Generative AI(生成式 AI)不是 AGI(通用人工智能)。
生成式 AI 是一种基于深度学习技术,利用机器学习算法从已有数据中学习并生成新的数据或内容的 AI 应用。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。典型的生成式 AI 包括 OpenAI 推出的语言模型 ChatGPT、GPT-4、图像模型 DALL-E 以及百度推出的文心一言、阿里云推出的通义千问等。生成式 AI 能够应用于游戏、娱乐和产品设计等诸多领域,但在数据处理过程中存在多重潜在合规风险,如未经授权收集信息、提供虚假信息、侵害个人隐私等。
而 AGI 是指具有广泛智能能力,能够像人类一样理解、学习和解决各种复杂问题的人工智能。
虽然生成式 AI 是一种强大的技术,但它只是在特定的生成任务上表现出色,还远未达到 AGI 的水平。在生成式 AI 的发展过程中,仍面临许多挑战和问题,如推理和计算能力的提升、获取真实世界的数据、构建特定领域的认知架构等。
在引入AIGC的概念之前,本报告将先解释另一相关的热门词条“GenAI”,全称Generative AI,即生成式AI。GenAI是一种基于深度学习技术(deep learning algorithm),利用机器学习(machine learning)算法从已有数据中学习并生成新的数据或内容的AI应用。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。GenAI为游戏、娱乐和产品设计等应用提供了新颖且有创意的解决方案,如自动写作、虚拟现实、音乐创作等,甚至协助科学研究开辟了新的可能性。目前典型的GenAI包括OpenAI推出的语言模型ChatGPT、GPT-4、图像模型DALL-E以及百度推出的文心一言、阿里云推出的通义千问等。虽然生成式AI是一种非常强大的技术,能够应用于诸多专业领域;但其在数据处理过程中存在多重潜在合规风险,如未经授权收集信息、提供虚假信息、侵害个人隐私等。AIGC(全称AI-Generated Content)指利用GenAI创建的内容,如图像、视频、音频、文本和三维模型。具体来讲,AIGC工具使用机器学习算法,通常以自然语言处理为基础,分析大型文本数据集,并学习如何生成风格和语气相似的新内容。国内目前主要是在《网络安全法》《数据安全法》以及《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》共同监管AIGC行业。
在生成式AI的下一个阶段,我们预计推理研发的成果将快速且深入地渗透到应用层。过去,很多认知架构依赖于巧妙的“解锁”技术;而随着这些能力逐渐深度嵌入到模型中,自主应用程序的复杂性和稳健性将会迅速提升。在研究实验室中,推理和推理时计算将继续成为未来的重要议题。随着新的扩展法则的出现,新的竞赛已经开始。但在特定领域中,获取真实世界的数据并构建领域和应用特定的认知架构仍然是一个巨大的挑战。这意味着,在解决现实世界中多样化问题时,“最后一公里”的应用提供商可能更具优势。展望未来,多代理系统,如Factory的“机器人”,可能会成为建模推理和社会学习过程的主流方式。一旦AI能够执行工作,我们将能组建团队,让“工人”完成更多任务。我们所期待的,是生成式AI的“第37步”时刻——就像AlphaGo在与李世石对战的第二局中出人意料的那一步棋。当一个通用AI系统展现出超越人类的思考和决策时,那一刻便会到来。这并不意味着AI将“觉醒”(AlphaGo并没有),而是AI在感知、推理和行动的模拟过程中,能够以全新的方式进行探索。这或许就是通用人工智能(AGI),但如果是这样,它并不会是单一的奇迹,而是技术发展的下一个阶段。
GenAI(即生成式AI)是一种能够从已有数据中学习并生成新的数据或内容的AI应用,利用GenAI创建的内容即AIGC(全称AI-Generated Content)。作为一种强大的技术,生成式AI能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对AIGC的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。AIGC主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs和Transformer等模型生成文本,如GPT-4和Gemini Ultra。图像生成依赖于GANs、VAEs和Stable Diffusion等技术,应用于数据增强和艺术创作,代表项目有Stable Diffusion和StyleGAN 2。音视频生成利用扩散模型、GANs和Video Diffusion等,广泛应用于娱乐和语音生成,代表项目有Sora和WaveNet。此外,AIGC还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。AIGC应用可能引发内生风险、数据隐私问题和知识产权风险。内生风险包括算法的不可解释性和不可问责性,以及代码开源可能带来的安全和伦理担忧。数据隐私方面,AIGC工具可能导致数据泄露、匿名化不足、未经授权的数据共享等问题。应用风险涉及作品侵权、不当竞争等问题。相关法律和规定对AIGC的透明性、数据收集和处理、知识产权归属等提出了要求。然而,著作权归属、数据隐私等问题尚需更多法律明确规定。此外,AIGC的滥用可能导致虚假信息传12AIGC法律风险研究报告播、侵犯隐私等问题,因此需要进一步加强监管和伦理约束。13AIGC法律风险研究报告14AIGC法律风险研究报告