;科大讯飞居第二。 在智能终端行业,超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 百度表现突出,截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%。 2024 年 9 月 AI 行业大事记: 9 月 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。 9 月 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSEMoEA36B;OpenAI 发布 o1 模型。 9 月 14 日:人工智能生成合成内容标识办法;Jina AI 发布 ReaderLM、Jina Embeddings V3。 9 月 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。 9 月 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。 9 月 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step2 万亿参数 MoE 语言大模型。 9 月 21 日:大模型测试基准研究组正式成立。 9 月 23 日:钉钉 365 会员上线。 9 月 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。 9 月 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 WestlakeOmni。 大模型进入产业落地后,除了大模型本身能力质量要过硬外,落地应用所需要的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力,大模型的竞争正在加速成为体系化之战。
2025-02-21
怎样操作来源模型
以下是关于操作来源模型的相关内容: 对于某些模型,如 Llama3.1 8B Instruct,操作方式如下: 1. 选择自定义提示词(也可选择预定义的话题,即黑色按钮,黑色按钮会有新手使用指引)。然后左边会出现熟悉的 chat 界面。 2. 输入对话内容,等待左右两边的内容生成。若右边的分析未刷新,在相关按钮间切换。 3. Activation Mode 可获得整段的推理判断;Attribution Mode 需选中一个 token,它会分析对应的最大关联内容。 对于 ComfyUI 玩 SDXL 的模型,操作要点包括: 1. 添加噪波:disable,运行后操作:fixed,步数:30,开始降噪步数:20,结束降噪步数:30,返回噪波:disable。 2. 若将 refiner 的模型连上提示词导致第一个 base 模型的链接断开,可通过加入新节点(右键点击【新建节点】【实用工具】【Primitive 元节点】),在文本节点上单击右键选择【转换文本为输入】,将元节点与文本节点相连接,复制出正负提示词节点分别给 base 模型和 refiner 模型,再将 base 模型的一套输出给第一个采样器节点,refiner 模型的一套输出给第二个采样器节点,使两个模型同时起作用。 对于 Tusiart 模型: 1. 首页包括模型、帖子、排行榜,可查看大手子炼成的模型、图片,不同模型有 checkpoint 和 lora 等标签,还有 XL 标签属于 SDXL 新模型,点击可看模型详细信息及返图区。 2. 基础模型(checkpoint)是生图必需的,任何生图操作必须选定,lora 是低阶自适应模型,可有可无,但对细节控制有价值。 3. ControlNet 可控制图片中特定图像,VAE 类似于滤镜可调整生图饱和度,选择 840000 即可。 4. Prompt 提示词是想要 AI 生成的内容,负向提示词 Negative Prompt 是想要 AI 避免产生的内容。
2025-02-21
有什么AI工具支持上传图片后,将图片内的文字翻译成多种语言后重新生成图片?
以下是为您找到的相关 AI 工具: MangaimageTranslator:具有高效 OCR 和 AI 翻译技术,支持多语言,能对去文字区域修复上色并重新渲染文本。相关链接:https://github.com/zyddnys/mangaimagetranslator 、https://touhou.ai/imgtrans/ 、https://x.com/imxiaohu/status/1770700877172736238?s=20
2025-02-21
汇总一下现在的大语言模型都有哪些,国外和国内的模型分别列出来
以下是国内外的大语言模型汇总: 国外大语言模型: GPT4(OpenAI):目前最先进的自然语言生成模型,可用于回答问题、撰写文章等。 Gemini Ultra(Google):多模态人工智能模型,采用神经网络架构,对标 GPT4,可用于回答问题、生成代码、处理文本等。 Claude 3 Opus(Anthropic):多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能;实现了接近完美的召回率。 国内大语言模型: 文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 讯飞星火:目前体验效果较好。 悟道・天鹰(北京智源人工智能研究院):首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。 清华 ChatGLM 。 此外,国内还有通用模型如通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。
2025-02-19
我是少儿编程老师,现在我需要知道编程每个语言之间的区别,并绘制出一张思维导图给我详细介绍
很抱歉,目前没有关于编程各语言区别的详细内容来为您绘制思维导图。但一般来说,不同的编程语言在语法、应用场景、性能特点等方面存在差异。例如,Python 语法简洁,常用于数据科学和人工智能;Java 应用广泛,在企业级开发中表现出色;C++ 性能高效,常用于系统编程和游戏开发等。您可以通过在线编程学习网站、相关书籍以及技术论坛获取更详细准确的信息来绘制思维导图。
2025-02-19
0到1使用大语言模型
以下是关于 0 到 1 使用大语言模型的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 3. 提供模型库,用户可从中下载不同参数和大小的模型,通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改温度参数调整创造性和连贯性,或设置特定系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 大模型安全: 1. 通过对齐(指令调优)使语言模型更好理解人类意图并增加安全保障,可拆解为监督微调、获取 reward model 和强化学习调整输出分布两部分。 2. LLAMA2 专门使用安全有监督微调确保语言模型安全。 3. 强化学习通过引入人类反馈数据调整模型输出分布,使模型面对训练分布外数据时能拒绝不当回答。 4. 但 Alignment 并不足以防护所有安全问题,存在越狱(Jailbreak)情况,导致模型对齐失效。 5. 还需关注隐私问题。 大模型架构与特点: 1. 包括 encoderonly、encoderdecoder 和 decoderonly 三种架构,目前熟知的 AI 助手多为 decoderonly 架构。 2. 大模型预训练数据量大,来自互联网,参数多,如 Open 在 2020 年发布的 GPT3 已达 170B 参数。 3. GPT3 可根据任务描述和示例完成任务,ChatGPT 则通过对话完成任务,二者在形式和安全性上有差别。
2025-02-19
用lua语言写一个a星算法
很抱歉,目前知识库中没有关于用 Lua 语言编写 A 星算法的相关内容。但我可以为您提供一个 A 星算法的基本框架和思路,您可以根据这个来尝试用 Lua 语言实现: A 星算法是一种在图形中寻找最短路径的常见算法。以下是其基本步骤: 1. 初始化 创建开放列表和关闭列表。 将起始节点添加到开放列表,并设置其 g 值(从起始节点到当前节点的实际代价)为 0,f 值(f = g + h,其中 h 是从当前节点到目标节点的估计代价)为 h 值。 2. 主循环 从开放列表中取出 f 值最小的节点作为当前节点。 将当前节点从开放列表移到关闭列表。 对于当前节点的所有相邻节点: 如果相邻节点在关闭列表中,跳过。 计算相邻节点的 g 值(通过当前节点的 g 值加上从当前节点到相邻节点的代价)。 如果相邻节点不在开放列表中,将其添加到开放列表,并设置其 g 值和 f 值。 如果相邻节点已经在开放列表中,且新计算的 g 值更小,更新其 g 值和 f 值。 3. 找到目标节点 当目标节点被添加到关闭列表时,算法结束。通过从目标节点回溯到起始节点,即可得到最短路径。 希望以上内容对您有所帮助,祝您成功实现用 Lua 语言编写 A 星算法。
2025-02-19
现在大语言模型的跑分对比
对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的语法、语义、上下文和隐含意义的理解程度。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:掌握广泛主题的知识程度,以及对特定领域或话题的理解深度。 4. 泛化能力:处理未见过的任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊不清指令的能力。 6. 偏见和伦理:生成文本时是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务中,提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准的语言模型评估基准,它们提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等性能指标来量化比较。 当前领先的大型语言模型的排行榜,例如聊天机器人竞技场,由伯克利的团队管理,根据 ELO 评级对不同语言模型进行排名,计算方式与国际象棋中的类似。在排行榜中,顶部多为专有模型,下方有开放权重的模型。 大语言模型的特点包括: 1. 架构:有 encoderonly、encoderdecoder、decoderonly 等,如 BERT 是 encoderonly 模型,google 的 T5 是 encoderdecoder 模型,众多 AI 助手多为 decoderonly 模型。 2. 数据和参数:预训练数据量大,往往来自互联网,包括论文、代码、公开网页等,参数多,如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。
2025-02-18
中国AI工具与美国的差距
在 AI 工具方面,中国与美国存在一定差距。 从访问量最大的 AI 工具及流量行为来看,在分析的前 50 名人工智能工具的地理行为方面,中国排名第 47 位。美国稳居第一,在研究的 12 个月里,美国人工智能行业的访问量达到了 55 亿次,占总流量的 22.62%。尽管美国人口少于中国和印度,但美国拥有价值超过 1.8 万亿美元的全球领先科技市场。 不过,在 2024 年,国内涌现出类似可灵、即梦、智谱清影等一系列 AI 生成视频工具,其生成结果甚至远超国外。但需要注意的是,某些报告中对于中国的 AI 生成图、生成视频的工具未展开详细说明,不能仅据此就认为中国在该功能的 AI 工具上落后于国外。
2024-12-10
“美国红杉资本指出,AI 供应链分为六层”,展开说说这六层吧
美国红杉资本指出的 AI 供应链从下到上分为六层,具体情况如下: 1. 第一层是芯片代工厂(如台积电),保持着高利润水平。 2. 第二层是芯片设计商(如英伟达),同样具有高利润。 3. 第三层是工业能源供应商(如电力公司),因数据中心需求激增而受益。 4. 第四层是云厂商,处于重金投入阶段,不仅斥巨资建设数据中心,还在训练自有模型或大举投资 AI 模型开发商。 5. 第五层是 AI 模型开发商,目前面临亏损。 6. 第六层即最上层是面向最终客户的应用服务商,虽充满潜力,但依赖消费者和企业付费,当前市场规模有限,尚不足以支撑整个供应链的经济模型。
2024-12-05
chatgpt美国账号能下载吗
ChatGPT 美国账号在中国区的 AppleStore 正常下载不了,需要切换到美区才可以下载。具体步骤如下: 1. 注册美区 AppleID: 电脑上打开 Apple ID 的注册页面:https://appleid.apple.com/ac 。 填写验证码后点继续。 到谷歌邮箱接收邮箱验证码。 接着验证手机号码。 验证完后会出现相关页面,此时美区 ID 已注册好但未激活,切换到手机操作。 打开 App Store,点击右上角人形头像,拉到最底下退出登录国内 ID。 再点击右上角人形头像,选择否手动输入美区 ID,接着会收到短信进行双重验证。 随便找个软件下载,弹出提示点击“检查”进行激活,点击同意进入下一页填写美国地址。 若付款方式中没有“无”或“none”选项,只需输入街道地址和电话。至此,通过中国 IP、中国手机号、免信用卡成功注册美区 ID。 2. 下载 ChatGPT: 美区 AppleID 注册完成后,在 AppleStore 中搜索 ChatGPT 进行下载安装,注意别下错。 3. 购买苹果礼品卡并充值订阅: 打开支付宝,地区切换到【美区任意区】,往下滑,找到【品牌精选 折扣礼品卡】,点击进去,可以看到【大牌礼品卡】,往下滑找到【App Store & iTunes US】礼品卡,按需要的金额购买,建议先买 20 刀。 支付宝购买礼品卡后,在 apple store 中兑换礼品卡,然后在 chatgpt 中购买订阅 gpt plus,如果中途不想继续订阅了,可到订阅列表中取消订阅。 完成以上步骤后,就可以开始使用 ChatGPT 了。打开 ChatGPT 应用或网页,点击开始对话。会员不管是在苹果还是安卓手机上购买的,电脑上都能登录。版本切到 ChatGPT 4o,点击右下角“耳机🎧”图标,选择一个声音,就可以体验流畅的语音对话。
2024-09-30