Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai大模型

Answer

AI 大模型是一个复杂但重要的概念。以下为您详细介绍:

  1. 概念:生成式 AI 生成的内容称为 AIGC。
  2. 概念与关系:
    • AI 即人工智能。
    • 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。
      • 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。
      • 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。
      • 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训小狗。
    • 深度学习是一种参照人脑有神经网络和神经元的方法(因层数多而称深度),神经网络可用于监督学习、无监督学习、强化学习。
    • 生成式 AI 可以生成文本、图片、音频、视频等内容形式。
    • LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。
  3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。
Content generated by AI large model, please carefully verify (powered by aily)

References

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。

Others are asking
最好的ai视频生成工具推荐
以下是为您推荐的一些优秀的 AI 视频生成工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作且支持视频编辑。 2. SVD:Stable Diffusion 的插件,可在图片基础上生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 6. PixVerse:多模态输入,支持文本到视频和图像到视频转换,提供多种风格选项,可精细化控制生成内容,有社区支持,生成效率高,提供视频上采样功能,但 Web 应用和 Discord 服务器生成的视频质量有差异,使用时仍需准确的文本描述。 7. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架。 8. Pictory:允许用户轻松创建和编辑高质量视频,可根据文本描述生成相应内容。 9. VEED.IO:提供 AI 图像和脚本生成器,帮助用户从图像制作视频并规划内容。 10. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务。 这些工具适用于不同的应用场景和需求,您可以根据自身情况进行选择。更多的文生视频网站可查看:https://www.waytoagi.com/category/38 。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-20
我想优化PPT,用什么AI工具
以下是一些可用于优化 PPT 的 AI 工具及相关信息: 目前市面上大多数 AI 生成 PPT 通常按照以下思路来完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 为您推荐以下一些 AI PPT 工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 此外,您还可以参考以下两篇市场分析的文章: 1. 《》 2. 《》 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-02-20
最近很火的AI工具
以下是一些最近很火的 AI 工具: 1. Unity 推出的两款 AI 工具: Copliot 工具:可通过与 Muse Chat 聊天快速启动创建游戏项目,如一键生成塔防类游戏基础框架、让人物角色做动作,还能协助编码和创建 3D 材质、动画等内容。现可申请加入等待列表:https://create.unity.com/aibeta ,官方提示暑假会进一步开放。 Unity Sentis:是第一个将 AI 模型嵌入到实时 3D 引擎中的跨平台解决方案,能在 Unity 运行时为游戏或应用程序嵌入 AI 模型,增强游戏玩法和其他功能,目前还在封测阶段。 2. NotebookLM:2024 年热门 AI 产品,12 月更新了新功能“加入”,用户可成为播客节目一环。但该功能存在一些限制,如很早之前就在 Google 开发者大会上展示过,最近才有 BETA 版;对部分地区用户有强限制,注意检查网络设置;“加入”功能使用不稳定,需多点耐心;目前只支持英语发言,上传文本语言不受限;目前只支持网页版,没有移动端。使用地址: 3. Writerbuddy AI 分析了 3000 多种 AI 工具,选出访问量最大的 50 个工具,ChatGPT 独占 60%流量。 4. MotionGPT 是多模态运动语言模型,可通过文字聊天生成逼真人体运动,并发布了演示视频。 5. Radishes 是开源无版权音乐平台,支持 Windows、macOS、Linux 和 Web,功能包括音乐搜索、下载、每日歌单推荐等。
2025-02-20
为什么要通过AI进行辅助写作
AI 可以辅助写作,但不能完全替代人类写作。原因如下: 写作是思考的过程,亲自动手写作能锻炼思维能力,包括组织语言、梳理逻辑和表达观点。对于想做 IP 账号的人,个人特色、思考角度和见解是吸引读者的关键,全靠 AI 输出会缺乏个人特色。 过度依赖 AI 写作,长期可能导致写作能力下降。 然而,AI 在写作中并非毫无用处,它可以成为得力助手,比如: 头脑风暴:在写作前提供选题建议或内容方向。 查找资料:快速汇总主题相关信息,节省查阅资料时间。 优化表达:检查语法、改善初稿的表达。 拓展思路:在卡壳时提供新的想法。 利用 AI 技术辅助写作课题的步骤和建议包括: 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 分析和总结信息:利用文本分析工具提取关键信息和主要观点。 生成大纲:使用写作助手生成包括引言、文献综述等部分的大纲。 撰写文献综述:借助 AI 工具确保内容准确完整。 构建方法论:根据需求利用 AI 建议设计研究方法。 数据分析:涉及数据收集和分析时,使用相关工具处理和解释数据。 撰写和编辑:利用写作工具撰写并检查语法和风格。 生成参考文献:使用文献管理工具生成正确格式。 审阅和修改:利用审阅工具检查逻辑性和一致性并修改。 提交前的检查:使用抄袭检测工具确保原创性和进行格式调整。 在论文写作领域,常用的 AI 工具和平台有: 文献管理和搜索:Zotero 可自动提取文献信息,Semantic Scholar 能提供文献推荐和引用分析。 内容生成和辅助写作:Grammarly 提供文本校对等帮助,Quillbot 可精简优化内容。 研究和数据分析:Google Colab 支持数据分析和可视化,Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 结合自动化处理格式,Overleaf 是在线 LaTeX 编辑器。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 检测抄袭。使用时要结合自身需求选择合适工具,并保持批判性思维,确保研究质量和学术诚信。
2025-02-20
通过AI辅助文献写作应该怎么做
利用 AI 辅助文献写作可以按照以下步骤进行: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:利用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:使用 AI 工具辅助撰写,确保内容准确完整。 6. 构建方法论:根据研究需求,参考 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,运用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写各个部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题的逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维,应保持批判性思维,确保研究质量和学术诚信。 在论文写作领域,常用的 AI 工具和平台有: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,帮助精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 使用这些工具时,应结合自身写作风格和需求选择合适的辅助工具。 对于孩子使用 AI 辅助写作,若担心其削弱思考力,应正确引导。比如将任务设置为让孩子提交与 AI 共同完成作文的聊天记录,要求孩子对 AI 作文进行点评批改、让 AI 迭代出更好的文章,重点关注孩子在对话记录中能否清晰指出 AI 作文的优缺点及修改方法。
2025-02-20
目前通过AI工具的结合是否可以根据已调研完成的病例数据输出一份医学报告
目前,通过 AI 工具的结合,在一定程度上可以根据已调研完成的病例数据输出医学报告。例如 GPT4V 在医学图像理解方面显示出了有效性,能够为各种医学图像生成完整的放射学报告。在一些案例中,如腹部 X 射线图像和右膝的 MRI 图像,GPT4V 能正确识别研究并提供准确诊断。但也存在一些错误,比如在手部/腕部 X 射线图像中错过远侧桡骨骨折,在胸部 CT 中错误识别结节位置和产生测量误差。尽管生成的报告能保持高质量格式,可作为模板减轻医学专业人士起草报告的工作负担,但由医学专业人士评估生成的报告以确保其正确性和准确性仍是至关重要的。
2025-02-20
生成3d模型可以让模型动起来吗?
生成 3D 模型后是可以让模型动起来的。例如,通过以下工具和流程可以实现: 工具链:Midjourney(生成等距图像)→Trellis(图像转 3D 模型)→Browser Lab(浏览器内 3D 编辑器)。 步骤: 使用 Midjourney 生成等距 3D 场景,提示词示例:3D isometric bedroom with a bed and desk。(DALLE 3 也可测试) 用 Trellis 工具将图像转为 3D 模型(支持 Tripo 3D 等其他工具)。工具地址: 下载生成的 3D 模型(GLB 文件或高斯分布文件),然后导入 Browser Lab 编辑器中进一步编辑。编辑器地址: 结合可灵 AI、Hailuo AI、Runway 等工具可让场景中的人物动起来。 对于文物雕塑上色,可使用 runway 让固有想法的物体变得动态,runway gen3 的 V2V 可以让物体重新建模、重新上色,再把背景上个色,传到剪映,加上 BGM。 先上传图片,运用提示词,只要让物体动起来就行,一次可能不成功,可以多次抽卡(分够的话)。 生成好的视频的左下方,点击“Reuse”,再点击上方出现的“Video to Video”,视频就会跳转到我们的工作台。 再在下方输入提示词“3D modeling with vibrant colors”等待生成。 再重复上面一个步骤,把提示词换成“Changing the background to the universe,the body emits light”。 最后导入剪映,按照自己喜欢的风格,剪成一个小短片。 另外,可以用即梦 S2.0(或其他可以动效的工具)出动态视频,在剪映提前转成 9:16 或 16:9 的大小,否则 runway 会裁剪尺寸。
2025-02-20
你用的是什么ai模型
以下是关于所使用的 AI 模型的相关信息: 我使用的是 GPT4,其他模型的效果不太好。如果您使用 GPT4 总结的内容质量不行,可以点击“重试”按钮让其重新总结。 默认情况下,Cursor Chat 将 OpenAI 的 GPT4(具体为 GPT4Turbo 实例)用于其 AI 模型,您可以通过选择喜欢的 AI 模型,且为 Chat 选择的模型会保存供未来使用。 有实例中使用的是阿里千问模型。
2025-02-20
你是基于什么模型?
我调用的是抖音集团的云雀大模型。 Gemini 模型是基于 Transformer 解码器构建的,对模型结构进行了优化,主要为大规模稳定训练及在 Google 的 TPU 上推理优化。它能适应与各种音频和视觉输入交织的文本输入,并生成文本和图像输出,经过训练支持 32k 的上下文长度,采用高效的注意机制。 麦橘超然 MajicFlus 是一款基于 flux.dev 微调融合的模型,专注于高质量人像生成,尤其擅长亚洲女性,有卓越人像生成能力、广泛适用性、简单易用等特点。多位社区成员基于模型制作的 LoRA 一同发布,扩展了功能与表现力,但它对社区大部分的 lora 不完美兼容,需降低权重至 0.5 以下。
2025-02-20
模型微调是怎么实现的
模型微调是一种迁移学习技术,常用于深度学习中。其基本思路是先有一个在大量数据上预训练的模型,已学会一些基本模式和结构,然后在特定任务数据上继续训练以适应新任务。 以下是关于模型微调的具体实现步骤: 1. 准备和上传训练数据。 2. 训练新的微调模型: LoRA 微调: 脚本见:。 具体实现代码见。 单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调: 脚本见:。 具体实现代码见。 3. 加载微调模型: LoRA 微调:基于 LoRA 微调的模型参数见基于 Llama2 的中文微调模型,LoRA 参数需和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数。 全量参数微调:调用方式同模型调用代码示例,只需修改其中的模型名称或保存路径。 微调的优点包括: 1. 比即时设计更高质量的结果。 2. 能够训练比提示中更多的例子。 3. 由于更短的提示而节省了 Token。 4. 更低的延迟请求。 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。 以下是两个帮助理解微调概念的例子: 1. 情感分类:先使用大量语料库预训练模型,使其学会基本语法和单词语义,再收集标注过的电影评论(积极或消极)继续训练模型,使其学会判断评论情感。 2. 图像分类:先使用大量图片(如 ImageNet 数据集)预训练模型,使其学会识别图片中的基本形状和纹理,再收集标注过的猫和狗的图片继续训练模型,使其学会区分猫和狗。
2025-02-19
汇总一下现在的大语言模型都有哪些,国外和国内的模型分别列出来
以下是国内外的大语言模型汇总: 国外大语言模型: GPT4(OpenAI):目前最先进的自然语言生成模型,可用于回答问题、撰写文章等。 Gemini Ultra(Google):多模态人工智能模型,采用神经网络架构,对标 GPT4,可用于回答问题、生成代码、处理文本等。 Claude 3 Opus(Anthropic):多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能;实现了接近完美的召回率。 国内大语言模型: 文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 讯飞星火:目前体验效果较好。 悟道・天鹰(北京智源人工智能研究院):首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。 清华 ChatGLM 。 此外,国内还有通用模型如通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。
2025-02-19
0到1使用大语言模型
以下是关于 0 到 1 使用大语言模型的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 3. 提供模型库,用户可从中下载不同参数和大小的模型,通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改温度参数调整创造性和连贯性,或设置特定系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 大模型安全: 1. 通过对齐(指令调优)使语言模型更好理解人类意图并增加安全保障,可拆解为监督微调、获取 reward model 和强化学习调整输出分布两部分。 2. LLAMA2 专门使用安全有监督微调确保语言模型安全。 3. 强化学习通过引入人类反馈数据调整模型输出分布,使模型面对训练分布外数据时能拒绝不当回答。 4. 但 Alignment 并不足以防护所有安全问题,存在越狱(Jailbreak)情况,导致模型对齐失效。 5. 还需关注隐私问题。 大模型架构与特点: 1. 包括 encoderonly、encoderdecoder 和 decoderonly 三种架构,目前熟知的 AI 助手多为 decoderonly 架构。 2. 大模型预训练数据量大,来自互联网,参数多,如 Open 在 2020 年发布的 GPT3 已达 170B 参数。 3. GPT3 可根据任务描述和示例完成任务,ChatGPT 则通过对话完成任务,二者在形式和安全性上有差别。
2025-02-19